Numerical

 Mathematics ${ }^{\text {and }}$ Computing Sixth EditionWard Cheney
David Kincaid

Formulas from Algebra

$$
\begin{array}{ll}
1+r+r^{2}+\cdots+r^{n-1}=\frac{r^{n}-1}{r-1} & \log _{a} x=\left(\log _{a} b\right)\left(\log _{b} x\right) \\
1+2+3+\cdots+n=\frac{1}{2} n(n+1) & |x|-|y| \leqq|x \pm y| \leqq|x|+|y| \\
1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{1}{6} n(n+1)(2 n+1) &
\end{array}
$$

Cauchy-Schwarz Inequality

$$
\left(\sum_{i=1}^{n} x_{i} y_{i}\right)^{2} \leqq\left(\sum_{i=1}^{n} x_{i}^{2}\right)\left(\sum_{i=1}^{n} y_{i}^{2}\right)
$$

Formulas from Geometry

Area of circle: $A=\pi r^{2} \quad(r=$ radius $) \quad$ Circumference of circle: $\quad C=2 \pi r$
Area of trapezoid: $\quad A=\frac{1}{2} h(a+b) \quad(h=$ height; a and b are parallel bases)
Area of triangle: $\quad A=\frac{1}{2} b h \quad(b=$ base, $h=$ height $)$

Formulas from Trigonometry

$$
\begin{aligned}
& \sin ^{2} x+\cos ^{2} x=1 \\
& 1+\tan ^{2} x=\sec ^{2} x \\
& \sin x=1 / \csc x \\
& \cos x=1 / \sec x \\
& \tan x=1 / \cot x \\
& \tan x=\sin x / \cos x \\
& \sin x=-\sin (-x) \\
& \cos x=\cos (-x)
\end{aligned}
$$

$$
\begin{aligned}
& \sin \left(\frac{\pi}{2}-x\right)=\cos x \\
& \cos \left(\frac{\pi}{2}-x\right)=\sin x \\
& \sin (x+y)=\sin x \cos y+\cos x \sin y \\
& \cos (x+y)=\cos x \cos y-\sin x \sin y \\
& \sin x+\sin y=2 \sin \left[\frac{1}{2}(x+y)\right] \cos \left[\frac{1}{2}(x-y)\right] \\
& \cos x+\cos y=2 \cos \left[\frac{1}{2}(x+y)\right] \cos \left[\frac{1}{2}(x-y)\right] \\
& \sinh x=\frac{1}{2}\left(e^{x}-e^{-x}\right) \\
& \cosh x=\frac{1}{2}\left(e^{x}+e^{-x}\right)
\end{aligned}
$$

Graphs

Formulas from Analytic Geometry

Slope of line: $\quad m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad$ (two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$)
Equation of line: $\quad y-y_{1}=m\left(x-x_{1}\right)$
Distance formula: $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Circle: $\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=r^{2} \quad\left(r=\right.$ radius, $\left(x_{0}, y_{0}\right)$ center $)$
Ellipse: $\quad \frac{\left(x-x_{0}\right)^{2}}{a^{2}}+\frac{\left(y-y_{0}\right)^{2}}{b^{2}}=1 \quad(a$ and b semiaxes $)$

Definitions from Calculus

The limit statement $\lim _{x \rightarrow a} f(x)=L$ means that for any $\varepsilon>0$, there is a $\delta>0$ such that $|f(x)-L|<\varepsilon$ whenever $0<|x-a|<\delta$.
A function f is continuous at x if $\lim _{h \rightarrow 0} f(x+h)=f(x)$.
If $\lim _{h \rightarrow 0} \frac{1}{h}[f(x+h)-f(x)]$ exists, it is denoted by $f^{\prime}(x)$ or $\frac{d}{d x} f(x)$ and is termed the derivative of f at x.

Formulas from Differential Calculus

$$
\begin{aligned}
(f \pm g)^{\prime} & =f^{\prime} \pm g^{\prime} & \frac{d}{d x} \log _{a} x & =x^{-1} \log _{a} e \\
(f g)^{\prime} & =f g^{\prime}+f^{\prime} g & \frac{d}{d x} \sin x & =\cos x
\end{aligned} \begin{array}{ll}
\frac{d}{d x} \operatorname{arccot} x & =\frac{-1}{1+x^{2}} \\
\left(\frac{f}{g}\right)^{\prime} & =\frac{g f^{\prime}-f g^{\prime}}{g^{2}}
\end{array}
$$

STXIH-EDITJON

NUMERICAL MATHEMATICS AND COMPUTING

Ward Cheney
The University of Texas at Austin
\section*{David Kincaid}
The University of Texas at Austin

Numerical Mathematics and Computing, Sixth edition

Ward Cheney, David Kincaid

Dedicated to David M. Young

Publisher: Bob Pirtle

Development Editor: Stacy Green
Editorial Assistant: Elizabeth Rodio
Technology Project Manager: Sam Subity
Marketing Manager: Amanda Jellerichs
Marketing Assistant: Ashley Pickering
Marketing Communications Manager: Darlene Amidon-Brent
Project Manager, Editorial Production: Cheryll Linthicum
Creative Director: Rob Hugel
Art Director: Vernon T. Boes

Print Buyer: Doreen Suruki
Permissions Editor: Bob Kauser
Production Service: Matrix Productions
Text Designer: Roy Neuhaus
Photo Researcher: Terri Wright
Copy Editor: Barbara Willette
Illustrator: ICC Macmillan Inc.
Cover Designer: Denise Davidson
Cover Image: Glowimages/Getty Images
Cover Printer: R.R. Donnelley/Crawfordsville
Compositor: ICC Macmillan Inc.
Printer: R.R. Donnelley/Crawfordsville

© 2008, 2004 Thomson Brooks/Cole, a part of The Thomson Corporation. Thomson, the Star logo, and Brooks/Cole are trademarks used herein under license.

ALL RIGHTS RESERVED. No part of this work covered by the copyright hereon may be reproduced or used in any form or by any means-graphic, electronic, or mechanical, including photocopying, recording, taping, web distribution, information storage and retrieval systems, or in any other manner-without the written permission of the publisher.

Printed in the United States of America
12345671110090807

For more information about our products, contact us at: Thomson Learning Academic Resource Center 1-800-423-0563

For permission to use material from this text or product, submit a request online at http://www.thomsonrights.com. Any additional questions about permissions can be submitted by e-mail to thomsonrights@thomson.com.

Thomson Higher Education
10 Davis Drive
Belmont, CA 94002-3098
USA
Library of Congress Control Number: 2007922553
Student Edition:
ISBN-13: 978-0-495-11475-8
ISBN-10: 495-11475-8

Preface

In preparing the sixth edition of this book, we have adhered to the basic objective of the previous editions-namely, to acquaint students of science and engineering with the potentialities of the modern computer for solving numerical problems that may arise in their professions. A secondary objective is to give students an opportunity to hone their skills in programming and problem solving. A final objective is to help students arrive at an understanding of the important subject of errors that inevitably accompany scientific computing, and to arm them with methods for detecting, predicting, and controlling these errors.

Much of science today involves complex computations built upon mathematical software systems. The users may have little knowledge of the underlying numerical algorithms used in these problem-solving environments. By studying numerical methods one can become a more informed user and be better prepared to evaluate and judge the accuracy of the results. What this implies is that students should study algorithms to learn not only how they work but also how they can fail. Critical thinking and constant skepticism are attitudes we want students to acquire. Any extensive numerical calculation, even when carried out by state-of-the-art software, should be subjected to independent verification, if possible.

Since this book is to be accessible to students who are not necessarily advanced in their formal study of mathematics and computer sciences, we have tried to achieve an elementary style of presentation. Toward this end, we have provided numerous examples and figures for illustrative purposes and fragments of pseudocode, which are informal descriptions of computer algorithms.

Believing that most students at this level need a survey of the subject of numerical mathematics and computing, we have presented a wide diversity of topics, including some rather advanced ones that play an important role in current scientific computing. We recommend that the reader have at least a one-year study of calculus as a prerequisite for our text. Some knowledge of matrices, vectors, and differential equations is helpful.

Features in the Sixth Edition

Following suggestions and comments by a dozen reviewers, we have revised all sections of the book to some degree, and a number of major new features have been added as follows:

- We have moved some items (especially computer codes) from the text to the website so that they are easily accessible without tedious typing. This endeavor includes all of the Matlab, Mathematica, and Maple computer codes as well as the Appendix on Overview of Mathematical Software available on the World Wide Web.
- We have added more figures and numerical examples throughout, believing that concrete codes and visual aids are helpful to every reader.
- New sections and material have been added to many topics, such as the modified false position method, the conjugate gradient method, Simpson's method, and some others.
- More exercises involving applications are presented throughout.
- There are additional citations to recent references and some older references have been replaced.
- We have reorganized the appendices, adding some new ones and omitting some older ones.

Suggestions for Use

Numerical Mathematics and Computing, Sixth Edition, can be used in a variety of ways, depending on the emphasis the instructor prefers and the inevitable time constraints. Problems have been supplied in abundance to enhance the book's versatility. They are divided into two categories: Problems and Computer Problems. In the first category, there are more than 800 exercises in analysis that require pencil, paper, and possibly a calculator. In the second category, there are approximately 500 problems that involve writing a program and testing it on a computer. Students can be asked to solve some problems using advanced software systems such as Matlab, Mathematica, or Maple. Alternatively, students can be asked to write their own code. Readers can often follow a model or example in the text to assist them in working out exercises, but in other cases they must proceed on their own from a mathematical description given in the text or in the problems.

In some of the computer problems, there is something to be learned beyond simply writing code-a moral, if you like. This can happen if the problem being solved and the code provided to do so are somehow mismatched. Some computing problems are designed to give experience in using either mathematical software systems, precoded programs, or black-box library codes.

A Student's Solution Manual is sold as a separate publication. Also, teachers who adopt the book can obtain from the publisher the Instructor's Solution Manual. Sample programs based on the pseudocode displayed in this text have been coded in several programming languages. These codes and additional material are available on the textbook websites:
www.thomsonedu.com/math/cheney
www.ma.utexas.edu/CNA/NMC6/
The arrangement of chapters reflects our own view of how the material might best unfold for a student new to the subject. However, there is very little mutual dependence among the chapters, and the instructor can order the sequence of presentation in various ways. Most courses will certainly have to omit some sections and chapters for want of time.

Our own recommendations for courses based on this text are as follows:

- A one-term course carefully covering Chapters 1 through 11 (possibly omitting Chapters 5 and 8 and Sections 4.2, 9.3, 10.3, and 11.3, for example), followed by a selection of material from the remaining chapters as time permits.
- A one-term survey rapidly skimming over most of the chapters in the text and omitting some of the more difficult sections.
- A two-term course carefully covering all chapters.

Student Research Projects

Throughout the book there are some computer problems designated as Student Research Projects. These suggest opportunities for students to explore topics beyond the scope of the textbook. Many of these involve application areas for numerical methods. The projects should include programming and numerical experiments. A favorable aspect of these assignments is to allow students to choose a topic of interest to them, possibly something that may arise in their future profession or their major study area. For example, any topic suggested by the chapters and sections in the book may be delved into more deeply by consulting other texts and references on that topic. In preparing such a project, the students have to learn about the topic, locate the significant references (books and research papers), do the computing, and write a report that explains all this in a coherent way. Students can avail themselves of mathematical software systems such as Matlab, Maple, or Mathematica, or do their own programming in whatever language they prefer.

Acknowledgments

In preparing the sixth edition, we have been able to profit from advice and suggestions kindly offered by a large number of colleagues, students, and users of the previous edition.

We wish to acknowledge the reviewers who have provided detailed critiques for this new edition: Krishan Agrawal, Thomas Boger, Charles Collins, Gentil A. Estévez, Terry Feagin, Mahadevan Ganesh, William Gearhart, Juan Gil, Xiaofan Li, Vania Mascioni, Bernard Maxum, Amar Raheja, Daniel Reynolds, Asok Sen, Ching-Kuang Shene, William Slough, Thiab Taha, Jin Wang, Quiang Ye, Tjalling Ypma, and Shangyou Zhan. In particular, Jose Flores was most helpful in checking over the manuscript.

Reviewers from previous editions were Neil Berger, Jose E. Castillo, Charles Cullen, Elias Y. Deeba, F. Emad, Terry Feagin, Leslie Foster, Bob Funderlic, John Gregory, Bruce P. Hillam, Patrick Lang, Ren Chi Li, Wu Li, Edward Neuman, Roy Nicolaides. J. N. Reddy, Ralph Smart, Stephen Wirkus, and Marcus Wright.

We thank those who have helped in various capacities. Many individuals took the trouble to write us with suggestions and criticisms of previous editions of this book: A. Aawwal, Nabeel S.Abo-Ghander, Krishan Agrawal, Roger Alexander, Husain Ali Al-Mohssen, Kistone Anand, Keven Anderson, Vladimir Andrijevik, Jon Ashland, Hassan Basir, Steve Batterson, Neil Berger, Adarsh Beohar, Bernard Bialecki, Jason Brazile, Keith M. Briggs, Carl de Boor, Jose E. Castillo, Ellen Chen, Edmond Chow, John Cook, Roger Crawfis, Charles Cullen, Antonella Cupillari, Jonathan Dautrich, James Arthur Davis, Tim Davis, Elias Y. Deeba, Suhrit Dey, Alan Donoho, Jason Durheim, Wayne Dymacek, Fawzi P. Emad, Paul Enigenbury, Terry Feagin, Leslie Foster, Peter Fraser, Richard Gardner, John Gregory, Katherine Hua Guo, Scott Hagerup, Kent Harris, Bruce P. Hillam, Tom Hogan, Jackie Hohnson, Christopher M. Hoss, Kwang-il In, Victoria Interrante, Sadegh Jokar, Erni Jusuf, Jason Karns, Grant Keady, Jacek Kierzenka, S. A. (Seppo) Korpela, Andrew Knyazev, Gary Krenz, Jihoon Kwak, Kim Kyungjin, Minghorng Lai, Patrick Lang, Wu Li, Grace Liu, Wenguo Liu, Mark C. Malburg, P. W. Manual, Juan Meza, F. Milianazzo, Milan Miklavcic, Sue Minkoff, George Minty, Baharen Momken, Justin Montgomery, Ramon E. Moore, Aaron Naiman, Asha Nallana, Edward Neuman, Durene Ngo, Roy Nicolaides, Jeff Nunemacher, Valia Guerra Ones, Tony Praseuth, Rolfe G. Petschek, Mihaela Quirk, Helia Niroomand Rad, Jeremy Rahe, Frank Roberts, Frank Rogers, Simen Rokaas, Robert
S. Raposo, Chris C. Seib, Granville Sewell, Keh-Ming Shyue, Daniel Somerville, Nathan Smith, Mandayam Srinivas, Alexander Stromberger, Xingping Sun, Thiab Taha, Hidajaty Thajeb, Joseph Traub, Phuoc Truong, Vincent Tsao, Bi Roubolo Vona, David Wallace, Charles Walters, Kegnag Wang, Layne T. Watson, Andre Weideman, Perry Wong, Yuan Xu , and Rick Zaccone.

Valuable comments and suggestions were made by our colleagues and friends. In particular, David Young was very generous with suggestions for improving the accuracy and clarity of the exposition in previous editions. Some parts of previous editions were typed with great care and attention to detail by Katy Burrell, Kata Carbone, and Belinda Trevino. Aaron Naiman at Jerusalem College of Technology was particularly helpful in preparing view-graphs for a course based on this book.

It is our pleasure to thank those who helped with the task of preparing the new edition. The staff of Brooks/Cole and associated individuals have been most understanding and patient in bringing this book to fruition. In particular, we thank Bob Pirtle, Stacy Green, Elizabeth Rodio, and Cheryll Linthicum for their efforts on behalf of this project. Some of those who were involved with previous editions were Seema Atwal, Craig Barth, Carol Benedict, Gary Ostedt, Jeremy Hayhurst, Janet Hill, Ragu Raghavan, Anne Seitz, Marlene Thom, and Elizabeth Rammel. We also thank Merrill Peterson and Sara Planck at Matrix Productions Inc. for providing the $\mathrm{ETEX}_{\mathrm{E}}$ macros and for help in putting the book into final form.

We would appreciate any comments, questions, criticisms, or corrections that readers may communicate to us. For this, e-mail is especially efficient.

Ward Cheney
Department of Mathematics cheney@math.utexas.edu
David Kincaid
Department of Computer Sciences kincaid@cs.utexas.edu

Contents

1 Introduction 1
1.1 Preliminary Remarks 1
Significant Digits of Precision: Examples 3
Errors: Absolute and Relative 5
Accuracy and Precision 5
Rounding and Chopping 6
Nested Multiplication 7
Pairs of Easy/Hard Problems 9
First Programming Experiment 9
Mathematical Software 10
Summary 11
Additional References 11
Problems 1.1 12
Computer Problems 1.1 14
1.2 Review of Taylor Series 20
Taylor Series 20
Complete Horner's Algorithm 23
Taylor's Theorem in Terms of $(x-c)$ 24
Mean-Value Theorem 26
Taylor's Theorem in Terms of h 26
Alternating Series 28
Summary 30
Additional References 31
Problems 1.2 31
Computer Problems 1.2 36
2 Floating-Point Representation and Errors
2.1 Floating-Point Representation 43
Normalized Floating-Point Representation 44
Floating-Point Representation 46
Single-Precision Floating-Point Form 46
Double-Precision Floating-Point Form 48
Computer Errors in Representing Numbers 50
Notation $\mathrm{fl}(x)$ and Backward Error Analysis 51
Historical Notes 54
Summary 54
Problems 2.1 55
Computer Problems 2.1 59
2.2 Loss of Significance 61
Significant Digits 61
Computer-Caused Loss of Significance 62
Theorem on Loss of Precision 63
Avoiding Loss of Significance in Subtraction 64
Range Reduction 67
Summary 68
Additional References 68
Problems 2.2 68
Computer Problems 2.2 71
3 Locating Roots of Equations76
3.1 Bisection Method 76
Introduction 76
Bisection Algorithm and Pseudocode 78
Examples 79
Convergence Analysis 81
False Position (Regula Falsi) Method and Modifications 83
Summary 85
Problems 3.1 85
Computer Problems 3.1 87
3.2 Newton's Method 89
Interpretations of Newton's Method 90
Pseudocode 92
Illustration 92
Convergence Analysis 93
Systems of Nonlinear Equations 96
Fractal Basins of Attraction 99
Summary 100
Additional References 100
Problems 3.2 101
Computer Problems 3.2 105
3.3 Secant Method 111
Secant Algorithm 112
Convergence Analysis 114
Comparison of Methods 117
Hybrid Schemes 117
Fixed-Point Iteration 117
Summary 118
Additional References 119
Problems 3.3 119
Computer Problems 3.3 121
4 Interpolation and
Numerical Differentiation124
4.1 Polynomial Interpolation 124
Preliminary Remarks 124
Polynomial Interpolation 125
Interpolating Polynomial: Lagrange Form 126
Existence of Interpolating Polynomial 128
Interpolating Polynomial: Newton Form 128
Nested Form 130
Calculating Coefficients a_{i} Using Divided Differences 131
Algorithms and Pseudocode 136
Vandermonde Matrix 139
Inverse Interpolation 141
Polynomial Interpolation by Neville's Algorithm 142
Interpolation of Bivariate Functions 144
Summary 145
Problems 4.1 146
Computer Problems 4.1 152
4.2 Errors in Polynomial Interpolation 153
Dirichlet Function 154
Runge Function 154
Theorems on Interpolation Errors 156
Summary 160
Problems 4.2 161
Computer Problems 4.2 163
4.3 Estimating Derivatives and Richardson Extrapolation 164
First-Derivative Formulas via Taylor Series 164
Richardson Extrapolation 166
First-Derivative Formulas via Interpolation Polynomials 170
Second-Derivative Formulas via Taylor Series 173
Noise in Computation 174
Summary 174
Additional References for Chapter 4 175
Problems 4.3 175
Computer Problems 4.3 178
5 Numerical Integration 180
5.1 Lower and Upper Sums 180
Definite and Indefinite Integrals 180
Lower and Upper Sums 181
Riemann-Integrable Functions 183
Examples and Pseudocode 184
Summary 187
Problems 5.1 187
Computer Problems 5.1 188
5.2 Trapezoid Rule 190
Uniform Spacing 191
Error Analysis 192
Applying the Error Formula 195
Recursive Trapezoid Formula for Equal Subintervals 196
Multidimensional Integration 198
Summary 199
Problems 5.2 200
Computer Problems 5.2 203
5.3 Romberg Algorithm 204
Description 204
Pseudocode 205
Euler-Maclaurin Formula 206
General Extrapolation 209
Summary 211
Additional References 211
Problems 5.3 212
Computer Problems 5.3 214
6 Additional Topics on Numerical Integration216
6.1 Simpson's Rule and Adaptive Simpson's Rule 216
Basic Simpson's Rule 216
Simpson's Rule 219
Composite Simpson's Rule 220
An Adaptive Simpson's Scheme 221
Example Using Adaptive Simpson Procedure 224
Newton-Cotes Rules 225
Summary 226
Problems 6.1 227
Computer Problems 6.1 229
6.2 Gaussian Quadrature Formulas 230
Description 230
Change of Intervals 231
Gaussian Nodes and Weights 232
Legendre Polynomials 234
Integrals with Singularities 237
Summary 237
Additional References 239
Problems 6.2 239
Computer Problems 6.2 241
7 Systems of Linear Equations 245
7.1 Naive Gaussian Elimination 245
A Larger Numerical Example 247
Algorithm 248
Pseudocode 250
Testing the Pseudocode 253
Residual and Error Vectors 254
Summary 255
Problems 7.1 255
Computer Problems 7.1 257
7.2 Gaussian Elimination with Scaled Partial Pivoting 259
Naive Gaussian Elimination Can Fail 259
Partial Pivoting and Complete Partial Pivoting 261
Gaussian Elimination with Scaled Partial Pivoting 262
A Larger Numerical Example 265
Pseudocode 266
Long Operation Count 269
Numerical Stability 271
Scaling 271
Summary 271
Problems 7.2 272
Computer Problems 7.2 276
7.3 Tridiagonal and Banded Systems 280
Tridiagonal Systems 281
Strictly Diagonal Dominance 282
Pentadiagonal Systems 283
Block Pentadiagonal Systems 285
Summary 286
Additional References 287
Problems 7.3 287
Computer Problems 7.3 288
8 Additional Topics Concerning Systems of Linear Equations293
8.1 Matrix Factorizations 293
Numerical Example 294
Formal Derivation 296
Pseudocode 300
Solving Linear Systems Using $L U$ Factorization 300
$L D L^{T}$ Factorization 302
Cholesky Factorization 305
Multiple Right-Hand Sides 306
Computing A^{-1} 307
Example Using Software Packages 307
Summary 309
Problems 8.1 311
Computer Problems 8.1 316
8.2 Iterative Solutions of Linear Systems 319
Vector and Matrix Norms 319
Condition Number and Ill-Conditioning 321
Basic Iterative Methods 322
Pseudocode 327
Convergence Theorems 328
Matrix Formulation 331
Another View of Overrelaxation 332
Conjugate Gradient Method 332
Summary 335
Problems 8.2 337
Computer Problems 8.2 339
8.3 Eigenvalues and Eigenvectors 342
Calculating Eigenvalues and Eigenvectors 343
Mathematical Software 344
Properties of Eigenvalues 345
Gershgorin's Theorem 347
Singular Value Decomposition 348
Numerical Examples of Singular Value Decomposition 351
Application: Linear Differential Equations 353
Application: A Vibration Problem 354
Summary 355
Problems 8.3 356
Computer Problems 8.3 358
8.4 Power Method 360
Power Method Algorithms 361
Aitken Acceleration 363
Inverse Power Method 364
Software Examples: Inverse Power Method 365
Shifted (Inverse) Power Method 365
Example: Shifted Inverse Power Method 366
Summary 366
Additional References 367
Problems 8.4 367
Computer Problems 8.4 368
9 Approximation by Spline Functions371
9.1 First-Degree and Second-Degree Splines 371
First-Degree Spline 372
Modulus of Continuity 374
Second-Degree Splines 376
Interpolating Quadratic Spline $Q(x)$ 376
Subbotin Quadratic Spline 378
Summary 380
Problems 9.1 381
Computer Problems 9.1 384
9.2 Natural Cubic Splines 385
Introduction 385
Natural Cubic Spline 386
Algorithm for Natural Cubic Spline 388
Pseudocode for Natural Cubic Splines 392
Using Pseudocode for Interpolating and Curve Fitting 393
Space Curves 394
Smoothness Property 396
Summary 398
Problems 9.2 399
Computer Problems 9.2 403
9.3 B Splines: Interpolation and Approximation 404
Interpolation and Approximation by B Splines 410
Pseudocode and a Curve-Fitting Example 412
Schoenberg's Process 414
Pseudocode 414
Bézier Curves 416
Summary 418
Additional References 419
Problems 9.3 420
Computer Problems 9.3 423
10 Ordinary Differential Equations
10.1 Taylor Series Methods 426
Initial-Value Problem: Analytical versus Numerical Solution 426
An Example of a Practical Problem 428
Solving Differential Equations and Integration 428
Vector Fields 429
Taylor Series Methods 431
Euler's Method Pseudocode 432
Taylor Series Method of Higher Order 433
Types of Errors 435
Taylor Series Method Using Symbolic Computations 435
Summary 435
Problems 10.1 436
Computer Problems 10.1 438
10.2 Runge-Kutta Methods 439
Taylor Series for $f(x, y)$ 440
Runge-Kutta Method of Order 2 441
Runge-Kutta Method of Order 4 442
Pseudocode 443
Summary 444
Problems 10.2 445
Computer Problems 10.2 447
10.3 Stability and Adaptive Runge-Kutta and Multistep Methods 450
An Adaptive Runge-Kutta-Fehlberg Method 450
An Industrial Example 454
Adams-Bashforth-Moulton Formulas 455
Stability Analysis 456
Summary 459
Additional References 460
Problems 10.3 460
Computer Problems 10.3 461
11 Systems of Ordinary Differential Equations465
11.1 Methods for First-Order Systems 465
Uncoupled and Coupled Systems 465
Taylor Series Method 466
Vector Notation 467
Systems of ODEs 468
Taylor Series Method: Vector Notation 468
Runge-Kutta Method 469
Autonomous ODE 471
Summary 473
Problems 11.1 474
Computer Problems 11.1 475
11.2 Higher-Order Equations and Systems 477
Higher-Order Differential Equations 477
Systems of Higher-Order Differential Equations 479
Autonomous ODE Systems 479
Summary 480
Problems 11.2 480
Computer Problems 11.2 482
11.3 Adams-Bashforth-Moulton Methods 483
A Predictor-Corrector Scheme 483
Pseudocode 484
An Adaptive Scheme 488
An Engineering Example 488
Some Remarks about Stiff Equations 489
Summary 491
Additional References 492
Problems 11.3 492
Computer Problems 11.3 492
12 Smoothing of Data and the Method of Least Squares
12.1 Method of Least Squares 495
Linear Least Squares 495
Linear Example 498
Nonpolynomial Example 499
Basis Functions $\left\{g_{0}, g_{1}, \ldots, g_{n}\right\}$ 500
Summary 501
Problems 12.1 502
Computer Problems 12.1 505
12.2 Orthogonal Systems and Chebyshev Polynomials 505
Orthonormal Basis Functions $\left\{g_{0}, g_{1}, \ldots, g_{n}\right\}$ 505
Outline of Algorithm 508
Smoothing Data: Polynomial Regression 510
Summary 515
Problems 12.2 516
Computer Problems 12.2 517
12.3 Other Examples of the Least-Squares Principle 518
Use of a Weight Function $w(x)$ 519
Nonlinear Example 520
Linear and Nonlinear Example 521
Additional Details on SVD 522
Using the Singular Value Decomposition 524
Summary 527
Additional References 527
Problems 12.3 527
Computer Problems 12.3 530
13 Monte Carlo Methods and Simulation 532
13.1 Random Numbers 532
Random-Number Algorithms and Generators 533
Examples 535
Uses of Pseudocode Random 537
Summary 541
Problems 13.1 541
Computer Problems 13.1 542
13.2 Estimation of Areas and Volumes by Monte Carlo Techniques 544
Numerical Integration 544
Example and Pseudocode 545
Computing Volumes 547
Ice Cream Cone Example 548
Summary 549
Problems 13.2 549
Computer Problems 13.2 549
13.3 Simulation 552
Loaded Die Problem 552
Birthday Problem 553
Buffon's Needle Problem 555
Two Dice Problem 556
Neutron Shielding 557
Summary 558
Additional References 558
Computer Problems 13.3 559
14 Boundary-Value Problems for Ordinary Differential Equations
14.1 Shooting Method 563
Shooting Method Algorithm 565
Modifications and Refinements 567
Summary 567
Problems 14.1 568
Computer Problems 14.1 570
14.2 A Discretization Method 570
Finite-Difference Approximations 570
The Linear Case 571
Pseudocode and Numerical Example 572
Shooting Method in the Linear Case 574
Pseudocode and Numerical Example 575
Summary 577
Additional References 578
Problems 14.2 578
Computer Problems 14.2 580
15 Partial Differential Equations 582
15.1 Parabolic Problems 582
Some Partial Differential Equations from Applied Problems 582
Heat Equation Model Problem 585
Finite-Difference Method 585
Pseudocode for Explicit Method 587
Crank-Nicolson Method 588
Pseudocode for the Crank-Nicolson Method 589
Alternative Version of the Crank-Nicolson Method 590
Stability 591
Summary 593
Problems 15.1 594
Computer Problems 15.1 596
15.2 Hyperbolic Problems 596
Wave Equation Model Problem 596
Analytic Solution 597
Numerical Solution 598
Pseudocode 600
Advection Equation 601
Lax Method 602
Upwind Method 602
Lax-Wendroff Method 602
Summary 603
Problems 15.2 604
Computer Problems 15.2 604
15.3 Elliptic Problems 605
Helmholtz Equation Model Problem 605
Finite-Difference Method 606
Gauss-Seidel Iterative Method 610
Numerical Example and Pseudocode 610
Finite-Element Methods 613
More on Finite Elements 617
Summary 619
Additional References 620
Problems 15.3 620
Computer Problems 15.3 622
16 Minimization of Functions
625
16.1 One-Variable Case 625
Unconstrained and Constrained Minimization Problems 625
One-Variable Case 626
Unimodal Functions F 627
Fibonacci Search Algorithm 628
Golden Section Search Algorithm 631
Quadratic Interpolation Algorithm 633
Summary 635
Problems 16.1 635
Computer Problems 16.1 637
16.2 Multivariate Case 639
Taylor Series for F : Gradient Vector and Hessian Matrix 640
Alternative Form of Taylor Series 641
Steepest Descent Procedure 643
Contour Diagrams 644
More Advanced Algorithms 644
Minimum, Maximum, and Saddle Points 646
Positive Definite Matrix 647
Quasi-Newton Methods 647
Nelder-Mead Algorithm 647
Method of Simulated Annealing 648
Summary 650
Additional References 651
Problems 16.2 651
Computer Problems 16.2 654
17 Linear Programming
17.1 Standard Forms and Duality 657
First Primal Form 657
Numerical Example 658
Transforming Problems into First Primal Form 660
Dual Problem 661
Second Primal Form 663
Summary 664
Problems 17.1 665
Computer Problems 17.1 669
17.2 Simplex Method 670
Vertices in K and Linearly Independent Columns of A 671
Simplex Method 672
Summary 674
Problems 17.2 674
Computer Problems 17.2 675
17.3 Approximate Solution of Inconsistent Linear Systems 675
ℓ_{1} Problem 676
ℓ_{∞} Problem 678
Summary 680
Additional References 682
Problems 17.3 682
Computer Problems 17.3 682
Appendix A Advice on Good Programming Practices 684
A. 1 Programming Suggestions 684
Case Studies 687
On Developing Mathematical Software 691
Appendix B Representation of Numbers in Different Bases 692
B. 1 Representation of Numbers in Different Bases 692
Base β Numbers 693
Conversion of Integer Parts 693
Conversion of Fractional Parts 695
Base Conversion $10 \leftrightarrow 8 \leftrightarrow 2$ 696
Base 16 698
More Examples 698
Summary 699
Problems B. 1 699
Computer Problems B. 1 701
Appendix C Additional Details on IEEE Floating-Point Arithmetic 703
C. 1 More on IEEE Standard Floating-Point Arithmetic 703
Appendix D Linear Algebra Concepts and Notation 706
D. 1 Elementary Concepts 706
Vectors 706
Matrices 708
Matrix-Vector Product 711
Matrix Product 711
Other Concepts 713
Cramer's Rule 715
D. 2 Abstract Vector Spaces 716
Subspaces 717
Linear Independence 717
Bases 718
Linear Transformations 718
Eigenvalues and Eigenvectors 719
Change of Basis and Similarity 719
Orthogonal Matrices and Spectral Theorem 720
Norms 721
Gram-Schmidt Process 722
Answers for Selected Problems 724
Bibliography 745
Index 754

Introduction

The Taylor series for the natural logarithm $\operatorname{In}(1+x)$ is

$$
\ln 2=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+\cdots
$$

Adding together the eight terms shown, we obtain In $2 \approx 0.63452^{*}$, which is a poor approximation to $\ln 2=0.69315 \ldots$. On the other hand, the Taylor series for $\ln [(1+x) /(1-x)]$ gives us (with $x=\frac{1}{3}$)

$$
\ln 2=2\left(3^{-1}+\frac{3^{-3}}{3}+\frac{3^{-5}}{5}+\frac{3^{-7}}{7}+\cdots\right)
$$

By adding the four terms shown between the parentheses and multiplying by 2 , we obtain $\ln 2 \approx 0.69313$. This illustrates the fact that rapid convergence of a Taylor series can be expected near the point of expansion but not at remote points. Evaluating the series $\ln [(1+x) /(1-x)]$ at $x=\frac{1}{3}$ is a mechanism for evaluating In 2 near the point of expansion. It also gives an example in which the properties of a function can be exploited to obtain a more rapidly convergent series. Examples like this will become clearer after the reader has studied Section 1.2. Taylor series and Taylor's Theorem are two of the principal topics we discuss in this chapter. They are ubiquitous features in much of numerical analysis.

1.1 Preliminary Remarks

The objective of this text is to help the reader in understanding some of the many methods for solving scientific problems on a modern computer. We intentionally limit ourselves to the typical problems that arise in science, engineering, and technology. Thus, we do not touch on problems of accounting, modeling in the social sciences, information retrieval, artificial intelligence, and so on.

[^0]Usually, our treatment of problems will not begin at the source, for that would take us far afield into such areas as physics, engineering, and chemistry. Instead, we consider problems after they have been cast into certain standard mathematical forms. The reader is therefore asked to accept on faith the assertion that the chosen topics are indeed important ones in scientific computing.

To survey many topics, we must treat some in a superficial way. But it is hoped that the reader will acquire a good bird's-eye view of the subject and therefore will be better prepared for a further, deeper study of numerical analysis.

For each principal topic, we list good current sources for more information. In any realistic computing situation, considerable thought should be given to the choice of method to be employed. Although most procedures presented here are useful and important, they may not be the optimum ones for a particular problem. In choosing among available methods for solving a problem, the analyst or programmer should consult recent references.

Becoming familiar with basic numerical methods without realizing their limitations would be foolhardy. Numerical computations are almost invariably contaminated by errors, and it is important to understand the source, propagation, magnitude, and rate of growth of these errors. Numerical methods that provide approximations and error estimates are more valuable than those that provide only approximate answers. While we cannot help but be impressed by the speed and accuracy of the modern computer, we should temper our admiration with generous measures of skepticism. As the eminent numerical analyst Carl-Erik Fröberg once remarked:

Never in the history of mankind has it been possible to produce so many wrong answers so quickly!

Thus, one of our goals is to help the reader arrive at this state of skepticism, armed with methods for detecting, estimating, and controlling errors.

The reader is expected to be familiar with the rudiments of programming. Algorithms are presented as pseudocode, and no particular programming language is adopted.

Some of the primary issues related to numerical methods are the nature of numerical errors, the propagation of errors, and the efficiency of the computations involved, as well as the number of operations and their possible reduction.

Many students have graphing calculators and access to mathematical software systems that can produce solutions to complicated numerical problems with minimal difficulty. The purpose of a numerical mathematics course is to examine the underlying algorithmic techniques so that students learn how the software or calculator found the answer. In this way, they would have a better understanding of the inherent limits on the accuracy that must be anticipated in working with such systems.

One of the fundamental strategies behind many numerical methods is the replacement of a difficult problem with a string of simpler ones. By carrying out an iterative process, the solutions of the simpler problems can be put together to obtain the solution of the original, difficult problem. This strategy succeeds in finding zeros of functions (Chapter 3), interpolation (Chapter 4), numerical integration (Chapters 5-6), and solving linear systems (Chapters 7-8).

Students majoring in computer science and mathematics as well as those majoring in engineering and other sciences are usually well aware that numerical methods are needed to solve problems that they frequently encounter. It may not be as well recognized that
scientific computing is quite important for solving problems that come from fields other than engineering and science, such as economics. For example, finding zeros of functions may arise in problems using the formulas for loans, interest, and payment schedules. Also, problems in areas such as those involving the stock market may require least-squares solutions (Chapter 12). In fact, the field of computational finance requires solving quite complex mathematical problems utilizing a great deal of computing power. Economic models routinely require the analysis of linear systems of equations with thousands of unknowns.

Significant Digits of Precision: Examples

Significant digits are digits beginning with the leftmost nonzero digit and ending with the rightmost correct digit, including final zeros that are exact.

EXAMPLE 1 In a machine shop, a technician cuts a 2-meter by 3-meter rectangular sheet of metal into two equal triangular pieces. What is the diagonal measurement of each triangle? Can these pieces be slightly modified so the diagonals are exactly 3.6 meters?

Solution Since the piece is rectangular, the Pythagorean Theorem can be invoked. Thus, to compute the diagonal, we write $2^{2}+3^{2}=d^{2}$, where d is the diagonal. It follows that

$$
d=\sqrt{4+9}=\sqrt{13}=3.605551275
$$

This last number is obtained by using a hand-held calculator. The accuracy of d as given can be verified by computing $(3.605551275) *(3.605551275)=13$. Is this value for the diagonal, d, to be taken seriously? Certainly not. To begin with, the given dimensions of the rectangle cannot be expected to be precisely 2 and 3 . If the dimensions are accurate to one millimeter, the dimensions may be as large as 2.001 and 3.001 . Using the Pythagorean Theorem again, one finds that the diagonal may be as large as

$$
d=\sqrt{2.001^{2}+3.001^{2}}=\sqrt{4.004001+9.006001}=\sqrt{13.01002} \approx 3.6069
$$

Similar reasoning indicates that d may be as small as 3.6042 . These are both worst cases. We can conclude that

$$
3.6042 \leqq d \leqq 3.6069
$$

No greater accuracy can be claimed for the diagonal, d.
If we want the diagonal to be exactly 3.6, we require

$$
(3-c)^{2}+(2-c)^{2}=3.6^{2}
$$

For simplicity, we reduce each side by the same amount. This leads to

$$
c^{2}-5 c+0.02=0
$$

Using the quadratic formula, we obtain the smaller root

$$
c=2.5-\sqrt{6.23} \approx 0.00400
$$

By cutting off 4 millimeters from the two perpendicular sides, we have triangular pieces of sizes 1.996 by 2.996 meters. Checking, we obtain $(1.996)^{2}+(2.996)^{2} \approx 3.6^{2}$.

To show the effect of the number of significant digits used in a calculation, we consider the problem of solving a linear system of equations.

EXAMPLE 2 Let us concentrate on solving for the variable y in this linear system of equations in two variables

$$
\left\{\begin{array}{l}
0.1036 x+0.2122 y=0.7381 \tag{1}\\
0.2081 x+0.4247 y=0.9327
\end{array}\right.
$$

First, carry only three significant digits of precision in the calculations. Second, repeat with four significant digits throughout. Finally, use ten significant digits.

Solution In the first task, we round all numbers in the original problem to three digits and round all the calculations, keeping only three significant digits. We take a multiple α of the first equation and subtract it from the second equation to eliminate the x-term in the second equation. The multiplier is $\alpha=0.208 / 0.104 \approx 2.00$. Thus, in the second equation, the new coefficient of the x-term is $0.208-(2.00)(0.104) \approx 0.208-0.208=0$ and the new y-term coefficient is $0.425-(2.00)(0.212) \approx 0.425-0.424=0.001$. The righthand side is $0.933-(2.00)(0.738)=0.933-1.48=-0.547$. Hence, we find that $y=-0.547 /(0.001) \approx-547$.

We decide to keep four significant digits throughout and repeat the calculations. Now the multiplier is $\alpha=0.2081 / 0.1036 \approx 2.009$. In the second equation, the new coefficient of the x-term is $0.2081-(2.009)(0.1036) \approx 0.2081-0.2081=0$, the new coefficient of the y-term is $0.4247-(2.009)(0.2122) \approx 0.4247-0.4263=-0.001600$, and the new right-hand side is $0.9327-(2.009)(0.7381) \approx 0.9327-1.483 \approx-0.5503$. Hence, we find $y=-0.5503 /(-.001600) \approx 343.9$. We are shocked to find that the answer has changed from -547 to 343.9 , which is a huge difference!

In fact, if we repeat this process and carry ten significant decimal digits, we find that even 343.9 is not accurate, since we obtain 356.29071 99. The lesson learned in this example is that data thought to be accurate should be carried with full precision and not be rounded off prior to each of the calculations.

In most computers, the arithmetic operations are carried out in a double-length accumulator that has twice the precision of the stored quantities. However, even this may not avoid a loss of accuracy! Loss of accuracy can happen in various ways such as from roundoff errors and subtracting nearly equal numbers. We shall discuss loss of precision in Chapter 2, and the solving of linear systems in Chapter 7.

Figure 1.1 shows a geometric illustration of what can happen in solving two equations in two unknowns. The point of intersection of the two lines is the exact solution. As is shown by the dotted lines, there may be a degree of uncertainty from errors in the measurements or roundoff errors. So instead of a sharply defined point, there may be a small trapezoidal area containing many possible solutions. However, if the two lines are nearly parallel, then

FIGURE 1.1 In 2D, wellconditioned and ill-conditioned linear systems

this area of possible solutions can increase dramatically! This is related to well-conditioned and ill-conditioned systems of linear equations, which are discussed more in Chapter 8.

Errors: Absolute and Relative

Suppose that α and β are two numbers, of which one is regarded as an approximation to the other. The error of β as an approximation to α is $\alpha-\beta$; that is, the error equals the exact value minus the approximate value. The absolute error of β as an approximation to α is $|\alpha-\beta|$. The relative error of β as an approximation to α is $|\alpha-\beta| /|\alpha|$. Notice that in computing the absolute error, the roles of α and β are the same, whereas in computing the relative error, it is essential to distinguish one of the two numbers as correct. (Observe that the relative error is undefined in the case $\alpha=0$.) For practical reasons, the relative error is usually more meaningful than the absolute error. For example, if $\alpha_{1}=1.333, \beta_{1}=1.334$, and $\alpha_{2}=0.001, \beta_{2}=0.002$, then the absolute error of β_{i} as an approximation to α_{i} is the same in both cases-namely, 10^{-3}. However, the relative errors are $\frac{3}{4} \times 10^{-3}$ and 1 , respectively. The relative error clearly indicates that β_{1} is a good approximation to α_{1} but that β_{2} is a poor approximation to α_{2}. In summary, we have

$$
\begin{aligned}
\text { absolute error } & =\text { |exact value }- \text { approximate value } \mid \\
\text { relative error } & =\frac{\text { |exact value }- \text { approximate value } \mid}{\mid \text { exact value } \mid}
\end{aligned}
$$

Here the exact value is the true value. A useful way to express the absolute error and relative error is to drop the absolute values and write

$$
\begin{aligned}
(\text { relative error })(\text { exact value }) & =\text { exact value }- \text { approximate value } \\
\text { approximate value } & =(\text { exact value })[1+(\text { relative error })]
\end{aligned}
$$

So the relative error is related to the approximate value rather than to the exact value because the true value may not be known.

EXAMPLE 3 Consider $x=0.00347$ rounded to $\tilde{x}=0.0035$ and $y=30.158$ rounded to $\widehat{y}=30.16$. In each case, what are the number of significant digits, absolute errors, and relative errors. Interpret the results.

Solution Case 1. $\widetilde{x}=0.35 \times 10^{-2}$ has two significant digits, absolute error 0.3×10^{-4}, and relative error 0.865×10^{-2}. Case $2 . \hat{y}=0.3016 \times 10^{2}$ has four significant digits, absolute error 0.2×10^{-2}, and relative error 0.66×10^{-4}. Clearly, the relative error is a better indication of the number of significant digits than the absolute error.

Accuracy and Precision

Accurate to n decimal places means that you can trust n digits to the right of the decimal place. Accurate to n significant digits means that you can trust a total of n digits as being meaningful beginning with the leftmost nonzero digit.

Suppose you use a ruler graduated in millimeters to measure lengths. The measurements will be accurate to one millimeter, or 0.001 m , which is three decimal places written in meters. A measurement such as 12.345 m would be accurate to three decimal places. A measurement such as 12.3456789 m would be meaningless, since the ruler produces only
three decimal places, and it should be 12.345 m or 12.346 m . If the measurement 12.345 m has five dependable digits, then it is accurate to five significant figures. On the other hand, a measurement such as 0.076 m has only two significant figures.

When using a calculator or computer in a laboratory experiment, one may get a false sense of having higher precision than is warranted by the data. For example, the result

$$
(1.2)+(3.45)=4.65
$$

actually has only two significant digits of accuracy because the second digit in 1.2 may be the effect of rounding 1.24 down or rounding 1.16 up to two significant figures. Then the left-hand side could be as large as

$$
(1.249)+(3.454)=(4.703)
$$

or as small as

$$
(1.16)+(3.449)=(4.609)
$$

There are really only two significant decimal places in the answer! In adding and subtracting numbers, the result is accurate only to the smallest number of significant digits used in any step of the calculation. In the above example, the term 1.2 has two significant digits; therefore, the final calculation has an uncertainty in the third digit.

In multiplication and division of numbers, the results may be even more misleading. For instance, perform these computations on a calculator: (1.23)(4.5) $=5.535$ and $(1.23) /(4.5)=0.273333333$. You think that there are four and nine significant digits in the results, but there are really only two! As a rule of thumb, one should keep as many significant digits in a sequence of calculations as there are in the least accurate number involved in the computations.

Rounding and Chopping

Rounding reduces the number of significant digits in a number. The result of rounding is a number similar in magnitude that is a shorter number having fewer nonzero digits. There are several slightly different rules for rounding. The round-to-even method is also known as statistician's rounding or bankers' rounding. It will be discussed below. Over a large set of data, the round-to-even rule tends to reduce the total rounding error with (on average) an equal portion of numbers rounding up as well as rounding down.

We say that a number x is chopped to n digits or figures when all digits that follow the nth digit are discarded and none of the remaining n digits are changed. Conversely, x is rounded to n digits or figures when x is replaced by an n-digit number that approximates x with minimum error. The question of whether to round up or down an $(n+1)$-digit decimal number that ends with a 5 is best handled by always selecting the rounded n-digit number with an even nth digit. This may seem strange at first, but remarkably, this is essentially what computers do in rounding decimal calculations when using the standard floating-point arithmetic! (This is a topic discussed in Chapter 2.)

For example, the results of rounding some three-decimal numbers to two digits are $0.217 \approx 0.22,0.365 \approx 0.36,0.475 \approx 0.48$, and $0.592 \approx 0.59$, while chopping them gives $0.217 \approx 0.21,0.365 \approx 0.36,0.475 \approx 0.47$, and $0.592 \approx 0.59$. On the computer, the user sometimes has the option to have all arithmetic operations done with either chopping or rounding. The latter is usually preferable, of course.

Nested Multiplication

We will begin with some remarks on evaluating a polynomial efficiently and on rounding and chopping real numbers. To evaluate the polynomial

$$
\begin{equation*}
p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1}+a_{n} x^{n} \tag{2}
\end{equation*}
$$

we group the terms in a nested multiplication:

$$
p(x)=a_{0}+x\left(a_{1}+x\left(a_{2}+\cdots+x\left(a_{n-1}+x\left(a_{n}\right)\right) \cdots\right)\right)
$$

The pseudocode ${ }^{\ddagger}$ that evaluates $p(x)$ starts with the innermost parentheses and works outward. It can be written as

```
integer i,n; real }p,x; real array (ai) (a:
p}\leftarrow\mp@subsup{a}{n}{
for }i=n-1 to 0 do
    p\leftarrow\mp@subsup{a}{i}{}+xp
end for
```

Here we assume that numerical values have been assigned to the integer variable n, the real variable x, as well as the coefficients $a_{0}, a_{1}, \ldots, a_{n}$, which are stored in a real linear array. (Throughout, we use semicolons between these declarative statements to save space.) The left-pointing arrow (\leftarrow) means that the value on the right is stored in the location named on the left (i.e., "overwrites" from right to left). The for-loop index i runs backward, taking values $n-1, n-2, \ldots, 0$. The final value of p is the value of the polynomial at x. This nested multiplication procedure is also known as Horner's algorithm or synthetic division.

In the pseudocode above, there is exactly one addition and one multiplication each time the loop is traversed. Consequently, Horner's algorithm can evaluate a polynomial with only n additions and n multiplications. This is the minimum number of operations possible. A naive method of evaluating a polynomial would require many more operations. For example, $p(x)=5+3 x-7 x^{2}+2 x^{3}$ should be computed as $p(x)=5+x(3+x(-7+x(2)))$ for a given value of x. We have avoided all the exponentiation operations by using nested multiplication!

The polynomial in Equation (1) can be written in an alternative form by utilizing the mathematical symbols for sum \sum and product Π, namely,

$$
p(x)=\sum_{i=0}^{n} a_{i} x^{i}=\sum_{i=0}^{n}\left(a_{i} \prod_{j=1}^{i} x\right)
$$

[^1]Recall that if $n \leqq m$, we write

$$
\sum_{k=n}^{m} x_{k}=x_{n}+x_{n+1}+\cdots+x_{m}
$$

and

$$
\prod_{k=n}^{m} x_{k}=x_{n} x_{n+1} \cdots x_{m}
$$

By convention, whenever $m<n$, we define

$$
\sum_{k=n}^{m} x_{k}=0 \quad \text { and } \quad \prod_{k=n}^{m} x_{k}=1
$$

Horner's algorithm can be used in the deflation of a polynomial. This is the process of removing a linear factor from a polynomial. If r is a root of the polynomial p, then $x-r$ is a factor of p. The remaining roots of p are the $n-1$ roots of a polynomial q of degree 1 less than the degree of p such that

$$
\begin{equation*}
p(x)=(x-r) q(x)+p(r) \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
q(x)=b_{0}+b_{1} x+b_{2} x^{2}+\cdots+b_{n-1} x^{n-1} \tag{4}
\end{equation*}
$$

The pseudocode for Horner's algorithm can be written as follows:

```
integer \(i, n ; \quad\) real \(p, r ; \quad\) real array \(\left(a_{i}\right)_{0: n},\left(b_{i}\right)_{0: n-1}\)
\(b_{n-1} \leftarrow a_{n}\)
for \(i=n-1\) to 0 do
    \(b_{i-1} \leftarrow a_{i}+r b_{i}\)
end for
```

Notice that $b_{-1}=p(r)$ in this pseudocode. If f is an exact root, then $b_{-1}=p(r)=0$. If the calculation in Horner's algorithm is to be carried out with pencil and paper, the following arrangement is often used:

\[

\]

EXAMPLE 4 Use Horner's algorithm to evaluate $p(3)$, where p is the polynomial

$$
p(x)=x^{4}-4 x^{3}+7 x^{2}-5 x-2
$$

Solution We arrange the calculation as suggested above:

3) | 1 | -4 | 7 | -5 | -2 |
| ---: | ---: | ---: | ---: | ---: |
| | 3 | -3 | 12 | 21 |
| 1 | -1 | 4 | 7 | 19 |

Thus, we obtain $p(3)=19$, and we can write

$$
p(x)=(x-3)\left(x^{3}-x^{2}+4 x+7\right)+19
$$

In the deflation process, if r is a zero of the polynomial p, then $x-r$ is a factor of p, and conversely. The remaining zeros of p are the $n-1$ zeros of $q(x)$.

EXAMPLE 5 Deflate the polynomial p of the preceding example, using the fact that 2 is one of its zeros.
Solution We use the same arrangement of computations as explained previously:

2) | 1 | -4 | 7 | -5 | -2 |
| ---: | ---: | ---: | ---: | ---: |
| | 2 | -4 | 6 | 2 |
| 1 | -2 | 3 | 1 | 0 |

Thus, we have $p(2)=0$, and

$$
x^{4}-4 x^{3}+7 x^{2}-5 x-2=(x-2)\left(x^{3}-2 x^{2}+3 x+1\right)
$$

Pairs of Easy/Hard Problems

In scientific computing, we often encounter a pair of problems, one of which is easy and the other hard and they are inverses of each other. This is the main idea in cryptology, in which multiplying two numbers together is trivial but the reverse problem (factoring a huge number) verges on the impossible.

The same phenomenon arises with polynomials. Given the roots, we can easily find the power form of the polynomial as in Equation (2). Given the power form, it may be a difficult problem to compute the roots (and it may be an ill-conditioned problem). Computer Problem 1.1.24 calls for the writing of code to compute the coefficients in the power form of a polynomial from its roots. It is a do-loop with simple formulas. One adjoins one factor $(x-r)$ at a time. This theme arises again in linear algebra, in which computing $\boldsymbol{b}=\boldsymbol{A} \boldsymbol{x}$ is trivial but finding \boldsymbol{x} from \boldsymbol{A} and \boldsymbol{b} (the inverse problem) is hard. (See Section 7.1.)

Easy/hard problems come up again in two-point boundary value problems. Finding $D f$ and $f(0)$ and $f(1)$ when f is given and D is a differential operator is easy, but finding f from knowledge of $D f, f(0)$ and $f(1)$ is hard. (See Section 14.1.)

Likewise, computing the eigenvalues of a matrix is a hard problem. Given the eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ of an $n \times n$ matrix and corresponding eigenvectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ of an $n \times n$ matrix, we can get \boldsymbol{A} by putting the eigenvalues on the diagonal of a diagonal matrix \boldsymbol{D} and the eigenvectors as columns in a matrix \boldsymbol{V}. Then $\boldsymbol{A} \boldsymbol{V}=\boldsymbol{V} \boldsymbol{D}$, and we can get \boldsymbol{A} from this by solving the equation for \boldsymbol{A}. But finding λ_{i} and \boldsymbol{v}_{i} from \boldsymbol{A} itself is difficult. (See Section 8.3.)

The reader may think of other examples.

First Programming Experiment

We conclude this section with a short programming experiment involving numerical computations. Here we consider, from the computational point of view, a familiar operation in calculus-namely, taking the derivative of a function. Recall that the derivative of a function
f at a point x is defined by the equation

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

A computer has the capacity of imitating the limit operation by using a sequence of numbers h such as

$$
h=4^{-1}, 4^{-2}, 4^{-3}, \ldots, 4^{-n}, \ldots
$$

for they certainly approach zero rapidly. Of course, many other simple sequences are possible, such as $1 / n, 1 / n^{2}$, and $1 / 10^{n}$. The sequence $1 / 4^{n}$ consists of machine numbers in a binary computer and, for this experiment on a 32 -bit computer, will be sufficiently close to zero when n is 10 .

The following is pseudocode to compute $f^{\prime}(x)$ at the point $x=0.5$, with $f(x)=\sin x$:

```
program First
integer i, imax, }n\leftarrow3
real error, y,x}\leftarrow0.5,h\leftarrow1,emax \leftarrow
for }i=1\mathrm{ to }n\mathrm{ do
    h\leftarrow0.25h
    y\leftarrow[\operatorname{sin}(x+h)-\operatorname{sin}(x)]/h
    error }\leftarrow|\operatorname{cos}(x)-y|; output i,h, y, error
    if error >emax then emax }\leftarrow\mathrm{ error; imax }\leftarrowi\mathrm{ end if
end for
    output imax, emax
end program First
```

We have neither explained the purpose of the experiment nor shown the output from this pseudocode. We invite the reader to discover this by coding and running it (or one like it) on a computer. (See Computer Problems 1.1.1 through 1.1.3.)

Mathematical Software

The algorithms and programming problems in this book have been coded and tested in a variety of ways, and they are available on the website for this book as given in the Preface. Some are best done by using a scientific programming language such as $\mathrm{C}, \mathrm{C}++$, Fortran, or any other that allows for calculations with adequate precision. Sometimes it is instructive to utilize mathematical software systems such as Matlab, Maple, Mathematica, or Octave, since they contain built-in problem-solving procedures. Alternatively, one could use a mathematical program library such as IMSL, NAG, or others when locally available. Some numerical libraries have been specifically optimized for the processor such as Intel and AMD. Software systems are particularly useful for obtaining graphical results as well as for experimenting with various numerical methods for solving a difficult problem. Mathematical software packages containing symbolic-manipulation capabilities, such as in Maple, Mathematica, and Macsyma, are particularly useful for obtaining exact as well as numerical solutions. In solving the computer problems, students should focus on gaining insights and better understandings of the numerical methods involved. Appendix A
offers advice on computer programming for scientific computations. The suggestions are independent of the particular language being used.

With the development of the World Wide Web and the Internet, good mathematical software has become easy to locate and to transfer from one computer to another. Browsers, search engines, and URL addresses may be used to find software that is applicable to a particular area of interest. Collections of mathematical software exist, ranging from large comprehensive libraries to smaller versions of these libraries for PCs; some of these are interactive. Also, references to computer programs and collections of routines can be found in books and technical reports. The URL of the website for this book, as given in the Preface, contains an overview of available mathematical software as well as other supporting material.

Summary

(1) Use nested multiplication to evaluate a polynomial efficiently:

$$
\begin{aligned}
p(x) & =a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1}+a_{n} x^{n} \\
& =a_{0}+x\left(a_{1}+x\left(a_{2}+\cdots+x\left(a_{n-1}+x\left(a_{n}\right)\right) \cdots\right)\right)
\end{aligned}
$$

A segment of pseudocode for doing this is

```
\(p \leftarrow a_{n}\)
for \(k=1\) to \(n\) do
    \(p \leftarrow x p+a_{n-k}\)
end for
```

(2) Deflation of the polynomial $p(x)$ is removing a linear factor:

$$
p(x)=(x-r) q(x)+p(r)
$$

where

$$
q(x)=b_{0}+b_{1} x+b_{2} x^{2}+\cdots+b_{n-1} x^{n-1}
$$

The pseudocode for Horner's algorithm for deflation of a polynomial is

$$
\begin{aligned}
& b_{n-1} \leftarrow a_{n} \\
& \text { for } i=n-1 \text { to } 0 \text { do } \\
& \quad b_{i-1} \leftarrow a_{i}+r b_{i} \\
& \text { end for }
\end{aligned}
$$

Here $b_{-1}=p(r)$.

Additional References

Two interesting papers containing numerous examples of why numerical methods are critically important are Forsythe [1970] and McCartin [1998]. See Briggs [2004] and Friedman and Littman [1994] for many industrial and real-world problems.

Problems 1.1*

1. In high school, some students have been misled to believe that $22 / 7$ is either the actual value of π or an acceptable approximation to π. Show that $355 / 113$ is a better approximation in terms of both absolute and relative errors. Find some other simple rational fractions n / m that approximate π. For example, ones for which $|\pi-n / m|<$ 10^{-9}. Hint: See Problem 1.1.4.
${ }^{a}$ 2. A real number x is represented approximately by 0.6032 , and we are told that the relative error is at most 0.1%. What is x ?
${ }^{a}$ 3. What is the relative error involved in rounding 4.9997 to 5.000 ?
${ }^{a}$ 4. The value of π can be generated by the computer to nearly full machine precision by the assignment statement

$$
p i \leftarrow 4.0 \arctan (1.0)
$$

Suggest at least four other ways to compute π using basic functions on your computer system.
5. A given doubly subscripted array $\left(a_{i j}\right)_{n \times n}$ can be added in any order. Write the pseudocode segments for each of the following parts. Which is best?
${ }^{a}$ a. $\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j}$
b. $\sum_{j=1}^{n} \sum_{i=1}^{n} a_{i j}$
c. $\sum_{i=1}^{n}\left(\sum_{j=1}^{i} a_{i j}+\sum_{j=1}^{i-1} a_{j i}\right)$
${ }^{a}$ d. $\sum_{k=0}^{n-1} \sum_{|i-j|=k} a_{i j}$
e. $\sum_{k=2}^{2 n} \sum_{i+j=k}^{n} a_{i j}$
${ }^{a} \mathbf{6}$. Count the number of operations involved in evaluating a polynomial using nested multiplication. Do not count subscript calculations.
7. For small x, show that $(1+x)^{2}$ can sometimes be more accurately computed from $(x+2) x+1$. Explain. What other expressions can be used to compute it?
8. Show how these polynomials can be efficiently evaluated:
${ }^{a}$ a. $p(x)=x^{32}$
b. $p(x)=3(x-1)^{5}+7(x-1)^{9}$
${ }^{a}$ c. $p(x)=6(x+2)^{3}+9(x+2)^{7}+3(x+2)^{15}-(x+2)^{31}$
d. $p(x)=x^{127}-5 x^{37}+10 x^{17}-3 x^{7}$
9. Using the exponential function $\exp (x)$, write an efficient pseudocode segment for the statement $y=5 e^{3 x}+7 e^{2 x}+9 e^{x}+11$.
${ }^{a}$ 10. Write a pseudocode segment to evaluate the expression

$$
z=\sum_{i=1}^{n} b_{i}^{-1} \prod_{j=1}^{i} a_{j}
$$

where $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ are linear arrays containing given values.

[^2]11. Write segments of pseudocode to evaluate the following expressions efficiently:
a. $p(x)=\sum_{k=0}^{n-1} k x^{k}$
${ }^{a}$ b. $z=\sum_{i=1}^{n} \prod_{j=1}^{i} x^{n-j+1}$
c. $z=\prod_{i=1}^{n} \sum_{j=1}^{i} x_{j}$
d. $p(t)=\sum_{i=1}^{n} a_{i} \prod_{j=1}^{i-1}\left(t-x_{j}\right)$
12. Using summation and product notation, write mathematical expressions for the following pseudocode segments:
a. integer $i, n ; \quad$ real $v, x ; \quad$ real array $\left(a_{i}\right)_{0: n}$

```
v}\leftarrow\mp@subsup{a}{0}{
for i=1 to n do
    v}\leftarrowv+x\mp@subsup{a}{i}{
end for
```

${ }^{a}$ b. integer i, n; real $v, x ; \quad$ real array $\left(a_{i}\right)_{0: n}$
$v \leftarrow a_{n}$
for $i=1$ to n do
$v \leftarrow v x+a_{n-i}$
end for
c. integer $i, n ;$ real $v, x ;$ real array $\left(a_{i}\right)_{0: n}$
$v \leftarrow a_{0}$
for $i=1$ to n do
$v \leftarrow v x+a_{i}$
end for
d. integer $i, n ; \quad$ real $v, x, z ; \quad$ real array $\left(a_{i}\right)_{0: n}$
$v \leftarrow a_{0}$
$z \leftarrow x$
for $i=1$ to n do
$v \leftarrow v+z a_{i}$
$z \leftarrow x z$
end for
${ }^{a}$ e. integer i, n; real v; real array $\left(a_{i}\right)_{0: n}$
$v \leftarrow a_{n}$
for $i=1$ to n do
$v \leftarrow\left(v+a_{n-i}\right) x$
end for
${ }^{a}$ 13. Express in mathematical notation without parentheses the final value of z in the following pseudocode segment:

```
integer \(k, n ; \quad\) real \(z ; \quad\) real array \(\left(b_{i}\right)_{0: n}\)
\(z \leftarrow b_{n}+1\)
for \(k=1\) to \(n-2\) do
    \(z \leftarrow z b_{n-k}+1\)
end for
```

${ }^{a}$ 14. How many multiplications occur in executing the following pseudocode segment?

```
integer \(i, j, n\); real \(x\); real array \(\left(a_{i j}\right)_{0: n \times 0: n},\left(b_{i j}\right)_{0: n \times 0: n}\)
\(x \leftarrow 0.0\)
for \(j=1\) to \(n\) do
    for \(i=1\) to \(j\) do
        \(x \leftarrow x+a_{i j} b_{i j}\)
    end for
end for
```

15. Criticize the following pseudocode segments and write improved versions:
a. integer $i, n ; \quad$ real $x, z ; \quad$ real array $\left(a_{i}\right)_{0: n}$
for $i=1$ to n do
$x \leftarrow z^{2}+5.7$
$a_{i} \leftarrow x / i$
end for
${ }^{a}$ b. integer i, j, n; real array $\left(a_{i j}\right)_{0: n \times 0: n}$
for $i=1$ to n do
for $j=1$ to n do $a_{i j} \leftarrow 1 /(i+j-1)$
end for
end for
c. integer i, j, n; real array $\left(a_{i j}\right)_{0: n \times 0: n}$
for $j=1$ to n do
for $i=1$ to n do
$a_{i j} \leftarrow 1 /(i+j-1)$
end for
end for
16. The augmented matrix $\left[\begin{array}{cc|c}3.5713 & 2.1426 \mid 7.2158 \\ 10.714 & 6.4280 \mid 1.3379\end{array}\right]$ is for a system of two equations and two unknowns x and y. Repeat Example 2 for this system. Can small changes in the data lead to massive change in the solution?
17. A base 60 approximation circa 1750 B.C. is

$$
\sqrt{2} \approx 1+\frac{24}{60}+\frac{51}{60^{2}}+\frac{10}{60^{3}}
$$

Determine how accurate it is. See Sauer [2006] for additional details.

Computer Problems 1.1

1. Write and run a computer program that corresponds to the pseudocode program First described in the text (p.10) and interpret the results.
2. (Continuation) Select a function f and a point x and carry out a computer experiment like the one given in the text. Interpret the results. Do not select too simple a function. For example, you might consider $1 / x, \log x, e^{x}, \tan x, \cosh x$, or $x^{3}-23 x$.
3. As we saw in the first computer experiment, the accuracy of a formula for numerical differentiation may deteriorate as the step-size h decreases. Study the following central difference formula:

$$
f^{\prime}(x) \approx \frac{f(x+h)-f(x-h)}{2 h}
$$

as $h \rightarrow 0$. We will learn in Chapter 4 that the truncation error for this formula is $-\frac{1}{6} h^{2} f^{\prime \prime \prime}(\xi)$ for some ξ in the interval $(x-h, x+h)$. Modify and run the code for the experiment First so that approximate values for the rounding error and truncation error are computed. On the same graph, plot the rounding error, the truncation error, and the total error (sum of these two errors) using a log-scale; that is, the axes in the plot should be $-\log _{10}$ |error| versus $\log _{10} h$. Analyze these results.
${ }^{a}$ 4. The limit $e=\lim _{n \rightarrow \infty}(1+1 / n)^{n}$ defines the number e in calculus. Estimate e by taking the value of this expression for $n=8,8^{2}, 8^{3}, \ldots, 8^{10}$. Compare with e obtained from $e \leftarrow \exp (1.0)$. Interpret the results.
5. It is not difficult to see that the numbers $p_{n}=\int_{0}^{1} x^{n} e^{x} d x$ satisfy the inequalities $p_{1}>p_{2}>p_{3}>\cdots>0$. Establish this fact. Next, use integration by parts to show that $p_{n+1}=e-(n+1) p_{n}$ and that $p_{1}=1$. In the computer, use the recurrence relation to generate the first 20 values of p_{n} and explain why the inequalities above are violated. Do not use subscripted variables. (See Dorn and McCracken [1972], pp. 120-129.)
6. (Continuation) Let $p_{20}=\frac{1}{8}$ and use the formula in the preceding computer problem to compute $p_{19}, p_{18}, \ldots, p_{2}$, and p_{1}. Do the numbers generated obey the inequalities $1=p_{1}>p_{2}>p_{3}>\cdots>0$? Explain the difference in the two procedures. Repeat with $p_{20}=20$ or $p_{20}=100$. Explain what happens.
7. Write an efficient routine that accepts as input a list of real numbers $a_{1}, a_{2}, \ldots, a_{n}$ and then computes the following:

$$
\begin{array}{ll}
\text { Arithmetic mean } & m=\frac{1}{n} \sum_{k=1}^{n} a_{k} \\
\text { Variance } & v=\frac{1}{n-1} \sum_{k=1}^{n}\left(a_{k}-m\right)^{2} \\
\text { Standard deviation } & \sigma=\sqrt{v}
\end{array}
$$

Test the routine on a set of data of your choice.
8. (Continuation) Show that another formula is

$$
\text { Variance } \quad v=\frac{1}{n-1}\left[\sum_{k=1}^{n} a_{k}^{2}-n m^{2}\right]
$$

Of the two given formulas for v, which is more accurate in the computer? Verify on the computer with a data set. Hint: Use a large set of real numbers that vary in magnitude from very small to very large.
${ }^{a} 9$. Let a_{1} be given. Write a program to compute for $1 \leqq n \leqq 1000$ the numbers $b_{n}=n a_{n-1}$ and $a_{n}=b_{n} / n$. Print the numbers $a_{100}, a_{200}, \ldots, a_{1000}$. Do not use subscripted variables. What should a_{n} be? Account for the deviation of fact from theory. Determine four values for a_{1} so that the computation does deviate from theory on your computer. Hint: Consider extremely small and large numbers and print to full machine precision.
${ }^{a}$ 10. In a computer, it can happen that $a+x=a$ when $x \neq 0$. Explain why. Describe the set of n for which $1+2^{-n}=1$ in your computer. Write and run appropriate programs to illustrate the phenomenon.
11. Write a program to test the programming suggestion concerning the roundoff error in the computation of $t \leftarrow t+h$ versus $t \leftarrow t_{0}+i h$. For example, use $h=\frac{1}{10}$ and compute $t \leftarrow t+h$ in double precision for the correct single-precision value of t; print the absolute values of the differences between this calculation and the values of the two procedures. What is the result of the test when h is a machine number, such as $h=\frac{1}{128}$, on a binary computer (with more than seven bits per word)?
${ }^{a}$ 12. The Russian mathematician P.L. Chebyshev (1821-1894) spelled his name Чебыщев. Many transliterations from the Cyrillic to the Latin alphabet are possible. Cheb can alternatively be rendered as Ceb, Tscheb, or Tcheb. The y can be rendered as i. Shev can also be rendered as schef, cev, cheff, or scheff. Taking all combinations of these variants, program a computer to print all possible spellings.
13. Compute n ! using logarithms, integer arithmetic, and double-precision floating-point arithmetic. For each part, print a table of values for $0 \leqq n \leqq 30$, and determine the largest correct value.
14. Given two arrays, a real array $v=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ and an integer permutation array $p=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ of integers $1,2, \ldots, n$, can we form a new permuted array $v=\left(v_{p_{1}}, v_{p_{2}}, \ldots, v_{p_{n}}\right)$ by overwriting v and not involving another array in memory? If so, write and test the code for doing it. If not, use an additional array and test.
Case 1. $v=(6.3,4.2,9.3,6.7,7.8,2.4,3.8,9.7), p=(2,3,8,7,1,4,6,5)$
Case 2. $v=(0.7,0.6,0.1,0.3,0.2,0.5,0.4), p=(3,5,4,7,6,2,1)$
15. Using a computer algebra system (e.g., Maple, Derive, Mathematica), print 200 decimal digits of $\sqrt{10}$.
16. a. Repeat the example (1) on loss of significant digits of accuracy but perform the calculations with twice the precision before rounding them. Does this help?
b. Use Maple or some other mathematical software system in which you can set the number of digits of precision. Hint: In Maple, use Digits.
17. In 1706, Machin used the formula

$$
\pi=16 \arctan \left(\frac{1}{5}\right)-4 \arctan \left(\frac{1}{239}\right)
$$

to compute 100 digits of π. Derive this formula. Reproduce Machin's calculations by using suitable software. Hint: Let $\tan \theta=\frac{1}{5}$, and use standard trigonometric identities.
18. Using a symbol-manipulating program such as Maple, Mathematica or Macsyma, carry out the following tasks. Record your work in some manner, for example, by using a diary or script command.
a. Find the Taylor series, up to and including the term x^{10}, for the function $(\tan x)^{2}$, using 0 as the point x_{0}.
b. Find the indefinite integral of $(\cos x)^{-4}$.
c. Find the definite integral $\int_{0}^{1} \log |\log x| d x$.
d. Find the first prime number greater than 27448 .
e. Obtain the numerical value of $\int_{0}^{1} \sqrt{1+\sin ^{3} x} d x$.
f. Find the solution of the differential equation $y^{\prime}+y=\left(1+e^{x}\right)^{-1}$.
g. Define the function $f(x, y)=9 x^{4}-y^{4}+2 y^{2}-1$. You want to know the value of $f(40545,70226)$. Compute this in the straightforward way by direct substitution of $x=40545$ and $y=70226$ in the definition of $f(x, y)$, using first six-decimal accuracy, then seven, eight, and so on up to 24-decimal digits of accuracy. Next, prove by means of elementary algebra that

$$
f(x, y)=\left(3 x^{2}-y^{2}+1\right)\left(3 x^{2}+y^{2}-1\right)
$$

Use this formula to compute the same value of $f(x, y)$, again using different precisions, from six-decimal to 24-decimal. Describe what you have learned. To force the program to do floating-point operations instead of integer arithmetic, write your numbers in the form 9.0, 40545.0, and so forth.
19. Consider the following pseudocode segments:
a. integer i; real x, y, z
for $i=1$ to 20 do
$x \leftarrow 2+1.0 / 8^{i}$
$y \leftarrow \arctan (x)-\arctan (2)$
$z \leftarrow 8^{i} y$
output x, y, z
end for
b. real epsi $\leftarrow 1$
while $1<1+$ epsi do
epsi $\leftarrow e p s i / 2$
output epsi
end while
What is the purpose of each program? Is it achieved? Explain. Code and run each one to verify your conclusions.
20. Consider some oversights involving assignment statements.
${ }^{a}$ a. What is the difference between the following two assignment statements? Write a code that contains them and illustrate with specific examples to show that sometimes $x=y$ and sometimes $x \neq y$.

```
integer \(m, n ; \quad\) real \(x, y\)
\(x \leftarrow \operatorname{real}(m / n)\)
\(y \leftarrow \operatorname{real}(m) / \operatorname{real}(n)\)
output \(x, y\)
```

b. What value will n receive?

```
integer n; real }x,
x}\leftarrow7.
y}\leftarrow3.
n}\leftarrowx+
output n
```

What happens when the last statement is replaced with the following?

$$
n \leftarrow \operatorname{integer}(x)+\operatorname{integer}(y)
$$

21. Write a computer code that contains the following assignment statements exactly as shown. Analyze the results.
a. Print these values first using the default format and then with an extremely large format field:
```
real \(p, q, u, v, w, x, y, z\)
\(x \leftarrow 0.1\)
\(y \leftarrow 0.01\)
\(z \leftarrow x-y\)
\(p \leftarrow 1.0 / 3.0\)
\(q \leftarrow 3.0 p\)
\(u \leftarrow 7.6\)
\(v \leftarrow 2.9\)
\(w \leftarrow u-v\)
output \(x, y, z, p, q, u, v, w\)
```

b. What values would be computed for x, y, and z if this code is used?

```
integer n; real x, y,z
for }n=1\mathrm{ to }10\mathrm{ do
    x}\leftarrow(n-1)/
    y}\leftarrow\mp@subsup{n}{}{2}/3.
    z\leftarrow1.0+1/n
    output }x,y,
end for
```

c. What values would the following assignment statements produce?

```
integer \(i, j ; \quad\) real \(c, f, x\), half
\(x \leftarrow 10 / 3\)
\(i \leftarrow \operatorname{integer}(x+1 / 2)\)
half \(\leftarrow 1 / 2\)
\(j \leftarrow\) integer(half)
```

$$
\begin{aligned}
& c \leftarrow(5 / 9)(f-32) \\
& f \leftarrow 9 / 5 c+32 \\
& \text { output } x, i, \text { half, } j, c, f
\end{aligned}
$$

d. Discuss what is wrong with the following pseudocode segment:

```
real area,circum, radius
radius }\leftarrow
area}\leftarrow(22/7)(radius)
circum}\leftarrow2(3.1416)radius
output area, circum
```

22. Criticize the following pseudocode for evaluating $\lim _{x \rightarrow 0} \arctan (|x|) / x$. Code and run it to see what happens.
```
integer i; real }x,
x}\leftarrow
for i=1 to 24 do
    x\leftarrowx/2.0
    y\leftarrow\operatorname{arctan}(|x|)/x
    output }x,
end for
```

23. Carry out some computer experiments to illustrate or test the programming suggestions in Appendix A. Specific topics to include are these: (a) when to avoid arrays, (b) when to limit iterations, (c) checking for floating-point equality, (d) ways for taking equal floating-point steps, and (e) various ways to evaluate functions. Hint: Comparing single and double precision results may be helpful.
24. (Easy/Hard Problem Pairs) Write a computer program to obtain the power form of a polynomial from its roots. Let the roots be $r_{1}, r_{2}, \ldots, r_{n}$. Then (except for a scalar factor) the polynomial is the product

$$
p(x)=\left(x-r_{1}\right)\left(x-r_{2}\right) \cdots\left(x-r_{n}\right) .
$$

Find the coefficients in the expression $p(x)=\sum_{j=0}^{n} a_{j} x^{j}$. Test your code on the Wilkinson polynomials in Computer Problems 3.1.10 and 3.3.9. Explain why this task of getting the power form of the polynomial is trivial, whereas the inverse problem of finding the roots from the power form is quite difficult.
25. A prime number is a positive integer that has no integer factors other than itself and 1 . How many prime numbers are there in each of these open intervals: $(1,40),(1,80)$, $(1,160)$, and $(1,2000)$? Make a guess as to the percentage of prime numbers among all numbers.
26. Mathematical software systems such as Maple and Mathematica do both numerical calculations and symbolic manipulations. Verify symbolically that a nested multiplication is correct for a general polynomial of degree ten.

1.2 Review of Taylor Series

Most students will have encountered infinite series (particularly Taylor series) in their study of calculus without necessarily having acquired a good understanding of this topic. Consequently, this section is particularly important for numerical analysis, and deserves careful study.

Once students are well grounded with a basic understanding of Taylor series, the MeanValue Theorem, and alternating series (all topics in this section) as well as computer number representation (Section 2.2), they can proceed to study the fundamentals of numerical methods with better comprehension.

Taylor Series

Familiar (and useful) examples of Taylor series are the following:

$$
\begin{align*}
e^{x} & =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots=\sum_{k=0}^{\infty} \frac{x^{k}}{k!} \quad(|x|<\infty) \tag{1}\\
\sin x & =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!} \quad(|x|<\infty) \tag{2}\\
\cos x & =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k}}{(2 k)!} \quad(|x|<\infty) \tag{3}\\
\frac{1}{1-x} & =1+x+x^{2}+x^{3}+\cdots=\sum_{k=0}^{\infty} x^{k} \quad(|x|<1) \tag{4}\\
\ln (1+x) & =x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots=\sum_{k=1}^{\infty}(-1)^{k-1} \frac{x^{k}}{k} \quad(-1<x \leqq 1) \tag{5}
\end{align*}
$$

For each case, the series represents the given function and converges in the interval specified. Series (1)-(5) are Taylor series expanded about $c=0$. A Taylor series expanded about $c=1$ is

$$
\ln (x)=(x-1)-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{3}-\cdots=\sum_{k=1}^{\infty}(-1)^{k-1} \frac{(x-1)^{k}}{k}
$$

where $0<x \leqq 2$. The reader should recall the factorial notation

$$
n!=1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots \cdot n
$$

for $n \geqq 1$ and the special definition of $0!=1$.
Series of this type are often used to compute good approximate values of complicated functions at specific points.

EXAMPLE 1 Use five terms in Series (5) to approximate \ln (1.1).
Solution Taking $x=0.1$ in the first five terms of the series for $\ln (1+x)$ gives us

$$
\ln (1.1) \approx 0.1-\frac{0.01}{2}+\frac{0.001}{3}-\frac{0.0001}{4}+\frac{0.00001}{5}=0.0953103333 \ldots
$$

where \approx means "approximately equal." This value is correct to six decimal places of accuracy.

On the other hand, such good results are not always obtained in using series.
EXAMPLE 2 Try to compute e^{8} by using Series (1).
Solution The result is

$$
e^{8}=1+8+\frac{64}{2}+\frac{512}{6}+\frac{4096}{24}+\frac{32768}{120}+\cdots
$$

It is apparent that many terms will be needed to compute e^{8} with reasonable precision. By repeated squaring, we find $e^{2}=7.389056, e^{4}=54.5981500$, and $e^{8}=2980.957987$. The first six terms given above yield 570.066665.

These examples illustrate a general rule:
A Taylor series converges rapidly near the point of expansion and slowly (or not at all) at more remote points.

A graphical depiction of the phenomenon can be obtained by graphing a few partial sums of a Taylor series. In Figure 1.2, we show the function

FIGURE 1.2

$$
y=\sin x
$$

and the partial-sum functions

$$
\begin{aligned}
& S_{1}=x \\
& S_{3}=x-\frac{x^{3}}{6} \\
& S_{5}=x-\frac{x^{3}}{6}+\frac{x^{5}}{120}
\end{aligned}
$$

which come from Series (2). While S_{1} may be an acceptable approximation to $\sin x$ when $x \approx 0$, the graphs for S_{3} and S_{5} match that of $\sin x$ on larger intervals about the origin.

All of the series illustrated above are examples of the following general series:

$$
\begin{align*}
& f(x) \sim f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\frac{f^{\prime \prime \prime}(c)}{3!}(x-c)^{3}+\cdots \\
& f(x) \sim \sum_{k=0}^{\infty} \frac{f^{(k)}(c)}{k!}(x-c)^{k} \tag{6}
\end{align*}
$$

Here, rather than using $=$, we have written \sim to indicate that we are not allowed to assume that $f(x)$ equals the series on the right. All we have at the moment is a formal series that can be written down provided that the successive derivatives $f^{\prime}, f^{\prime \prime}, f^{\prime \prime \prime}, \ldots$ exist at the point c. Series (6) is called the "Taylor series of f at the point c."

In the special case $c=0$, Series (6) is also called a Maclaurin series:

$$
\begin{align*}
& f(x) \sim f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\cdots \\
& f(x) \sim \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^{k} \tag{7}
\end{align*}
$$

The first term is $f(0)$ when $k=0$.
EXAMPLE 3 What is the Taylor series of the function

$$
f(x)=3 x^{5}-2 x^{4}+15 x^{3}+13 x^{2}-12 x-5
$$

at the point $c=2$?
Solution To compute the coefficients in the series, we need the numerical values of $f^{(k)}(2)$ for $k \geqq 0$. Here are the details of the computation:

$$
\begin{array}{ll}
f(x)=3 x^{5}-2 x^{4}+15 x^{3}+13 x^{2}-12 x-5 & f(2)=207 \\
f^{\prime}(x)=15 x^{4}-8 x^{3}+45 x^{2}+26 x-12 & f^{\prime}(2)=396 \\
f^{\prime \prime}(x)=60 x^{3}-24 x^{2}+90 x+26 & f^{\prime \prime}(2)=590 \\
f^{\prime \prime \prime}(x)=180 x^{2}-48 x+90 & f^{\prime \prime \prime}(2)=714 \\
f^{(4)}(x)=360 x-48 & f^{(4)}(2)=672 \\
f^{(5)}(x)=360 & f^{(5)}(2)=360 \\
f^{(k)}(x)=0 & f^{(k)}(2)=0
\end{array}
$$

for $k \geqq 6$. Therefore, we have

$$
\begin{aligned}
f(x) \sim 207 & +396(x-2)+295(x-2)^{2} \\
& +119(x-2)^{3}+28(x-2)^{4}+3(x-2)^{5}
\end{aligned}
$$

In this example, it is not difficult to see that \sim may be replaced by $=$. Simply expand all the terms in the Taylor series and collect them to get the original form for f. Taylor's Theorem, discussed soon, will allow us to draw this conclusion without doing any work!

Complete Horner's Algorithm

An application of Horner's algorithm is that of finding the Taylor expansion of a polynomial about any point. Let $p(x)$ be a given polynomial of degree n with coefficients a_{k} as in Equation (2) in Section 1.1, and suppose that we desire the coefficients c_{k} in the equation

$$
\begin{aligned}
p(x) & =a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \\
& =c_{n}(x-r)^{n}+c_{n-1}(x-r)^{n-1}+\cdots+c_{1}(x-r)+c_{0}
\end{aligned}
$$

Of course, Taylor's Theorem asserts that $c_{k}=p^{(k)}(r) / k$!, but we seek a more efficient algorithm. Notice that $p(r)=c_{0}$, so this coefficient is obtained by applying Horner's algorithm to the polynomial p with the point r. The algorithm also yields the polynomial

$$
q(x)=\frac{p(x)-p(r)}{x-r}=c_{n}(x-r)^{n-1}+c_{n-1}(x-r)^{n-2}+\cdots+c_{1}
$$

This shows that the second coefficient, c_{1}, can be obtained by applying Horner's algorithm to the polynomial q with point r, because $c_{1}=q(r)$. (Notice that the first application of Horner's algorithm does not yield q in the form shown but rather as a sum of powers of x. (See Equations (3)-(4) in Section 1.1.) This process is repeated until all coefficients c_{k} are found.

We call the algorithm just described the complete Horner's algorithm. The pseudocode for executing it is arranged so that the coefficients c_{k} overwrite the input coefficients a_{k}.

```
integer n, k,j; real r; real array ( }\mp@subsup{a}{i}{}\mp@subsup{)}{0:n}{
for }k=0\mathrm{ to }n-1\mathrm{ do
    for }j=n-1 to k do
        aj}\leftarrow\mp@subsup{a}{j}{}+r\mp@subsup{a}{j+1}{
    end for
end for
```

This procedure can be used in carrying out Newton's method for finding roots of a polynomial, which we discuss in Chapter 3. Moreover, it can be done in complex arithmetic to handle polynomials with complex roots or coefficients.

EXAMPLE 4 Using the complete Horner's algorithm, find the Taylor expansion of the polynomial

$$
p(x)=x^{4}-4 x^{3}+7 x^{2}-5 x+2
$$

about the point $r=3$.

Solution The work can be arranged as follows:

3) | 1 | -4 | 7 | -5 | 2 |
| ---: | ---: | ---: | ---: | ---: |
| | 3 | -3 | 12 | 21 |
| 1 | -1 | 4 | 7 | 23 |
| | 3 | 6 | 30 | |
| 1 | 2 | 10 | 37 | |
| | 3 | 15 | | |
| 1 | 5 | 25 | | |
| | 3 | | | |
| 1 | 8 | | | |

The calculation shows that

$$
p(x)=(x-3)^{4}+8(x-3)^{3}+25(x-3)^{2}+37(x-3)+23
$$

Taylor's Theorem in Terms of $(\boldsymbol{x}-\boldsymbol{c})$

THEOREM 2

TAYLOR'S THEOREM FOR $f(x)$

If the function f possesses continuous derivatives of orders $0,1,2, \ldots,(n+1)$ in a closed interval $I=[a, b]$, then for any c and x in I,

$$
\begin{equation*}
f(x)=\sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!}(x-c)^{k}+E_{n+1} \tag{8}
\end{equation*}
$$

where the error term E_{n+1} can be given in the form

$$
E_{n+1}=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-c)^{n+1}
$$

Here ξ is a point that lies between c and x and depends on both.

In practical computations with Taylor series, it is usually necessary to truncate the series because it is not possible to carry out an infinite number of additions. A series is said to be truncated if we ignore all terms after a certain point. Thus, if we truncate the exponential Series (1) after seven terms, the result is

$$
e^{x} \approx 1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\frac{x^{6}}{6!}
$$

This no longer represents e^{x} except when $x=0$. But the truncated series should approximate e^{x}. Here is where we need Taylor's Theorem. With its help, we can assess the difference between a function f and its truncated Taylor series.

The explicit assumption in this theorem is that $f(x), f^{\prime}(x), f^{\prime \prime}(x), \ldots, f^{(n+1)}(x)$ are all continuous functions in the interval $I=[a, b]$. The final term E_{n+1} in Equation (8) is the remainder or error term. The given formula for E_{n+1} is valid when we assume only that $f^{(n+1)}$ exists at each point of the open interval (a, b). The error term is similar to the terms preceding it, but notice that $f^{(n+1)}$ must be evaluated at a point other than c. This point ξ depends on x and is in the open interval (c, x) or (x, c). Other forms of the remainder
are possible; the one given here is Lagrange's form. (We do not prove Taylor's Theorem here.)

EXAMPLE 5 Derive the Taylor series for e^{x} at $c=0$, and prove that it converges to e^{x} by using Taylor's Theorem.

Solution If $f(x)=e^{x}$, then $f^{(k)}(x)=e^{x}$ for $k \geqq 0$. Therefore, $f^{(k)}(c)=f^{(k)}(0)=e^{0}=1$ for all k. From Equation (8), we have

$$
\begin{equation*}
e^{x}=\sum_{k=0}^{n} \frac{x^{k}}{k!}+\frac{e^{\xi}}{(n+1)!} x^{n+1} \tag{9}
\end{equation*}
$$

Now let us consider all the values of x in some symmetric interval around the origin, for example, $-s \leqq x \leqq s$. Then $|x| \leqq s,|\xi| \leqq s$, and $e^{\xi} \leqq e^{s}$. Hence, the remainder term satisfies this inequality:

$$
\lim _{n \rightarrow \infty}\left|\frac{e^{\xi}}{(n+1)!} x^{n+1}\right| \leqq \lim _{n \rightarrow \infty} \frac{e^{s}}{(n+1)!} s^{n+1}=0
$$

Thus, if we take the limit as $n \rightarrow \infty$ on both sides of Equation (9), we obtain

$$
e^{x}=\lim _{n \rightarrow \infty} \sum_{k=0}^{n} \frac{x^{k}}{k!}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}
$$

This example illustrates how we can establish, in specific cases, that a formal Taylor Series (6) actually represents the function. Let's examine another example to see how the formal series can fail to represent the function.

EXAMPLE 6 Derive the formal Taylor series for $f(x)=\ln (1+x)$ at $c=0$, and determine the range of positive x for which the series represents the function.
Solution We need $f^{(k)}(x)$ and $f^{(k)}(0)$ for $k \geqq 1$. Here is the work:

$$
\begin{array}{rlrl}
f(x) & =\ln (1+x) & & f(0)=0 \\
f^{\prime}(x) & =(1+x)^{-1} & f^{\prime}(0)=1 \\
f^{\prime \prime}(x) & =-(1+x)^{-2} & & f^{\prime \prime}(0)=-1 \\
f^{\prime \prime \prime}(x) & =2(1+x)^{-3} & & f^{\prime \prime \prime}(0)=2 \\
f^{(4)}(x) & =-6(1+x)^{-4} & & f^{(4)}(0)=-6 \\
& \vdots & & \vdots \\
f^{(k)}(x) & =(-1)^{k-1}(k-1)!(1+x)^{-k} & & f^{(k)}(0)=(-1)^{k-1}(k-1)!
\end{array}
$$

Hence by Taylor's Theorem, we obtain

$$
\begin{align*}
\ln (1+x) & =\sum_{k=1}^{n}(-1)^{k-1} \frac{(k-1)!}{k!} x^{k}+\frac{(-1)^{n} n!(1+\xi)^{-n-1}}{(n+1)!} x^{n+1} \\
& =\sum_{k=1}^{n}(-1)^{k-1} \frac{x^{k}}{k}+\frac{(-1)^{n}}{n+1}(1+\xi)^{-n-1} x^{n+1} \tag{10}
\end{align*}
$$

For the infinite series to represent $\ln (1+x)$, it is necessary and sufficient that the error term converge to zero as $n \rightarrow \infty$. Assume that $0 \leqq x \leqq 1$. Then $0 \leqq \xi \leqq x$ (because zero is the point of expansion); thus, $0 \leqq x /(1+\xi) \leqq 1$. Hence, the error term converges to zero in this case. If $x>1$, the terms in the series do not approach zero, and the series does not converge. Hence, the series represents $\ln (1+x)$ if $0 \leqq x \leqq 1$ but not if $x>1$. (The series also represents $\ln (1+x)$ for $-1<x<0$ but not if $x \leqq-1$.)

Mean-Value Theorem

The special case $n=0$ in Taylor's Theorem is known as the Mean-Value Theorem. It is usually stated, however, in a somewhat more precise form.

■ THEOREM 3

MEAN-VALUE THEOREM

If f is a continuous function on the closed interval $[a, b]$ and possesses a derivative at each point of the open interval (a, b), then

$$
f(b)=f(a)+(b-a) f^{\prime}(\xi)
$$

for some ξ in (a, b).

Hence, the ratio $[f(b)-f(a)] /(b-a)$ is equal to the derivative of f at some point ξ between a and b; that is, for some $\xi \in(a, b)$,

$$
f^{\prime}(\xi)=\frac{f(b)-f(a)}{b-a}
$$

The right-hand side could be used as an approximation for $f^{\prime}(x)$ at any x within the interval (a, b). The approximation of derivatives is discussed more fully in Section 4.3.

Taylor's Theorem in Terms of \boldsymbol{h}

Other forms of Taylor's Theorem are often useful. These can be obtained from the basic Formula (8) by changing the variables.

TAYLOR'S THEOREM FOR $f(x+h)$

If the function f possesses continuous derivatives of order $0,1,2, \ldots,(n+1)$ in a closed interval $I=[a, b]$, then for any x in I,

$$
\begin{equation*}
f(x+h)=\sum_{k=0}^{n} \frac{f^{(k)}(x)}{k!} h^{k}+E_{n+1} \tag{11}
\end{equation*}
$$

where h is any value such that $x+h$ is in I and where

$$
E_{n+1}=\frac{f^{(n+1)}(\xi)}{(n+1)!} h^{n+1}
$$

for some ξ between x and $x+h$.

The form (11) is obtained from Equation (8) by replacing x by $x+h$ and replacing c by x. Notice that because h can be positive or negative, the requirement on ξ means $x<\xi<$ $x+h$ if $h>0$ or $x+h<\xi<x$ if $h<0$.

The error term E_{n+1} depends on h in two ways: First, h^{n+1} is explicitly present; second, the point ξ generally depends on h. As h converges to zero, E_{n+1} converges to zero with essentially the same rapidity with which h^{n+1} converges to zero. For large n, this is quite rapid. To express this qualitative fact, we write

$$
E_{n+1}=\mathcal{O}\left(h^{n+1}\right)
$$

as $h \rightarrow 0$. This is called big \mathbf{O} notation, and it is shorthand for the inequality

$$
\left|E_{n+1}\right| \leqq C|h|^{n+1}
$$

where C is a constant. In the present circumstances, this constant could be any number for which $\left|f^{(n+1)}(t)\right| /(n+1)!\leqq C$, for all t in the initially given interval, I. Roughly speaking, $E_{n+1}=\mathcal{O}\left(h^{n+1}\right)$ means that the behavior of E_{n+1} is similar to the much simpler expression h^{n+1}.

It is important to realize that Equation (11) corresponds to an entire sequence of theorems, one for each value of n. For example, we can write out the cases $n=0,1,2$ as follows:

$$
\begin{aligned}
f(x+h) & =f(x)+f^{\prime}\left(\xi_{1}\right) h \\
& =f(x)+\mathcal{O}(h) \\
f(x+h) & =f(x)+f^{\prime}(x) h+\frac{1}{2!} f^{\prime \prime}\left(\xi_{2}\right) h^{2} \\
& =f(x)+f^{\prime}(x) h+\mathcal{O}\left(h^{2}\right) \\
f(x+h) & =f(x)+f^{\prime}(x) h+\frac{1}{2!} f^{\prime \prime}(x) h^{2}+\frac{1}{3!} f^{\prime \prime \prime}\left(\xi_{3}\right) h^{3} \\
& =f(x)+f^{\prime}(x) h+\frac{1}{2!} f^{\prime \prime}(x) h^{2}+\mathcal{O}\left(h^{3}\right)
\end{aligned}
$$

The importance of the error term in Taylor's Theorem cannot be stressed too much. In later chapters, many situations require an estimate of errors in a numerical process by use of Taylor's Theorem. Here are some elementary examples.

EXAMPLE 7 Expand $\sqrt{1+h}$ in powers of h. Then compute $\sqrt{1.00001}$ and $\sqrt{0.99999}$.
Solution Let $f(x)=x^{1 / 2}$. Then $f^{\prime}(x)=\frac{1}{2} x^{-1 / 2}, f^{\prime \prime}(x)=-\frac{1}{4} x^{-3 / 2}, f^{\prime \prime \prime}(x)=\frac{3}{8} x^{-5 / 2}$, and so on. Now use Equation (11) with $x=1$. Taking $n=2$ for illustration, we have

$$
\begin{equation*}
\sqrt{1+h}=1+\frac{1}{2} h-\frac{1}{8} h^{2}+\frac{1}{16} h^{3} \xi^{-5 / 2} \tag{12}
\end{equation*}
$$

where ξ is an unknown number that satisfies $1<\xi<1+h$, if $h>0$. It is important to notice that the function $f(x)=\sqrt{x}$ possesses derivatives of all orders at any point $x>0$.

In Equation (12), let $h=10^{-5}$. Then

$$
\sqrt{1.00001} \approx 1+0.5 \times 10^{-5}-0.125 \times 10^{-10}=1.000004999987500
$$

By substituting $-h$ for h in the series, we obtain

$$
\sqrt{1-h}=1-\frac{1}{2} h-\frac{1}{8} h^{2}-\frac{1}{16} h^{3} \xi^{-5 / 2}
$$

Hence, we have

$$
\sqrt{0.99999} \approx 0.999994999987500
$$

Since $1<\xi<1+h$, the absolute error does not exceed

$$
\frac{1}{16} h^{3} \xi^{-5 / 2}<\frac{1}{16} 10^{-15}=0.0000000000000000625
$$

and both numerical values are correct to all 15 decimal places shown.

Alternating Series

Another theorem from calculus is often useful in establishing the convergence of a series and in estimating the error involved in truncation. From it, we have the following important principle for alternating series:

If the magnitudes of the terms in an alternating series converge monotonically to zero, then the error in truncating the series is no larger than the magnitude of the first omitted term.

This theorem applies only to alternating series-that is, series in which the successive terms are alternately positive and negative.

- THEOREM 4

ALTERNATING SERIES THEOREM

If $a_{1} \geqq a_{2} \geqq \cdots \geqq a_{n} \geqq \cdots 0$ for all n and $\lim _{n \rightarrow \infty} a_{n}=0$, then the alternating series

$$
a_{1}-a_{2}+a_{3}-a_{4}+\cdots
$$

converges; that is,

$$
\sum_{k=1}^{\infty}(-1)^{k-1} a_{k}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}(-1)^{k-1} a_{k}=\lim _{n \rightarrow \infty} S_{n}=S
$$

where S is its sum and S_{n} is the nth partial sum. Moreover, for all n,

$$
\left|S-S_{n}\right| \leqq a_{n+1}
$$

EXAMPLE 8 If the sine series is to be used in computing $\sin 1$ with an error less than $\frac{1}{2} \times 10^{-6}$, how many terms are needed?

Solution From Series (2), we have

$$
\sin 1=1-\frac{1}{3!}+\frac{1}{5!}-\frac{1}{7!}+\cdots
$$

If we stop at $1 /(2 n-1)$!, the error does not exceed the first neglected term, which is $1 /(2 n+1)!$. Thus, we should select n so that

$$
\frac{1}{(2 n+1)!}<\frac{1}{2} \times 10^{-6}
$$

Using logarithms to base 10 , we obtain $\log (2 n+1)!>\log 2+6=6.3$. With a calculator, we compute a table of values for $\log n!$ and find that $\log 10!\approx 6.6$. Hence, if $n \geqq 5$, the error will be acceptable.

EXAMPLE 9 If the logarithmic Series (5) is to be used for computing $\ln 2$ with an error of less than $\frac{1}{2} \times 10^{-6}$, how many terms will be required?

Solution To compute $\ln 2$, we take $x=1$ in the series, and using \approx to mean approximate equality, we have

$$
S=\ln 2 \approx 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots+\frac{(-1)^{n-1}}{n}=S_{n}
$$

By the Alternating Series Theorem, the error involved when the series is truncated with n terms is

$$
\left|S-S_{n}\right| \leqq \frac{1}{n+1}
$$

We select n so that

$$
\frac{1}{n+1}<\frac{1}{2} \times 10^{-6}
$$

Hence, more than two million terms would be needed! We conclude that this method of computing $\ln 2$ is not practical. (See Problems 1.2.10 through 1.2.12 for several good alternatives.)

A word of caution is needed about this technique of calculating the number of terms to be used in a series by just making the $(n+1)$ st term less than some tolerance. This procedure is valid only for alternating series in which the terms decrease in magnitude to zero, although it is occasionally used to get rough estimates in other cases. For example, it can be used to identify a nonalternating series as one that converges slowly. When this technique cannot be used, a bound on the remaining terms of the series has to be established. Determining such a bound may be somewhat difficult.

EXAMPLE 10 It is known that

$$
\frac{\pi^{4}}{90}=1^{-4}+2^{-4}+3^{-4}+\cdots
$$

How many terms should we take to compute $\pi^{4} / 90$ with an error of at most $\frac{1}{2} \times 10^{-6}$?
Solution A naive approach is to take

$$
1^{-4}+2^{-4}+3^{-4}+\cdots+n^{-4}
$$

where n is chosen so that the next term, $(n+1)^{-4}$, is less that $\frac{1}{2} \times 10^{-6}$. This value of n is 37, but this is an erroneous answer because the partial sum

$$
S_{37}=\sum_{k=1}^{37} k^{-4}
$$

differs from $\pi^{4} / 90$ by approximately 6×10^{-6}. What we should do, of course, is to select n so that all the omitted terms add up to less than $\frac{1}{2} \times 10^{-6}$; that is,

$$
\sum_{k=n+1}^{\infty} k^{-4}<\frac{1}{2} \times 10^{-6}
$$

By a technique familiar from calculus (see Figure 1.3), we have

$$
\sum_{k=n+1}^{\infty} k^{-4}<\int_{n}^{\infty} x^{-4} d x=\left.\frac{x^{-3}}{-3}\right|_{n} ^{\infty}=\frac{1}{3 n^{3}}
$$

Thus, it suffices to select n so that $\left(3 n^{3}\right)^{-1}<\frac{1}{2} \times 10^{-6}$, or $n \geqq 88$. (A more sophisticated analysis will improve this considerably.)

FIGURE 1.3
Illustrating Example 10

Summary

(1) The Taylor series expansion about c for $f(x)$ is

$$
f(x)=\sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!}(x-c)^{k}+E_{n+1}
$$

with error term

$$
E_{n+1}=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-c)^{n+1}
$$

A more useful form for us is the Taylor series expansion for $f(x+h)$, which is

$$
f(x+h)=\sum_{k=0}^{n} \frac{f^{(k)}(x)}{k!} h^{k}+E_{n+1}
$$

with error term

$$
E_{n+1}=\frac{f^{(n+1)}(\xi)}{(n+1)!} h^{n+1}=\mathcal{O}\left(h^{n+1}\right)
$$

(2) An alternating series

$$
S=\sum_{k=1}^{\infty}(-1)^{k-1} a_{k}
$$

converges when the terms a_{k} converge downward to zero. Furthermore, the partial sums S_{n} differ from S by an amount that is bounded by

$$
\left|S-S_{n}\right| \leqq a_{n+1}
$$

Additional References

For additional study, see the following references found in the Bibliography: Atkinson [1988, 1993], Burden and Faires [2001], Conte and de Boor [1980], Dahlquist and Björck [1974], Forsythe, Malcolm, and Moler [1977], Fröberg [1969], Gautschi [1997], Gerald and Wheatley [1999], Golub and Ortega [1993], Golub and Van Loan [1996], Hämmerlin and Hoffmann [1991], Heath [2002], Higham and Higham [2006], Hildebrand [1974], Isaacson and Keller [1966], Kahaner, Moler, and Nash [1989], Kincaid and Cheney [2002], Maron [1991], Moler [2004], Nievergelt, Farra, and Reingold [1974], Oliveira and Stewart [2006], Ortega [1990a], Phillips and Taylor [1973], Ralston [1965], Ralston and Rabinowitz [2001], Rice [1983], Scheid [1968], Skeel and Keiper [1992], Van Loan [1997, 2000], Wood [1999], and Young and Gregory [1988].

Some other numerical methods books with an emphasis on a particular mathematical software system or computer language are Chapman [2000], Devitt [1993], Ellis and Lodi [1991], Ellis, Johnson, Lodi, and Schwalbe [1997], Garvan [2002], Knight [2000], Lindfield and Penny [2000], Press, Teukolsky, Vetterling, and Flannery [2002], Recktenwald [2000], Schilling and Harris [2000], and Szabo [2002].

Problems 1.2

1. The Maclaurin series for $(1+x)^{n}$ is also known as the binomial series. It states that

$$
(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\frac{n(n-1)(n-2)}{3!} x^{3}+\cdots \quad\left(x^{2}<1\right)
$$

Derive this series. Then give its particular forms in summation notation by letting $n=2, n=3$, and $n=\frac{1}{2}$. Next use the last form to compute $\sqrt{1.0001}$ correct to 15 decimal places (rounded).
2. (Continuation) Use the series in the preceding problem to obtain Series (4). How could this series be used on a computing machine to produce x / y if only addition and multiplication are built-in operations?
3. (Continuation) Use the previous problem to obtain a series for $\left(1+x^{2}\right)^{-1}$.
4. Why do the following functions not possess Taylor series expansions at $x=0$?
${ }^{a}$ a. $f(x)=\sqrt{x}$
${ }^{a}$ b. $f(x)=|x|$
c. $f(x)=\arcsin (x-1)$
d. $f(x)=\cot x$
${ }^{a}$ e. $f(x)=\log x$
f. $f(x)=x^{\pi}$
${ }^{a}$ 5. Determine the Taylor series for $\cosh x$ about zero. Evaluate $\cosh (0.7)$ by summing four terms. Compare with the actual value.
6. Determine the first two nonzero terms of the series expansion about zero for the following:
${ }^{a}$ a. $e^{\cos x}$
${ }^{a}$ b. $\sin (\cos x)$
c. $(\cos x)^{2}(\sin x)$
${ }^{a}$ 7. Find the smallest nonnegative integer m such that the Taylor series about m for $(x-1)^{1 / 2}$ exists. Determine the coefficients in the series.
${ }^{a}$ 8. Determine how many terms are needed to compute e correctly to 15 decimal places (rounded) using Series (1) for e^{x}.
${ }^{a} 9$. (Continuation) If $x<0$ in the preceding problem, what are the signs of the terms in the series? Loss of significant digits can be a serious problem in using the series. Will the formula $e^{-x}=1 / e^{x}$ be helpful in reducing the error? Explain. (See Section 2.3 for further discussion.) Try high-precision computer arithmetic to see how bad the floating-point errors can be.
10. Show how the simple equation $\ln 2=\ln [e(2 / e)]$ can be used to speed up the calculation of $\ln 2$ in Series (10).
${ }^{a}$ 11. What is the series for $\ln (1-x)$? What is the series for $\ln [(1+x) /(1-x)]$?
${ }^{a}$ 12. (Continuation) In the series for $\ln [(1+x) /(1-x)]$, determine what value of x to use if we wish to compute $\ln 2$. Estimate the number of terms needed for ten digits (rounded) of accuracy. Is this method practical?
13. Use the Alternating Series Theorem to determine the number of terms in Series (5) needed for computing $\ln 1.1$ with error less than $\frac{1}{2} \times 10^{-8}$.
14. Write the Taylor series for the function $f(x)=x^{3}-2 x^{2}+4 x-1$, using $x=2$ as the point of expansion; that is, write a formula for $f(2+h)$.
15. Determine the first four nonzero terms in the series expansion about zero for
${ }^{a}$ a. $f(x)=(\sin x)+(\cos x)$ and find an approximate value for $f(0.001)$
${ }^{a}$ b. $g(x)=(\sin x)(\cos x)$ and find an approximate value for $g(0.0006)$.
Compare the accuracy of these approximations to those obtained from tables or via a calculator.
${ }^{a}$ 16. Verify this Taylor series and prove that it converges on the interval $-e<x \leqq e$.

$$
\ln (e+x)=1+\frac{x}{e}-\frac{x^{2}}{2 e^{2}}+\frac{x^{3}}{3 e^{3}}-\frac{x^{4}}{4 e^{4}}+\cdots=1+\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k}\left(\frac{x}{e}\right)^{k}
$$

${ }^{a}$ 17. How many terms are needed in Series (3) to compute $\cos x$ for $|x|<\frac{1}{2}$ accurate to 12 decimal places (rounded)?
${ }^{a}$ 18. A function f is defined by the series

$$
f(x)=\sum_{k=1}^{\infty}(-1)^{k}\left(\frac{x^{k}}{k^{4}}\right)
$$

Determine the minimum number of terms needed to compute $f(1)$ with error less than 10^{-8}.
19. Verify that the partial sums $s_{k}=\sum_{i=0}^{k} x^{i} / i$! in the series for e^{x}, Series (1), can be written recursively as $s_{k}=s_{k-1}+t_{k}$, where $s_{0}=1, t_{1}=x$, and $t_{k}=(x / k) t_{k-1}$.
${ }^{a}$ 20. What is the fifth term in the Taylor series of $(1-2 h)^{1 / 2}$?
21. Show that if $E=\mathcal{O}\left(h^{n}\right)$, then $E=\mathcal{O}\left(h^{m}\right)$ for any nonnegative integer $m \leqq n$. Here $h \rightarrow 0$.
22. Show how $p(x)=6(x+3)+9(x+3)^{5}-5(x+3)^{8}-(x+3)^{11}$ can be efficiently evaluated.
${ }^{a}$ 23. What is the second term in the Taylor series of $\sqrt[4]{4 x-1}$ about 4.25?
${ }^{a}$ 24. How would you compute a table of $\log n$! for $1 \leqq n \leqq 1000$?
25. For small x, the approximation $\sin x \approx x$ is often used. For what range of x is this good to a relative accuracy of $\frac{1}{2} \times 10^{-14}$?
26. In the Taylor series for the function $3 x^{2}-7+\cos x$ (expanded in powers of x), what is the coefficient of x^{2} ?
27. In the Taylor series (about $\pi / 4$) for the function $\sin x+\cos x$, find the third nonzero term.
${ }^{a}$ 28. By using Taylor's Theorem, one can be sure that for all x that satisfy $|x|<\frac{1}{2}, \mid \cos x-$ $\left(1-x^{2} / 2\right) \mid$ is less than or equal to what numerical value?
29. Find the value of ξ that serves in Taylor's Theorem when $f(x)=\sin x$, with $x=\pi / 4$, $c=0$, and $n=4$.
30. Use Taylor's Theorem to find a linear function that approximates $\cos x$ best in the vicinity of $x=5 \pi / 6$.
31. For the alternating series $S_{n}=\sum_{k=0}^{n}(-1)^{k} a_{k}$, with $a_{0}>a_{1}>\cdots>0$, show by induction that $S_{0}>S_{2}>S_{4}>\cdots$, that $S_{1}<S_{3}<S_{5}<\cdots$, and that $0<S_{2 n}-$ $S_{2 n+1}=a_{2 n+1}$.
${ }^{a}$ 32. What is the Maclaurin series for the function $f(x)=3+7 x-1.33 x^{2}+19.2 x^{4}$? What is the Taylor series for this function about $c=2$?
33. In the text, it was asserted that $\sum_{k=0}^{6} x^{k} / k$! represents e^{x} only at the point $x=0$. Prove this.
34. Determine the first three terms in the Taylor series in terms of h for e^{x-h}. Using three terms, one obtains $e^{0.999} \approx C e$, where C is a constant. Determine C.
${ }^{a} \mathbf{3 5}$. What is the least number of terms required to compute π as 3.14 (rounded) using the series

$$
\pi=4-\frac{4}{3}+\frac{4}{5}-\frac{4}{7}+\cdots
$$

36. Using the Taylor series expansion in terms of h, determine the first three terms in the series for $e^{\sin (x+h)}$. Evaluate $e^{\sin 90.01^{\circ}}$ accurately to ten decimal places as $C e$ for constant C.
37. Develop the first two terms and the error in the Taylor series in terms of h for $\ln (3-2 h)$.
${ }^{a}$ 38. Determine a Taylor series to represent $\cos (\pi / 3+h)$. Evaluate $\cos \left(60.001^{\circ}\right)$ to eight decimal places (rounded). Hint: π radians equal 180 degrees.
${ }^{a}$ 39. Determine a Taylor series to represent $\sin (\pi / 4+h)$. Evaluate $\sin \left(45.0005^{\circ}\right)$ to nine decimal places (rounded).
38. Establish the first three terms in the Taylor series for $\csc (\pi / 6+h)$. Compute $\csc \left(30.00001^{\circ}\right)$ to the same accuracy as the given data.
39. Establish the Taylor series in terms of h for the following:
a. $e^{x+2 h}$
b. $\sin (x-3 h)$
c. $\ln \left[\left(x-h^{2}\right) /\left(x+h^{2}\right)\right]$
${ }^{a}$ 42. Determine the first three terms in the Taylor series in terms of h for $(x-h)^{m}$, where m is an integer constant.
40. Given the series

$$
-1+2^{-4}-3^{-4}+4^{-4}-\cdots
$$

how many terms are needed to obtain four decimal places (chopped) of accuracy?
44. How many terms are needed in the series

$$
\operatorname{arccot} x=\frac{\pi}{2}-x+\frac{x^{3}}{3}-\frac{x^{5}}{5}+\frac{x^{7}}{7}-\cdots
$$

to compute arccot x for $x^{2}<1$ accurate to 12 decimal places (rounded)?
45. Determine the first three terms in the Taylor series to represent $\sinh (x+h)$. Evaluate $\sinh (0.0001)$ to 20 decimal places (rounded) using this series.
46. Determine a Taylor series to represent C^{x+h} for constant C. Use the series to find an approximate value of $10^{1.0001}$ to five decimal places (rounded).
${ }^{a}$ 47. Stirling's formula states that $n!$ is greater than, and very close to, $\sqrt{2 \pi n} n^{n} e^{-n}$. Use this to find an n for which $1 / n!<\frac{1}{2} \times 10^{-14}$.
48. Develop the first two nonzero terms and the error term in the Taylor series in powers of h for $\ln [1-(h / 2)]$. Approximate $\ln (0.9998)$ using these two terms.
49. L'Hôpital's rule states that under suitable conditions,

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{f^{\prime}(a)}{g^{\prime}(a)}
$$

It is true, for instance, when f and g have continuous derivatives in an open interval containing a, and $f(a)=g(a)=0 \neq g^{\prime}(a)$. Establish L'Hôpital's rule using the Mean-Value Theorem.
50. (Continuation) Evaluate the following numerically and use the previous problem to show that
a. $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$
${ }^{a}$ b. $\lim _{x \rightarrow 0} \frac{\arctan x}{x}=1 \quad{ }^{a}$ c. $\lim _{x \rightarrow \pi} \frac{\cos x+1}{\sin x}=0$
${ }^{a}$ 51. Verify that if we take only the terms up to and including $x^{2 n-1} /(2 n-1)$! in Series (2) for $\sin x$ and if $|x|<\sqrt{6}$, then the error involved does not exceed $|x|^{2 n+1} /(2 n+1)$!. How many terms are needed to compute $\sin (23)$ with an error of at most 10^{-8} ? What problems do you foresee in using the series to compute $\sin (23)$? Show how to use periodicity to compute $\sin (23)$. Show that each term in the series can be obtained from the preceding one by a simple arithmetic operation.
${ }^{a}$ 52. Expand the error function

$$
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t
$$

in a series by using the exponential series and integrating. Obtain the Taylor series of $\operatorname{erf}(x)$ about zero directly. Are the two series the same? Evaluate erf(1) by adding four terms of the series and compare with the value $\operatorname{erf}(1) \approx 0.8427$, which is correct to four decimal places. Hint: Recall from the Fundamental Theorem of Calculus that

$$
\frac{d}{d x} \int_{0}^{x} f(t) d t=f(x)
$$

${ }^{a}$ 53. Establish the validity of the Taylor series

$$
\arctan x=\sum_{k=1}^{\infty}(-1)^{k+1} \frac{x^{2 k-1}}{2 k-1} \quad(-1 \leqq x \leqq 1)
$$

Is it practical to use this series directly to compute $\arctan (1)$ if ten decimal places (rounded) of accuracy are required? How many terms of the series would be needed? Will loss of significance occur? Hint: Start with the series for $1 /\left(1+x^{2}\right)$ and integrate term by term. Note that this procedure is only formal; the convergence of the resulting series can be proved by appealing to certain theorems of advanced calculus.
${ }^{a}$ 54. It is known that

$$
\pi=4-8 \sum_{k=1}^{\infty}\left(16 k^{2}-1\right)^{-1}
$$

Discuss the numerical aspects of computing π by means of this formula. How many terms would be needed to yield ten decimal places (rounded) of accuracy?
55. Taylor's Theorem for $f(x)$ expanded about c concerns this equation:

$$
\begin{aligned}
f(x)=f(c) & +(x-c) f^{\prime}(c)+\frac{1}{2}(x-c)^{2} f^{\prime \prime}(c)+\cdots \\
& +\frac{1}{(n-1)!}(x-c)^{n-1} f^{(n-1)}(c)+\frac{1}{n!}(x-c)^{n} f^{(n)}(\xi)
\end{aligned}
$$

Use this to determine how many terms in the series for e^{x} are needed to compute e with error at most 10^{-10}. Hint: Use these approximate values of $n!: 9!=3.6 \times 10^{5}, 11!=$ $4.0 \times 10^{7}, 12!=4.8 \times 10^{8}, 13!=6.2 \times 10^{9}, 14!=8.7 \times 10^{10}$, and $15!=1.3 \times 10^{12}$.
56. a. Repeat Example 3 using the complete Horner's algorithm.
b. Repeat Example 4 using the Taylor series of the polynomial $p(x)$.

Computer Problems 1.2

${ }^{a}$ 1. Everyone knows the quadratic formula $\left(-b \pm \sqrt{b^{2}-4 a c}\right) /(2 a)$ for the roots of the quadratic equation $a x^{2}+b x+c=0$. Using this formula, by hand and by computer, solve the equation $x^{2}+10^{8} x+c=0$ when $c=1$ and 10^{8}. Interpret the results.
2. Use a computer algebra system to obtain graphs of the first five partial sums of the series

$$
\arctan x=\sum_{k=1}^{\infty}(-1)^{k+1} \frac{x^{2 k-1}}{2 k-1}
$$

3. Use a graphical computer package to reproduce the graphs in Figure 1.2 as well as the next two partial sums-that is, S_{4} and S_{5}. Analyze the results.
4. Use a computer algebra system to obtain the Taylor series given in Equations (1)-(5), obtaining the final form at once without displaying all the derivatives.
5. Use two or more computer algebra systems to carry out Example 6 to 50 decimal places. Are their answers the same and correct to all digits obtained? Repeat using \sqrt{x} expanded about $x_{0}=1$.
6. Use a computer algebra system to verify the results in Examples 7 and 9.
7. Design and carry out an experiment to check the computation of x^{y} on your computer. Hint: Compare the computations of some examples, such as $32^{2.5}$ and $81^{1.25}$, to their correct values. A more elaborate test can be made by comparing single-precision results to double-precision results in various cases.
8. Verify that $x^{y}=e^{y \ln x}$. Try to find values of x and y for which these two expressions differ in your computer. Interpret the results.
9. (Continuation) For $\cos (x-y)=(\cos x)(\cos y)+(\sin x)(\sin y)$, repeat the preceding computer problem.
10. The number of combinations of n distinct items taken m at a time is given by the binomial coefficient

$$
\binom{n}{m}=\frac{n!}{m!(n-m)!}
$$

for integers m and n, with $0 \leqq m \leqq n$. Recall that $\binom{n}{0}=\binom{n}{n}=1$.
a. Write

integer function $\operatorname{ibin}(n, m)$

which uses the definition above to compute $\binom{n}{m}$.
b. Verify the formula

$$
\binom{n}{m}=\prod_{k=1}^{\min (m, n-m)}\left[\frac{n-k+1}{k}\right]
$$

for computing the binomial coefficients. Write

integer function $j b i n(n, m)$

that is based on this formula.
c. Verify the formulas (Pascal's triangle)

$$
\left\{\begin{array}{l}
a_{i 0}=a_{i i}=1 \quad(0 \leqq i \leqq n) \\
a_{i j}=a_{i-1, j-1}+a_{i-1, j}
\end{array} \quad(2 \leqq i \leqq n, 1 \leqq j \leqq i-1)\right.
$$

Using Pascal's triangle, compute the binomial coefficients

$$
\binom{i}{j}=a_{i, j} \quad(0 \leqq i, j \leqq n)
$$

and store them in the lower triangular part of the array $\left(a_{i j}\right)_{n \times n}$. Write

integer function $\operatorname{kbin}(n, m)$

that does an array look-up after first allocating and computing entries in the array.
11. The length of the curved part of a unit semicircle is π. We can approximate π by using triangles and elementary mathematics. Consider the semicircle with the arc bisected as in Figure (a). The hypotenuse of the right triangle is $\sqrt{2}$. Hence, a rough approximation to π is given by $2 \sqrt{2} \approx 2.8284$. In Figure (b), we consider an angle θ that is a fraction $1 / k$ of the semicircle. The secant shown has length $2 \sin (\theta / 2)$, and so an approximation to π is $2 k \sin (\theta / 2)$. From trigonometry, we have

$$
\sin ^{2} \frac{1}{2} \theta=\frac{1}{2}(1-\cos \theta)=\frac{1}{2}\left(1-\sqrt{1-\sin ^{2} \theta}\right)=\frac{\sin ^{2} \theta}{2+2 \sqrt{1-\sin ^{2} \theta}}
$$

Now let θ_{n} be the angle that results from division of the semicircular arc into 2^{n-1} pieces. Next let $S_{n}=\sin ^{2} \theta_{n}$ and $P_{n}=2^{n} \sqrt{S_{n+1}}$. Show that $S_{n+1}=S_{n} /\left(2+2 \sqrt{1-S_{n}}\right)$ and P_{n} is an approximation to π. Starting with $S_{2}=1$ and $P_{1}=2$, compute S_{n+1} and P_{n} recursively for $2 \leqq n \leqq 20$.
12. The irrational number π can be computed by approximating the area of a unit circle as the limit of a sequence p_{1}, p_{2}, \ldots described as follows. Divide the unit circle into 2^{n} sectors. (The figure shows the case $n=3$.) Approximate the area of the sector by the
area of the isosceles triangle. The angle θ_{n} is $2 \pi / 2^{n}$. The area of the triangle is $\frac{1}{2} \sin \theta_{n}$. (Verify.) The nth approximation to π is then $p_{n}=2^{n-1} \sin \theta_{n}$. Prove that $\sin \theta_{n}=$ $\sin \theta_{n-1} /\left\{2\left[1+\left(1-\sin ^{2} \theta_{n-1}\right)^{1 / 2}\right]\right\}^{1 / 2}$ by means of well-known trigonometric identities. Use this recurrence relation to generate the sequences $\sin \theta_{n}$ and $p_{n}(3 \leqq n \leqq 20)$ starting with $\sin \theta_{2}=1$. Compare with the computation $4.0 \arctan (1.0)$.

13. (Continuation) Calculate π by a method similar to that of the preceding computer problem, where the area of the unit circle is approximated by a sequence of trapezoids as illustrated by the figure.

${ }^{a}$ 14. Write a routine in double or extended precision to implement the following algorithm for computing π.

```
integer \(k ; \quad\) real \(a, b, c, d, e, f, g\)
\(a \leftarrow 0\)
\(b \leftarrow 1\)
\(c \leftarrow 1 / \sqrt{2}\)
\(d \leftarrow 0.25\)
\(e \leftarrow 1\)
for \(k=1\) to 5 do
    \(a \leftarrow b\)
    \(b \leftarrow(b+c) / 2\)
    \(c \leftarrow \sqrt{c a}\)
    \(d \leftarrow d-e(b-a)^{2}\)
    \(e \leftarrow 2 e\)
    \(f \leftarrow b^{2} / d\)
    \(g \leftarrow(b+c)^{2} /(4 d)\)
    output \(k, f,|f-\pi|, g,|g-\pi|\)
end for
```

Which converges faster, f or g ? How accurate are the final values? Also compare with the double- or extended-precision computation of $4.0 \arctan (1.0)$. Hint: The value of π correct to 36 digits is
3.14159265358979323846264338327950288

Note: A new formula for computing π was discovered in the early 1970s. This algorithm is based on that formula, which is a direct consequence of a method developed by Gauss for calculating elliptic integrals and of Legendre's elliptic integral relation, both known for over 150 years! The error analysis shows that rapid convergence occurs in the computation of π, and the number of significant digits doubles after each step. (The interested reader should consult Brent [1976], Borwein and Borwein [1987], and Salamin [1976].)
15. Another quadratically convergent scheme for computing π was discovered by Borwein and Borwein [1984] and can be written as

$$
\begin{aligned}
& \text { integer } k ; \quad \text { real } a, b, t, x \\
& a \leftarrow \sqrt{2} \\
& b \leftarrow 0 \\
& x \leftarrow 2+\sqrt{2} \\
& \text { for } k=1 \text { to } 5 \text { do } \\
& \quad t \leftarrow \sqrt{a} \\
& \quad b \leftarrow t(1+b) /(a+b) \\
& \quad a \leftarrow \frac{1}{2}(t+1 / t) \\
& \quad x \leftarrow x b(1+a) /(1+b) \\
& \quad \text { output } k, x,|x-\pi| \\
& \text { end for }
\end{aligned}
$$

Numerically verify that $|x-\pi| \leqq 10^{-2 k}$. Note: Ludolf van Ceulen (1540-1610) was able to calculate π to 36 digits. With modern mathematical software packages such as Matlab, Maple, and Mathematica, anyone can easily compute π to tens of thousands of digits in seconds!
${ }^{a}$ 16. The Fibonacci sequence $1,1,2,3,5,8,13,21, \ldots$ is defined by the linear recurrence relation

$$
\left\{\begin{array}{l}
\lambda_{1}=1 \quad \lambda_{2}=1 \\
\lambda_{n}=\lambda_{n-1}+\lambda_{n-2}
\end{array} \quad(n \geqq 3)\right.
$$

A formula for the nth Fibonacci number is

$$
\lambda_{n}=\frac{1}{\sqrt{5}}\left\{\left[\frac{1}{2}(1+\sqrt{5})\right]^{n}-\left[\frac{1}{2}(1-\sqrt{5})\right]^{n}\right\}
$$

Compute $\lambda_{n}(1 \leqq n \leqq 50)$, using both the recurrence relation and the formula. Write three programs that use integer, single-precision, and double-precision arithmetic, respectively. For each n, print the results using integer, single-precision, and double-precision formats, respectively.
${ }^{a}$ 17. (Continuation) Repeat the experiment, using the sequence given by the recurrence relation

$$
\left\{\begin{array}{l}
\alpha_{1}=1 \quad \alpha_{2}=\frac{1}{2}(1+\sqrt{5}) \\
\alpha_{n}=\alpha_{n-1}+\alpha_{n-2} \quad(n \geqq 3)
\end{array}\right.
$$

A closed-form formula is

$$
\alpha_{n}=\left[\frac{1}{2}(1+\sqrt{5})\right]^{n}
$$

18. (Continuation) Change $+\sqrt{5}$ to $-\sqrt{5}$, and repeat the computation of α_{n}. Explain the results.
19. The Bessel functions J_{n} are defined by

$$
J_{n}(x)=\frac{1}{\pi} \int_{0}^{\pi} \cos (x \sin \theta-n \theta) d \theta
$$

Establish that $\left|J_{n}(x)\right| \leqq 1$.
a. It is known that $J_{n+1}(x)=2 n x^{-1} J_{n}(x)-J_{n-1}(x)$. Use this equation to compute $J_{0}(1), J_{1}(1), \ldots, J_{20}(1)$, starting from known values $J_{0}(1) \approx 0.7651976865$ and $J_{1}(1) \approx 0.4400505857$. Account for the fact that the inequality $\left|J_{n}(x)\right| \leqq 1$ is violated.
b. Another recursive relation is $J_{n-1}(x)=2 n x^{-1} J_{n}(x)-J_{n+1}(x)$. Starting with the known values $J_{20}(1) \approx 3.873503009 \times 10^{-25}$ and $J_{19}(1) \approx 1.548478441 \times 10^{-23}$, use this equation to compute $J_{18}(1), J_{17}(1), \ldots, J_{1}(1), J_{0}(1)$. Analyze the results.
20. A calculus student is asked to determine $\lim _{n \rightarrow \infty}\left(100^{n} / n!\right)$ and writes a program to evaluate $x_{0}, x_{1}, x_{2}, \ldots, x_{n}$ as follows:

```
integer parameter }n\leftarrow10
integer }i\mathrm{ ; real }x;\quadx\leftarrow
for i=1 to n do
    x\leftarrow100x/i
    output i, x
end for
```

The numbers printed become ever larger, and the student concludes that $\lim _{n \rightarrow \infty} x_{n}=\infty$. What is the moral here?
21. (Maclaurin Series Function Approximations) By using the truncated Maclaurin series, a function $f(x)$ with n continuous derivatives can be approximated by an n thdegree polynomial

$$
f(x) \approx p_{n}(x)=\sum_{i=0}^{n} c_{i} x^{i}
$$

where $c_{i}=f^{(i)}(0) / i$!.
a. Produce and compare computer plots for $f(x)=e^{x}$ and the polynomials $p_{2}(x)$, $p_{3}(x), p_{4}(x), p_{5}(x)$. Do the higher-order polynomials approximate the exponential function e^{x} satisfactorily on increasing intervals about zero?
b. Repeat for $g(x)=\ln (1+x)$.
22. (Continuation, Rational Padé Approximations) Padé rational approximation is the best approximation of a function by a rational function of a given order. Often it gives a better approximation of the function than truncating its Taylor series, and it may work even when the Taylor series does not converge! Consequently, the Padé rational approximations are frequently used in computer calculations such as for the basic function $\sin x$ as discussed in Computer Problem 2.2.17. Rather than using high-order polynomials, we use ratios of low-order polynomials. These are called rational approximations. Let

$$
f(x) \approx \frac{p_{m}(x)}{q_{k}(x)}=\frac{\sum_{i=0}^{m} a_{i} x^{i}}{\sum_{j=0}^{k} b_{j} x^{j}}=R_{m, k}(x)
$$

where $b_{0}=1$. Here we have normalized with respect to $b_{0} \neq 0$ and the values of m and k are modest. We choose the k coefficients b_{j} and the $m+1$ coefficients a_{i} in $R_{m, k}$ to match f and a specified number of its derivatives at the fixed point $x=0$. First, we construct the truncated Maclaurin series $\sum_{i=0}^{n} c_{i} x^{i}$ in which $c_{i}=f^{(i)}(0) / i$! and $c_{i}=0$ for $i<0$. Next, we match the first $m+k+1$ derivatives of $R_{m, k}$ with respect to x at $x=0$ to the first $m+k+1$ coefficients c_{i}. This leads to the following displayed equations. Since $b_{0}=1$, we solve this $k \times k$ system of equations for $b_{1}, b_{2}, \ldots, b_{k}$

$$
\left[\begin{array}{lllll}
c_{m} & c_{m-1} & \cdots & c_{m-(k-2)} & c_{m-(k-1)} \\
c_{m+1} & c_{m} & \cdots & c_{m-(k-3)} & c_{m-(k-2)} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
c_{m+(k-2)} & c_{m+(k-3)} & \cdots & c_{m} & c_{m-1} \\
c_{m+(k-1)} & c_{m+(k-2)} & \cdots & c_{m+1} & c_{m}
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2} \\
\vdots \\
b_{k-1} \\
b_{k}
\end{array}\right]=\left[\begin{array}{l}
-c_{m+1} \\
-c_{m+2} \\
\vdots \\
-c_{m+(k-1)} \\
-c_{m+k}
\end{array}\right]
$$

(Solving systems of linear equations numerically is discussed in Chapters 7 and 8.) Finally, we evaluate these $m+1$ equations for $a_{0}, a_{1}, \ldots, a_{m}$.

$$
a_{j}=\sum_{\ell=0}^{j} c_{j-\ell} b_{\ell} \quad(j=0,1, \ldots, m)
$$

Note that $a_{j}=0$ for $j>m$ and $b_{j}=0$ for $j>k$. Also, if $k=0$, then $R_{m, 0}$ is a truncated Maclaurin series for f. Moreover, the Padé approximations may contain singularities.
a. Determine the rational functions $R_{1,1}(x)$ and $R_{2,2}(x)$. Produce and compare computer plots for $f(x)=e^{x}, R_{1,1}$, and $R_{2,2}$. Do these low-order rational functions approximate the exponential function e^{x} satisfactorily within $[-1,1]$? How do they compare to the truncated Maclaurin polynomials of the preceding problem?
b. Repeat using $R_{2,2}(x)$ and $R_{3,1}(x)$ for the function $g(x)=\ln (1+x)$.

Information on the life and work of the French mathematician Herni Eugène Padé (1863-1953) can be found in Wood [1999]. This reference also has examples and exercises similar to these. Further examples of Padé approximation can be seen.
23. (Continuation) Repeat for the Bessel function $J_{0}(2 x)$, whose Maclaurin series is

$$
1-x^{2}+\frac{x^{4}}{4}-\frac{x^{6}}{36}+\cdots=\sum_{i=0}^{\infty}(-1)^{i}\left(\frac{x^{i}}{i!}\right)^{2}
$$

Then determine $R_{2,2}(x), R_{4,3}(x)$, and $R_{2,4}(x)$ as well as comparing plots.
24. Carry out the details in the introductory example to this chapter by first deriving the Taylor series for $\ln (1+x)$ and computing $\ln 2 \approx 0.63452$ using the first eight terms. Then establish the series $\ln [(1+x) /(1-x)]$ and calculate $\ln 2 \approx 0.69313$ using the terms shown. Determine the absolute error and relative errors for each of these answers.
25. Reproduce Figure 1.2 using your computer as well as adding the curve for S_{4}.
26. Use a mathematical software system that does symbolic manipulations such as Maple or Mathematica to carry out
a. Example 3
b. Example 6
27. Can you obtain the following numerical results?

$$
\begin{aligned}
& \sqrt{1.00001}=1.000004999987500062499609377734375000000 \\
& \sqrt{0.99999}=0.9999949999874999374996093722656250000000
\end{aligned}
$$

Are these answers accurate to all digits shown?

Floating-Point Representation and Errors

Computers usually do not use base-10 arithmetic for storage or computation. Numbers that have a finite expression in one number system may have an infinite expression in another system. This phenomenon is illustrated when the familiar decimal number $1 / 10$ is converted into the binary system:

$$
(0.1)_{10}=(0.000110011001100110011001100110011 \ldots)_{2}
$$

In this chapter, we explain the floating-point number system and develop basic facts about roundoff errors. Another topic is loss of significance, which occurs when nearly equal numbers are subtracted. It is studied and shown to be avoidable by various programming techniques.

2.1 Floating-Point Representation

The standard way to represent a nonnegative real number in decimal form is with an integer part, a fractional part, and a decimal point between them-for example, 37.21829, 0.002271828 , and 3000527.11059 . Another standard form, often called normalized scientific notation, is obtained by shifting the decimal point and supplying appropriate powers of 10 . Thus, the preceding numbers have alternative representations as

$$
\begin{aligned}
37.21829 & =0.3721829 \times 10^{2} \\
0.002271828 & =0.2271828 \times 10^{-2} \\
3000527.11059 & =0.300052711059 \times 10^{7}
\end{aligned}
$$

In normalized scientific notation, the number is represented by a fraction multiplied by 10^{n}, and the leading digit in the fraction is not zero (except when the number involved is zero). Thus, we write 79325 as 0.79325×10^{5}, not 0.079325×10^{6} or 7.9325×10^{4} or some other way.

Normalized Floating-Point Representation

In the context of computer science, normalized scientific notation is also called normalized floating-point representation. In the decimal system, any real number x (other than zero) can be represented in normalized floating-point form as

$$
x= \pm 0 \cdot d_{1} d_{2} d_{3} \ldots \times 10^{n}
$$

where $d_{1} \neq 0$ and n is an integer (positive, negative, or zero). The numbers d_{1}, d_{2}, \ldots are the decimal digits $0,1,2,3,4,5,6,7,8$, and 9 .

Stated another way, the real number x, if different from zero, can be represented in normalized floating-point decimal form as

$$
x= \pm r \times 10^{n} \quad\left(\frac{1}{10} \leqq r<1\right)
$$

This representation consists of three parts: a sign that is either + or - , a number r in the interval $\left[\frac{1}{10}, 1\right)$, and an integer power of 10 . The number r is called the normalized mantissa and n the exponent.

The floating-point representation in the binary system is similar to that in the decimal system in several ways. If $x \neq 0$, it can be written as

$$
x= \pm q \times 2^{m} \quad\left(\frac{1}{2} \leqq q<1\right)
$$

The mantissa q would be expressed as a sequence of zeros or ones in the form $q=$ $\left(0 . b_{1} b_{2} b_{3} \ldots\right)_{2}$, where $b_{1} \neq 0$. Hence, $b_{1}=1$ and then necessarily $q \geqq \frac{1}{2}$.

A floating-point number system within a computer is similar to what we have just described, with one important difference: Every computer has only a finite word length and a finite total capacity, so only numbers with a finite number of digits can be represented. A number is allotted only one word of storage in the single-precision mode (two or more words in double or extended precision). In either case, the degree of precision is strictly limited. Clearly, irrational numbers cannot be represented, nor can those rational numbers that do not fit the finite format imposed by the computer. Furthermore, numbers may be either too large or too small to be representable. The real numbers that are representable in a computer are called its machine numbers.

Since any number used in calculations with a computer system must conform to the format of numbers in that system, it must have a finite expansion. Numbers that have a nonterminating expansion cannot be accommodated precisely. Moreover, a number that has a terminating expansion in one base may have a nonterminating expansion in another. A good example of this is the following simple fraction as given in the introductory example to this chapter:

$$
\begin{aligned}
\frac{1}{10}=(0.1)_{10} & =(0.06314631463146314 \ldots)_{8} \\
& =(0.000110011001100110011001100110011 \ldots)_{2}
\end{aligned}
$$

The important point here is that most real numbers cannot be represented exactly in a computer. (See Appendix B for a discussion of representation of numbers in difference bases.)

The effective number system for a computer is not a continuum but a rather peculiar discrete set. To illustrate, let us take an extreme example, in which the floating-point numbers must be of the form $x= \pm\left(0 . b_{1} b_{2} b_{3}\right)_{2} \times 2^{ \pm k}$, where b_{1}, b_{2}, b_{3}, and m are allowed to have only the value 0 or 1 .

EXAMPLE 1 List all the floating-point numbers that can be expressed in the form

$$
x= \pm\left(0 . b_{1} b_{2} b_{3}\right)_{2} \times 2^{ \pm k} \quad\left(k, b_{i} \in\{0,1\}\right)
$$

Solution
There are two choices for the \pm, two choices for b_{1}, two choices for b_{2}, two choices for b_{3}, and three choices for the exponent. Thus, at first, one would expect $2 \times 2 \times 2 \times 2 \times 3=48$ different numbers. However, there is some duplication. For example, the nonnegative numbers in this system are as follows:

$$
\begin{array}{lll}
0.000 \times 2^{0}=0 & 0.000 \times 2^{1}=0 & 0.000 \times 2^{-1}=0 \\
0.001 \times 2^{0}=\frac{1}{8} & 0.001 \times 2^{1}=\frac{1}{4} & 0.001 \times 2^{-1}=\frac{1}{16} \\
0.010 \times 2^{0}=\frac{2}{8} & 0.010 \times 2^{1}=\frac{2}{4} & 0.010 \times 2^{-1}=\frac{2}{16} \\
0.011 \times 2^{0}=\frac{3}{8} & 0.011 \times 2^{1}=\frac{3}{4} & 0.011 \times 2^{-1}=\frac{3}{16} \\
0.100 \times 2^{0}=\frac{4}{8} & 0.100 \times 2^{1}=\frac{4}{4} & 0.100 \times 2^{-1}=\frac{4}{16} \\
0.101 \times 2^{0}=\frac{5}{8} & 0.101 \times 2^{1}=\frac{5}{4} & 0.101 \times 2^{-1}=\frac{5}{16} \\
0.110 \times 2^{0}=\frac{6}{8} & 0.110 \times 2^{1}=\frac{6}{4} & 0.110 \times 2^{-1}=\frac{6}{16} \\
0.111 \times 2^{0}=\frac{7}{8} & 0.111 \times 2^{1}=\frac{7}{4} & 0.111 \times 2^{-1}=\frac{7}{16}
\end{array}
$$

Altogether there are 31 distinct numbers in the system. The positive numbers obtained are shown on a line in Figure 2.1. Observe that the numbers are symmetrically but unevenly distributed about zero.

Positive machine numbers in Example 1
FIGURE 2.1 -

If, in the course of a computation, a number x is produced of the form $\pm q \times 2^{m}$, where m is outside the computer's permissible range, then we say that an overflow or an underflow has occurred or that x is outside the range of the computer. Generally, an overflow results in a fatal error (or exception), and the normal execution of the program stops. An underflow, however, is usually treated automatically by setting x to zero without any interruption of the program but with a warning message in most computers.

In a computer whose floating-point numbers are restricted to the form in Example 1, any number closer to zero than $\frac{1}{16}$ would underflow to zero, and any number outside the range -1.75 to +1.75 would overflow to machine infinity.

If, in Example 1, we allow only normalized floating-point numbers, then all our numbers (with the exception of zero) have the form

$$
x= \pm\left(0.1 b_{2} b_{3}\right)_{2} \times 2^{ \pm k}
$$

This creates a phenomenon known as the hole at zero. Our nonnegative machine numbers are now distributed as in Figure 2.2. There is a relatively wide gap between zero and the smallest positive machine number, which is $(0.100)_{2} \times 2^{-1}=\frac{1}{4}$.

FIGURE 2.2
Normalized machine numbers in
Example 1

Floating-Point Representation

A computer that operates in floating-point mode represents numbers as described earlier except for the limitations imposed by the finite word length. Many binary computers have a word length of 32 bits (binary digits). We shall describe a machine of this type whose features mimic many workstations and personal computers in widespread use. The internal representation of numbers and their storage is standard floating-point form, which is used in almost all computers. For simplicity, we have left out a discussion of some of the details and features. Fortunately, one need not know all the details of the floating-point arithmetic system used in a computer to use it intelligently. Nevertheless, it is generally helpful in debugging a program to have a basic understanding of the representation of numbers in your computer.

By single-precision floating-point numbers, we mean all acceptable numbers in a computer using the standard single-precision floating-point arithmetic format. (In this discussion, we are assuming that such a computer stores these numbers in 32-bit words.) This set is a finite subset of the real numbers. It consists of $\pm 0, \pm \infty$, normal and subnormal single-precision floating-point numbers, but not NotaNumber (NaN) values. (More detail on these subjects are in Appendix B and in the references.) Recall that most real numbers cannot be represented exactly as floating-point numbers, since they have infinite decimal or binary expansions (all irrational numbers and some rational numbers); for example, $\pi, e, \frac{1}{3}, 0.1$ and so on.

Because of the 32-bit word-length, as much as possible of the normalized floating-point number

$$
\pm q \times 2^{m}
$$

must be contained in those 32 bits. One way of allocating the 32 bits is as follows:

sign of q	1 bit
integer $\|m\|$	8 bits
number q	23 bits

Information on the sign of m is contained in the eight bits allocated for the integer $|m|$. In such a scheme, we can represent real numbers with $|m|$ as large as $2^{7}-1=127$. The exponent represents numbers from -127 through 128.

Single-Precision Floating-Point Form

We now describe a machine number of the following form in standard single-precision floating-point representation:

$$
(-1)^{\mathrm{s}} \times 2^{\mathrm{c}-127} \times(1 . \mathrm{f})_{2}
$$

The leftmost bit is used for the sign of the mantissa, where $s=0$ corresponds to + and $s=1$ corresponds to - . The next eight bits are used to represent the number c in the exponent

FIGURE 2.3
Partitioned
floating-point single-precision computer word

of $2^{\text {c-127 }}$, which is interpreted as an excess- 127 code. Finally, the last 23 bits represent f from the fractional part of the mantissa in the 1-plus form: (1.f $)_{2}$. Each floating-point single-precision word is partitioned as in Figure 2.3.

In the normalized representation of a nonzero floating-point number, the first bit in the mantissa is always 1 so that this bit does not have to be stored. This can be accomplished by shifting the binary point to a "1-plus" form (1.f $)_{2}$. The mantissa is the rightmost 23 bits and contains f with an understood binary point as in Figure 2.3. So the mantissa (significand) actually corresponds to 24 binary digits since there is a hidden bit. (An important exception is the number ± 0.)

We now outline the procedure for determining the representation of a real number x. If x is zero, it is represented by a full word of zero bits with the possible exception of the sign bit. For a nonzero x, first assign the sign bit for x and consider $|x|$. Then convert both the integer and fractional parts of $|x|$ from decimal to binary. Next one-plus normalize $(|x|)_{2}$ by shifting the binary point so that the first bit to the left of the binary point is a 1 and all bits to the left of this 1 are 0 . To compensate for this shift of the binary point, adjust the exponent of 2 ; that is, multiply by the appropriate power of 2 . The 24 -bit one-plus-normalized mantissa in binary is thus found. Now the current exponent of 2 should be set equal to $\mathrm{c}-127$ to determine c , which is then converted from decimal to binary. The sign bit of the mantissa is combined with $(\mathrm{c})_{2}$ and $(\mathrm{f})_{2}$. Finally, write the 32 -bit representation of x as eight hexadecimal digits.

The value of c in the representation of a floating-point number in single precision is restricted by the inequality

$$
0<\mathrm{c}<(11111111)_{2}=255
$$

The values 0 and 255 are reserved for special cases, including ± 0 and $\pm \infty$, respectively. Hence, the actual exponent of the number is restricted by the inequality

$$
-126 \leqq c-127 \leqq 127
$$

Likewise, we find that the mantissa of each nonzero number is restricted by the inequality

$$
1 \leqq(1 . f)_{2} \leqq(1.11111111111111111111111)_{2}=2-2^{-23}
$$

The largest number representable is therefore $\left(2-2^{-23}\right) 2^{127} \approx 2^{128} \approx 3.4 \times 10^{38}$. The smallest positive number is $2^{-126} \approx 1.2 \times 10^{-38}$.

The binary machine floating-point number $\varepsilon=2^{-23}$ is called the machine epsilon when using single precision. It is the smallest positive machine number ε such that $1+\varepsilon \neq 1$. Because $2^{-23} \approx 1.2 \times 10^{-7}$, we infer that in a simple computation, approximately six significant decimal digits of accuracy may be obtained in single precision. Recall that 23 bits are allocated for the mantissa.

Double-Precision Floating-Point Form

When more precision is needed, double precision can be used, in which case each doubleprecision floating-point number is stored in two computer words in memory. In double precision, there are 52 bits allocated for the mantissa. The double precision machine epsilon is $2^{-52} \approx 2.2 \times 10^{-16}$, so approximately 15 significant decimal digits of precision are available. There are 11 bits allowed for the exponent, which is biased by 1023 . The exponent represents numbers from -1022 through 1023. A machine number in standard doubleprecision floating-point form corresponds to

$$
(-1)^{\mathrm{s}} \times 2^{\mathrm{c}-1023} \times(1 . \mathrm{f})_{2}
$$

The leftmost bit is used for the sign of the mantissa with $s=0$ for + and $s=1$ for - . The next eleven bits are used to represent the exponent c corresponding to $2^{\mathrm{c}-1023}$. Finally, 52 bits represent f from the fractional part of the mantissa in the one-plus form: $(1 . \mathrm{f})_{2}$.

The value of c in the representation of a floating-point number in double precision is restricted by the inequality

$$
0<\mathrm{c}<(1111111111)_{2}=2047
$$

As in single precision, the values at the ends of this interval are reserved for special cases. Hence, the actual exponent of the number is restricted by the inequality

$$
-1022 \leqq c-1023 \leqq 1023
$$

We find that the mantissa of each nonzero number is restricted by the inequality

$$
1 \leqq(1 . f)_{2} \leqq(1.111111111 \cdots 11111111111)_{2}=2-2^{-52}
$$

Because $2^{-52} \approx 1.2 \times 10^{-16}$, we infer that in a simple computation approximately 15 significant decimal digits of accuracy may be obtained in double precision. Recall that 52 bits are allocated for the mantissa. The largest double-precision machine number is $\left(2-2^{-52}\right) 2^{1023} \approx 2^{1024} \approx 1.8 \times 10^{308}$. The smallest double-precision positive machine number is $2^{-1022} \approx 2.2 \times 10^{-308}$.

Single precision on a 64-bit computer is comparable to double precision on a 32 -bit computer, whereas double precision on a 64-bit computer gives four times the precision available on a 32 -bit computer.

In single precision, 31 bits are available for an integer because only 1 bit is needed for the sign. Consequently, the range for integers is from $-\left(2^{31}-1\right)$ to $\left(2^{31}-1\right)=2147483647$. In double precision, 63 bits are used for integers giving integers in the range $-\left(2^{63}-1\right)$ to $\left(2^{63}-1\right)$. In using integer arithmetic, accurate calculations can result in only approximately nine digits in single precision and 18 digits in double precision! For high accuracy, most computations should be done by using double-precision floating-point arithmetic.

EXAMPLE 2 Determine the single-precision machine representation of the decimal number - 52.234375 in both single precision and double precision.

Solution Converting the integer part to binary, we have $(52 .)_{10}=(64 .)_{8}=(110100 .)_{2}$. Next, converting the fractional part, we have $(.234375)_{10}=(.17)_{8}=(.001111)_{2}$. Now

$$
(52.234375)_{10}=(110100.001111)_{2}=(1.101000011110)_{2} \times 2^{5}
$$

is the corresponding one-plus form in base 2 , and $(.101000011110)_{2}$ is the stored mantissa. Next the exponent is $(5)_{10}$, and since $\mathrm{c}-127=5$, we immediately see that $(132)_{10}=$ $(204)_{8}=(10000100)_{2}$ is the stored exponent. Thus, the single-precision machine representation of -52.234375 is

$$
\begin{aligned}
{[11000010010100001111000000000000]_{2} } & = \\
{[11000010010100001111000000000000]_{2} } & =[\mathrm{C} 250 \mathrm{~F} 000]_{16}
\end{aligned}
$$

In double precision, for the exponent $(5)_{10}$, we let $\mathrm{c}-1023=5$, and we have $(1028)_{10}=$ $(2004)_{8}=(10000000100)_{2}$, which is the stored exponent. Thus, the double-precision machine representation of -52.234375 is

$$
\begin{aligned}
{[110000000100101000011110000 \cdots 00]_{2} } & = \\
{[1100000001001010000111100000 \cdots 0000]_{2} } & =[\mathrm{C} 04 \mathrm{~A} 1 \mathrm{E} 0000000000]_{16}
\end{aligned}
$$

Here $[\cdots]_{k}$ is the bit pattern of the machine word(s) that represents floating-point numbers, which is displayed in base- k.

EXAMPLE 3 Determine the decimal numbers that correspond to these machine words:

$$
[45 \mathrm{DE} 4000]_{16} \quad[\mathrm{BA} 390000]_{16}
$$

Solution The first number in binary is

$$
\text { [0100 } 0101110111100100000000000000]_{2}
$$

The stored exponent is $(10001011)_{2}=(213)_{8}=(139)_{10}$, so $139-127=12$. The mantissa is positive and represents the number

$$
\begin{aligned}
(1.101111001)_{2} \times 2^{12} & =(1101111001000 .)_{2} \\
& =(15710 .)_{8} \\
& =0 \times 1+1 \times 8+7 \times 8^{2}+5 \times 8^{3}+1 \times 8^{4} \\
& =8(1+8(7+8(5+8(1)))) \\
& =7112
\end{aligned}
$$

Similarily, the second word in binary is

$$
\text { [101110100011 } 10010000000000000000]_{2}
$$

The exponential part of the word is $(01110100)_{2}=(164)_{8}=116$, so the exponent is $116-127=-11$. The mantissa is negative and corresponds to the following floatingpoint number:

$$
\begin{aligned}
-(1.011100100)_{2} \times 2^{-11} & =-(0.000000000010111001)_{2} \\
& =-(0.000271)_{8} \\
& =-2 \times 8^{-4}-7 \times 8^{-5}-1 \times 8^{-6} \\
& =-8^{-6}(1+8(7+8(2))) \\
& =-\frac{185}{262144} \approx-7.0571899 \times 10^{-4}
\end{aligned}
$$

Computer Errors in Representing Numbers

We turn now to the errors that can occur when we attempt to represent a given real number x in the computer. We use a model computer with a 32-bit word length. Suppose first that we let $x=2^{5321697}$ or $x=2^{-32591}$. The exponents of these numbers far exceed the limitations of the machine (as described above). These numbers would overflow and underflow, respectively, and the relative error in replacing x by the closest machine number will be very large. Such numbers are outside the range of a 32-bit word-length computer.

Consider next a positive real number x in normalized floating-point form

$$
x=q \times 2^{m} \quad\left(\frac{1}{2} \leqq q<1,-126 \leqq m \leqq 127\right)
$$

The process of replacing x by its nearest machine number is called correct rounding, and the error involved is called roundoff error. We want to know how large it can be. We suppose that q is expressed in normalized binary notation, so

$$
x=\left(0.1 b_{2} b_{3} b_{4} \ldots b_{24} b_{25} b_{26} \ldots\right)_{2} \times 2^{m}
$$

One nearby machine number can be obtained by rounding down or by simply dropping the excess bits $b_{25} b_{26} \ldots$, since only 23 bits have been allocated to the stored mantissa. This machine number is

$$
x_{-}=\left(0.1 b_{2} b_{3} b_{4} \ldots b_{24}\right)_{2} \times 2^{m}
$$

It lies to the left of x on the real-number axis. Another machine number, x_{+}, is just to the right of x on the real axis and is obtained by rounding $u p$. It is found by adding one unit to b_{24} in the expression for x_{-}. Thus,

$$
x_{+}=\left[\left(0.1 b_{2} b_{3} b_{4} \ldots b_{24}\right)_{2}+2^{-24}\right] \times 2^{m}
$$

The closer of these machine numbers is the one chosen to represent x.
The two situations are illustrated by the simple diagrams in Figure 2.4. If x lies closer to x_{-}than to x_{+}, then

$$
\left|x-x_{-}\right| \leqq \frac{1}{2}\left|x_{+}-x_{-}\right|=2^{-25+m}
$$

In this case, the relative error is bounded as follows:

$$
\left|\frac{x-x_{-}}{x}\right| \leqq \frac{2^{-25+m}}{\left(0.1 b_{2} b_{3} b_{4} \ldots\right)_{2} \times 2^{m}} \leqq \frac{2^{-25}}{\frac{1}{2}}=2^{-24}=u
$$

where $u=2^{-24}$ is the unit roundoff error for a 32-bit binary computer with standard floating-point arithmetic. Recall that the machine epsilon is $\varepsilon=2^{-23}$, so $u=\frac{1}{2} \varepsilon$. Moreover, $u=2^{-k}$, where k is the number of binary digits used in the mantissa, including the hidden bit ($k=24$ in single precision and $k=53$ in double precision). On the other hand, if x lies closer to x_{+}than to x_{-}, then

$$
\left|x-x_{+}\right| \leqq \frac{1}{2}\left|x_{+}-x_{-}\right|
$$

and the same analysis shows that the relative error is no greater than $2^{-24}=u$. So in the case of rounding to the nearest machine number, the relative error is bounded by u. We note in

passing that when all excess digits or bits are discarded, the process is called chopping. If a 32-bit word-length computer has been designed to chop numbers, the relative error bound would be twice as large as above, or $2 u=2^{-23}=\varepsilon$.

Notation $\mathrm{fl}(\boldsymbol{x})$ and Backward Error Analysis

Next let us turn to the errors that are produced in the course of elementary arithmetic operations. To illustrate the principles, suppose that we are working with a five-place decimal machine and wish to add numbers. Two typical machine numbers in normalized floatingpoint form are

$$
x=0.37218 \times 10^{4} \quad y=0.71422 \times 10^{-1}
$$

Many computers perform arithmetic operations in a double-length work area, so let us assume that our computer will have a ten-place accumulator. First, the exponent of the smaller number is adjusted so that both exponents are the same. Then the numbers are added in the accumulator, and the rounded result is placed in a computer word:

$$
\begin{aligned}
x & =0.3721800000 \times 10^{4} \\
y & =0.0000071422 \times 10^{4} \\
\hline x+y & =0.3721871422 \times 10^{4}
\end{aligned}
$$

The nearest machine number is $z=0.37219 \times 10^{4}$, and the relative error involved in this machine addition is

$$
\frac{|x+y-z|}{|x+y|}=\frac{0.0000028578 \times 10^{4}}{0.3721871422 \times 10^{4}} \approx 0.77 \times 10^{-5}
$$

This relative error would be regarded as acceptable on a machine of such low precision.
To facilitate the analysis of such errors, it is convenient to introduce the notation $\mathrm{fl}(x)$ to denote the floating-point machine number that corresponds to the real number x. Of course, the function fl depends on the particular computer involved. The hypothetical five-decimal-digit machine used above would give

$$
\mathrm{fl}\left(0.3721871422 \times 10^{4}\right)=0.37219 \times 10^{4}
$$

For a 32 -bit word-length computer, we established previously that if x is any real number within the range of the computer, then

$$
\begin{equation*}
\frac{|x-\mathrm{fl}(x)|}{|x|} \leqq u \quad\left(u=2^{-24}\right) \tag{1}
\end{equation*}
$$

Here and throughout, we assume that correct rounding is used. This inequality can also be expressed in the more useful form

$$
\mathrm{fl}(x)=x(1+\delta) \quad\left(|\delta| \leqq 2^{-24}\right)
$$

To see that these two inequalities are equivalent, simply let $\delta=[\mathrm{ff}(x)-x] / x$. Then, by Inequality (1), we have $|\delta| \leqq 2^{-24}$ and solving for $\mathrm{fl}(x)$ yields $\mathrm{fl}(x)=x(1+\delta)$.

By considering the details in the addition $1+\varepsilon$, we see that if $\varepsilon \geqq 2^{-23}$, then $\mathrm{fl}(1+\varepsilon)>1$, while if $\varepsilon<2^{-23}$, then $\mathrm{fl}(1+\varepsilon)=1$. Consequently, if machine epsilon is the smallest positive machine number ε such that

$$
\mathrm{fl}(1+\varepsilon)>1
$$

then $\varepsilon=2^{-23}$. Sometimes it is necessary to furnish the machine epsilon to a program. Since it is a machine-dependent constant, it can be found by either calling a system routine or by writing a simple program that finds the smallest positive number $x=2^{m}$ such that $1+x>1$ in the machine.

Now let the symbol \odot denote any one of the arithmetic operations,,$+- \times$, or \div. Suppose a 32-bit word-length computer has been designed so that whenever two machine numbers x and y are to be combined arithmetically, the computer will produce $\mathrm{fl}(x \odot y)$ instead of $x \odot y$. We can imagine that $x \odot y$ is first correctly formed, then normalized, and finally rounded to become a machine number. Under this assumption, the relative error will not exceed 2^{-24} by the previous analysis:

$$
\mathrm{fl}(x \odot y)=(x \odot y)(1+\delta) \quad\left(|\delta| \leqq 2^{-24}\right)
$$

Special cases of this are, of course,

$$
\begin{aligned}
\mathrm{fl}(x \pm y) & =(x \pm y)(1+\delta) \\
\mathrm{fl}(x y) & =x y(1+\delta) \\
\mathrm{fl}\left(\frac{x}{y}\right) & =\left(\frac{x}{y}\right)(1+\delta)
\end{aligned}
$$

In these equations, δ is variable but satisfies $-2^{-24} \leqq \delta \leqq 2^{-24}$. The assumptions that we have made about a model 32 -bit word-length computer is not quite true for a real computer. For example, it is possible for x and y to be machine numbers and for $x \odot y$ to overflow or underflow. Nevertheless, the assumptions should be realistic for most computing machines.

The equations given above can be written in a variety of ways, some of which suggest alternative interpretations of roundoff. For example,

$$
\mathrm{fl}(x+y)=x(1+\delta)+y(1+\delta)
$$

This says that the result of adding machine numbers x and y is not in general $x+y$ but is the true sum of $x(1+\delta)$ and $y(1+\delta)$. We can think of $x(1+\delta)$ as the result of slightly perturbing x. Thus, the machine version of $x+y$, which is $\mathrm{ff}(x+y)$, is the exact sum of a slightly perturbed x and a slightly perturbed y. The reader can supply similar interpretations in the examples given in the problems.

This interpretation is an example of backward error analysis. It attempts to determine what perturbation of the original data would cause the computer results to be the exact results for a perturbed problem. In contrast, a direct error analysis attempts to determine how computed answers differ from exact answers based on the same data. In this aspect of scientific computing, computers have stimulated a new way of looking at computational errors.

EXAMPLE 4 If x, y, and z are machine numbers in a 32 -bit word-length computer, what upper bound can be given for the relative roundoff error in computing $z(x+y)$?

Solution In the computer, the calculation of $x+y$ will be done first. This arithmetic operation produces the machine number $\mathrm{fl}(x+y)$, which differs from $x+y$ because of roundoff. By the principles established above, there is a δ_{1} such that

$$
\mathrm{fl}(x+y)=(x+y)\left(1+\delta_{1}\right) \quad\left(\left|\delta_{1}\right| \leqq 2^{-24}\right)
$$

Now z is already a machine number. When it multiplies the machine number $\mathrm{fl}(x+y)$, the result is the machine number $\mathrm{fl}[z \mathrm{ff}(x+y)]$. This, too, differs from its exact counterpart, and we have, for some δ_{2},

$$
\mathrm{fl}[z \mathrm{fl}(x+y)]=z \mathrm{fl}(x+y)\left(1+\delta_{2}\right) \quad\left(\left|\delta_{2}\right| \leqq 2^{-24}\right)
$$

Putting both of our equations together, we have

$$
\begin{aligned}
\mathrm{fl}[z \mathrm{fl}(x+y)] & =z(x+y)\left(1+\delta_{1}\right)\left(1+\delta_{2}\right) \\
& =z(x+y)\left(1+\delta_{1}+\delta_{2}+\delta_{1} \delta_{2}\right) \\
& \approx z(x+y)\left(1+\delta_{1}+\delta_{2}\right) \\
& =z(x+y)(1+\delta) \quad\left(|\delta| \leqq 2^{-23}\right)
\end{aligned}
$$

In this calculation, $\left|\delta_{1} \delta_{2}\right| \leqq 2^{-48}$, and so we ignore it. Also, we put $\delta=\delta_{1}+\delta_{2}$ and then reason that $|\delta|=\left|\delta_{1}+\delta_{2}\right| \leqq\left|\delta_{1}\right|+\left|\delta_{2}\right| \leqq 2^{-24}+2^{-24}=2^{-23}$.

EXAMPLE 5 Critique the following attempt to estimate the relative roundoff error in computing the sum of two real numbers, x and y. In a 32-bit word-length computer, the calculation yields

$$
\begin{aligned}
z & =\mathrm{fl}[\mathrm{fl}(x)+\mathrm{fl}(y)] \\
& =[x(1+\delta)+y(1+\delta)](1+\delta) \\
& =(x+y)(1+\delta)^{2} \\
& \approx(x+y)(1+2 \delta)
\end{aligned}
$$

Therefore, the relative error is bounded as follows:

$$
\left|\frac{(x+y)-z}{(x+y)}\right|=\left|\frac{2 \delta(x+y)}{(x+y)}\right|=|2 \delta| \leqq 2^{-23}
$$

Why is this calculation not correct?
Solution The quantities δ that occur in such calculations are not, in general, equal to each other. The correct calculation is

$$
\begin{aligned}
z & =\mathrm{fl}[\mathrm{fl}(x)+\mathrm{fl}(y)] \\
& =\left[x\left(1+\delta_{1}\right)+y\left(1+\delta_{2}\right)\right]\left(1+\delta_{3}\right) \\
& =\left[(x+y)+\delta_{1} x+\delta_{2} y\right]\left(1+\delta_{3}\right) \\
& =(x+y)+\delta_{1} x+\delta_{2} y+\delta_{3} x+\delta_{3} y+\delta_{1} \delta_{3} x+\delta_{2} \delta_{3} y \\
& \approx(x+y)+x\left(\delta_{1}+\delta_{3}\right)+y\left(\delta_{2}+\delta_{3}\right)
\end{aligned}
$$

Therefore, the relative roundoff error is

$$
\begin{aligned}
\left|\frac{(x+y)-z}{(x+y)}\right| & =\left|\frac{x\left(\delta_{1}+\delta_{3}\right)+y\left(\delta_{2}+\delta_{3}\right)}{(x+y)}\right| \\
& =\left|\frac{(x+y) \delta_{3}+x \delta_{1}+y \delta_{2}}{(x+y)}\right| \\
& =\left|\delta_{3}+\frac{x \delta_{1}+y \delta_{2}}{(x+y)}\right|
\end{aligned}
$$

This cannot be bounded, because the second term has a denominator that can be zero or close to zero. Notice that if x and y are machine numbers, then δ_{1} and δ_{2} are zero, and a useful bound results-namely, δ_{3}. But we do not need this calculation to know that! It has been assumed that when machine numbers are combined with any of the four arithmetic operations, the relative roundoff error will not exceed 2^{-24} in magnitude (on a 32-bit wordlength computer).

Historical Notes

In the 1991 Gulf War, a failure of the Patriot missile defense system was the result of a software conversion error. The system clock measured time in tenths of a second, but it was stored as a 24-bit floating-point number, resulting in rounding errors. Field data had shown that the system would fail to track and intercept an incoming missile after being on for 20 consecutive hours and would need to be rebooted. After it had been on for 100 hours, a system failure resulted in the death of 28 American soldiers in a barracks in Dhahran, Saudi Arabia, because it failed to intercept an incoming Iraqi Scud missile. Since the number 0.1 has an infinite binary expansion, the value in the 24-bit register was in error by $(1.1001100 \ldots)_{2} \times 2^{-24} \approx 0.95 \times 10^{-7}$. The resulting time error was approximately thirty-four one-hundreds of a second after running for 100 hours.

In 1996, the Ariane 5 rocket launched by the European Space Agency exploded 40 seconds after lift-off from Kourou, French Guiana. An investigation determined that the horizontal velocity required the conversion of a 64 -bit floating-point number to a 16 -bit signed integer. It failed because the number was larger than 32,767 , which was the largest integer of this type that could be stored in memory. The rocket and its cargo were valued at $\$ 500$ million.

Additional details about these disasters can be found by searching the World Wide Web. There are other interesting accounts of calamities that could have been averted by more careful computer programming, especially in using floating-point arithmetic.

Summary

(1) A single-precision floating-point number in a 32-bit word-length computer with standard floating-point representation is stored in a single word with the bit pattern

$$
b_{1} b_{2} b_{3} \cdots b_{9} b_{10} b_{11} \cdots b_{32}
$$

which is interpreted as the real number

$$
(-1)^{b_{1}} \times 2^{\left(b_{2} b_{3} \ldots b_{9}\right)_{2}} \times 2^{-127} \times\left(1 . b_{10} b_{11} \ldots b_{32}\right)_{2}
$$

(2) A double-precision floating-point number in a 32-bit word-length computer with standard floating-point representation is stored in two words with the bit pattern

$$
b_{1} b_{2} b_{3} \cdots b_{9} b_{10} b_{11} b_{12} b_{13} \cdots b_{32} b_{33} b_{34} b_{35} \cdots \cdots b_{64}
$$

which is interpreted as the real number

$$
(-1)^{b_{1}} \times 2^{\left(b_{2} b_{3} \ldots b_{12}\right)_{2}} \times 2^{-1023} \times\left(1 . b_{13} b_{14} \ldots b_{64}\right)_{2}
$$

(3) The relationship between a real number x and the floating-point machine number $\mathrm{fl}(x)$ can be written as

$$
\mathrm{fl}(x)=x(1+\delta) \quad\left(|\delta| \leqq 2^{-24}\right)
$$

If \odot denotes any one of the arithmetic operations, then we write

$$
\mathrm{fl}(x \odot y)=(x \odot y)(1+\delta)
$$

In these equations, δ depends on x and y.

Problems 2.1

1. Determine the machine representation in single precision on a 32 -bit word-length computer for the following decimal numbers.
a. 2^{-30}
b. 64.015625
${ }^{a}$ c. -8×2^{-24}
2. Determine the single-precision and double-precision machine representation in a 32-bit word-length computer of the following decimal numbers:
a. $0.5,-0.5$
b. $0.125,-0.125$
c. $0.0625,-0.0625$
${ }^{a}$ d. $0.03125,-0.03125$
3. Which of these are machine numbers?
a. 10^{403}
b. $1+2^{-32}$
c. $\frac{1}{5}$
d. $\frac{1}{10}$
e. $\frac{1}{256}$
4. Determine the single-precision and double-precision machine representation of the following decimal numbers:
a. $1.0,-1.0$
b. $+0.0,-0.0$
c. -9876.54321
${ }^{a}$ d. 0.234375
${ }^{a}$ e. 492.78125
f. 64.37109375
g. -285.75
h. 10^{-2}
5. Identify the floating-point numbers corresponding to the following bit strings:
a. 00000000000000000000000000000000
b. 10000000000000000000000000000000
c. 01111111100000000000000000000000
${ }^{a}$ d. 11111111100000000000000000000000
e. 00000000100000000000000000000000
f. 01000000101100000000000000000000
g. 00111111100000000000000000000000
h. 00111101110011001100110011001100
6. What are the bit-string machine representations for the following subnormal numbers?
a. $2^{-127}+2^{-128}$
b. $2^{-127}+2^{-150}$
c. $2^{-127}+2^{-130}$
d. $\sum_{k=127}^{150} 2^{-k}$
7. Determine the decimal numbers that have the following machine representations:
a. $[3 F 27 E 520]_{16}$
b. $[3 B C D C A 00]_{16}$
c. $\left[\right.$ BF4F9680] ${ }_{16}$
d. $[\mathrm{CB} 187 \mathrm{ABC}]_{16}$
8. Determine the decimal numbers that have the following machine representations:
${ }^{a}$ a. $[\mathrm{CA} 3 \mathrm{~F} 2900]_{16}$
b. $[\text { C705A700 }]_{16}$
c. $[494 \mathrm{~F} 96 \mathrm{~A} 0]_{16}$
${ }^{a}$ d. $[4 \mathrm{~B} 187 \mathrm{ABC}]_{16}$
e. $[45223000]_{16}$
f. $[45607000]_{16}$
${ }^{a}$ g. $[\mathrm{C} 553 \mathrm{E} 000]_{16}$
h. $[437 \mathrm{~F} 0000]_{16}$
9. Are these machine representations? Why or why not?
a. $[4 \mathrm{BAB} 2 \mathrm{BEB}]_{16}$
b. $[1 \mathrm{~A} 1 \mathrm{AIA} 1 \mathrm{~A}]_{16}$
c. $[\text { FADEDEAD }]_{16}$
d. $\left[\right.$ CABE6G94] ${ }_{16}$
10. The computer word associated with the variable Δ appears as $[7 F 7 F F F F F]_{16}$, which is the largest representable floating-point single-precision number. What is the decimal value of Δ ? The variable ε appears as $[00800000]_{16}$, which is the smallest positive number. What is the decimal value of ε ?
11. Enumerate the set of numbers in the floating-point number system that have binary representations of the form $\pm\left(0 . b_{1} b_{2}\right) \times 2^{k}$, where
a. $k \in\{-1,0\}$
b. $k \in\{-1,1\}$
${ }^{a}$ c. $k \in\{-1,0,1\}$
12. What are the machine numbers immediately to the right and left of 2^{m} ? How far is each from 2^{m} ?
13. Generally, when a list of floating-point numbers is added, less roundoff error will occur if the numbers are added in order of increasing magnitude. Give some examples to illustrate this principle.
14. (Continuation) The principle of the preceding problem is not universally valid. Consider a decimal machine with two decimal digits allocated to the mantissa. Show that the four numbers $0.25,0.0034,0.00051$, and 0.061 can be added with less roundoff error if not added in ascending order.
${ }^{a}$ 15. In the case of machine underflow, what is the relative error involved in replacing a number x by zero?
15. Consider a computer that operates in base β and carries n digits in the mantissa of its floating-point numbers. Show that the rounding of a real number x to the nearest machine number \tilde{x} involves a relative error of at most $\frac{1}{2} \beta^{1-n}$. Hint: Imitate the argument in the text.
${ }^{a}$ 17. Consider a decimal machine in which five decimal digits are allocated to the mantissa. Give an example, avoiding overflow or underflow, of a real number x whose closest machine number \widetilde{x} involves the greatest possible relative error.
${ }^{a}$ 18. In a five-decimal machine that correctly rounds numbers to the nearest machine number, what real numbers x will have the property $\mathrm{fl}(1.0+x)=1.0$?
${ }^{a}$ 19. Consider a computer operating in base β. Suppose that it chops numbers instead of correctly rounding them. If its floating-point numbers have a mantissa of n digits, how large is the relative error in storing a real number in machine format?
16. What is the roundoff error when we represent $2^{-1}+2^{-25}$ by a machine number? Note: This refers to absolute error, not relative error.
${ }^{a}$ 21. (Continuation) What is the relative roundoff error when we round off $2^{-1}+2^{-26}$ to get the closest machine number?
17. If x is a real number within the range of a 32 -bit word-length computer that is rounded and stored, what can happen when x^{2} is computed? Explain the difference between $\mathrm{fl}[\mathrm{fl}(x) \mathrm{fl}(x)]$ and $\mathrm{fl}\left(x_{x}\right)$.
18. A binary machine that carries 30 bits in the fractional part of each floating-point number is designed to round a number up or down correctly to get the closest floating-point number. What simple upper bound can be given for the relative error in this rounding process?
19. A decimal machine that carries 15 decimal places in its floating-point numbers is designed to chop numbers. If x is a real number in the range of this machine and \hat{x} is its machine representation, what upper bound can be given for $|x-\widehat{x}| /|x|$?
${ }^{a} \mathbf{2 5}$. If x and y are real numbers within the range of a 32 -bit word-length computer and if $x y$ is also within the range, what relative error can there be in the machine computation of $x y$? Hint: The machine produces $\mathrm{fl}[\mathrm{fl}(x) \mathrm{fl}(y)]$.
${ }^{a}$ 26. Let x and y be positive real numbers that are not machine numbers but are within the exponent range of a 32 -bit word-length computer. What is the largest possible relative error in the machine representation of $x+y^{2}$? Include errors made to get the numbers in the machine as well as errors in the arithmetic.
20. Show that if x and y are positive real numbers that have the same first n digits in their decimal representations, then y approximates x with relative error less than 10^{1-n}. Is the converse true?
21. Show that a rough bound on the relative roundoff error when n machine numbers are multiplied in a 32 -bit word-length computer is $(n-1) 2^{-24}$.
22. Show that $\mathrm{fl}(x+y)=y$ on a 32-bit word-length computer if x and y are positive machine numbers and $x<y \times 2^{-25}$.
${ }^{a} \mathbf{3 0}$. If 1000 nonzero machine numbers are added in a 32 -bit word-length computer, what upper bound can be given for the relative roundoff error in the result? How many decimal digits in the answer can be trusted?
23. Suppose that $x=\sum_{i=1}^{n} a_{i} 2^{-i}$, where $a_{i} \in\{-1,0,1\}$ is a positive number. Show that x can also be written in the form $\sum_{i=1}^{n} b_{i} 2^{-i}$, where $b_{i} \in\{0,1\}$.
24. If x and y are machine numbers in a 32 -bit word-length computer and if $\mathrm{fl}(x / y)=$ $x /[y(1+\delta)]$, what upper bound can be placed on $|\delta|$?
25. How big is the hole at zero in a 32 -bit word-length computer?
26. How many machine numbers are there in a 32-bit length computer? (Consider only normalized floating-point numbers.)
27. How many normalized floating-point numbers are available in a binary machine if n bits are allocated to the mantissa and m bits are allocated to the exponent? Assume that two additional bits are used for signs, as in a 32-bit length computer.
28. Show by an example that in computer arithmetic $a+(b+c)$ may differ from $(a+b)+c$.
${ }^{a}$ 37. Consider a decimal machine in which floating-point numbers have 13 decimal places. Suppose that numbers are correctly rounded up or down to the nearest machine number. Give the best bound for the roundoff error, assuming no underflow or overflow. Use relative error, of course. What if the numbers are always chopped?
${ }^{a}$ 38. Consider a computer that uses five-decimal-digit numbers. Let $\mathrm{fl}(x)$ denote the floating-point machine number closest to x. Show that if $x=0.5321487513$ and $y=0.5321304421$, then the operation $\mathrm{fl}(x)-\mathrm{fl}(y)$ involves a large relative error. Compute it.
${ }^{a}$ 39. Two numbers x and y that are not machine numbers are read into a 32-bit word-length computer. The machine computes $x y^{2}$. What sort of relative error can be expected? Assume no underflow or overflow.
29. Let x, y, and z be three machine numbers in a 32 -bit word-length computer. By analyzing the relative error in the worst case, determine how much roundoff error should be expected in forming $(x y) z$.
30. Let x and y be machine numbers in a 32 -bit word-length computer. What relative roundoff error should be expected in the computation of $x+y$? If x is around 30 and y is around 250 , what absolute error should be expected in the computation of $x+y$?
${ }^{a}$ 42. Every machine number in a 32 -bit word-length computer can be interpreted as the correct machine representation of an entire interval of real numbers. Describe this interval for the machine number $q \times 2^{m}$.
31. Is every machine number on a 32 -bit word-length computer the average of two other machine numbers? If not, describe those that are not averages.
32. Let x and y be machine numbers in a 32 -bit word-length computer. Let u and v be real numbers in the range of a 32-bit word-length computer but not machine numbers. Find a realistic upper bound on the relative roundoff error when u and v are read into the computer and then used to compute $(x+y) /(u v)$. As usual, ignore products of two or more numbers having magnitudes as small as 2^{-24}. Assume that no overflow or underflow occurs in this calculation.
33. Interpret the following:
a. $\mathrm{fl}(x)=x(1-\delta)$
b. $\mathrm{fl}(x y)=[x(1+\delta)] y$
c. $\mathrm{fl}(x y)=x[y(1+\delta)]$
d. $\mathrm{fl}(x y)=(x \sqrt{1+\delta})(y \sqrt{1+\delta})$
e. $\mathrm{fl}\left(\frac{x}{y}\right)=\frac{x(1+\delta)}{y}$
f. $\mathrm{fl}\left(\frac{x}{y}\right)=\frac{x \sqrt{1+\delta}}{y / \sqrt{1+\delta}}$
g. $\mathrm{ff}\left(\frac{x}{y}\right) \approx \frac{x}{y(1-\delta)}$
34. Let x and y be real numbers that are not machine numbers for a 32 -bit word-length computer and have to be rounded to get them into the machine. Assume that there is
no overflow or underflow in getting their (rounded) values into the machine. (Thus, the numbers are within the range of a 32-bit word-length computer, although they are not machine numbers.) Find a rough upper bound on the relative error in computing $x^{2} y^{3}$. Hint: We say rough upper bound because you may use $\left(1+\delta_{1}\right)\left(1+\delta_{2}\right) \approx 1+\delta_{1}+\delta_{2}$ and similar approximations. Be sure to include errors involved in getting the numbers into the machine as well as errors that arise from the arithmetic operations.
35. (Student Research Project) Write a research paper on the standard floating-point number system providing additional details on
a. types of rounding
b. subnormal floating-point numbers
c. extended precision
d. handling exceptional situations

Computer Problems 2.1

1. Print several numbers, both integers and reals, in octal format and try to explain the machine representation used in your computer. For example, examine $(0.1)_{1} 0$ and compare to the results given at the beginning of this chapter.
2. Use your computer to construct a table of three functions f, g, and h defined as follows. For each integer n in the range 1 to 50 , let $f(n)=1 / n$. Then $g(n)$ is computed by adding $f(n)$ to itself $n-1$ times. Finally, set $h(n)=n f(n)$. We want to see the effects of roundoff error in these computations. Use the function real (n) to convert an integer variable n to its real (floating-point) form. Print the table with all the precision of which your computer is capable (in single-precision mode).
3. Predict and then show what value your computer will print for $\sqrt{2}$ computed in single precision. Repeat for double or extended precision. Explain.
4. Write a program to determine the machine epsilon ε within a factor of 2 for single, double, and extended precision.
5. Let \mathcal{A} denote the set of positive integers whose decimal representation does not contain the digit 0 . The sum of the reciprocals of the elements in \mathcal{A} is known to be 23.10345. Can you verify this numerically?
6. Write a computer code

integer function $n \operatorname{Digit}(n, x)$

which returns the nth nonzero digit in the decimal expression for the real number x.
7. The harmonic series $1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots$ is known to diverge to $+\infty$. The nth partial sum approaches $+\infty$ at the same rate as $\ln (n)$. Euler's constant is defined to be

$$
\gamma=\lim _{n \rightarrow \infty}\left[\sum_{k=1}^{n} \frac{1}{k}-\ln (n)\right] \approx 0.57721
$$

If your computer ran a program for a week based on the pseudocode

```
real \(s, x\)
\(x \leftarrow 1.0 ; \quad s \leftarrow 1.0\)
repeat
    \(x \leftarrow x+1.0 ; \quad s \leftarrow s+1.0 / x\)
end repeat
```

what is the largest value of s it would obtain? Write and test a program that uses a loop of 5000 steps to estimate Euler's constant. Print intermediate answers at every 100 steps.
8. (Continuation) Prove that Euler's constant, γ, can also be represented by

$$
\gamma=\lim _{m \rightarrow \infty}\left[\sum_{k=1}^{m} \frac{1}{k}-\ln \left(m+\frac{1}{2}\right)\right]
$$

Write and test a program that uses $m=1,2,3, \ldots, 5000$ to compute γ by this formula. The convergence should be more rapid than that in the preceding computer problem. (See the article by De Temple [1993].)
9. Determine the binary form of $\frac{1}{3}$. What is the correctly rounded machine representation in single precision on a 32-bit word-length computer? Check your answer on an actual machine with the instructions

$$
x \leftarrow 1.0 / 3.0 ; \quad \text { output } x
$$

using a long format of 16 digits for the output statement.
10. Owing to its gravitational pull, the earth gains weight and volume slowly over time from space dust, meteorites, and comets. Suppose the earth is a sphere. Let the radius be $r_{a}=7000$ kilometers at the beginning of the year 1900, and let r_{b} be its radius at the end of the year 2000. Assume that $r_{b}=r_{a}+0.000001$, an increase of 1 millimeter. Using a computer, calculate how much the earth's volume and surface area has increased during the last century by the following three procedures (exactly as given):
a. $V_{a}=\frac{4}{3} \pi r_{a}^{3}, V_{b}=\frac{4}{3} \pi r_{b}^{3}, \delta_{1}=V_{b}-V_{a} \quad$ (difference in spherical volume)
b. $\delta_{2}=\frac{4}{3} \pi\left(r_{b}-r_{a}\right)\left(r_{b}^{2}+r_{b} r_{a}+r_{a}^{2}\right) \quad$ (difference in spherical volume)
c. $h=r_{b}-r_{a}, \delta_{3}=4 \pi r_{a}^{2} h \quad$ (difference in spherical surface area)

First use single precision and then double precision. Compare and analyze your results. (This problem was suggested by an anonymous reviewer.)
11. (Student Research Project) Explore recent developments in floating-point arithmetic. In particular, learn about extended precision for both real numbers and integers as well as for complex numbers.
12. What is the largest integer your computer can handle?

2.2 Loss of Significance

In this section, we show how loss of significance in subtraction can often be reduced or eliminated by various techniques, such as the use of rationalization, Taylor series, trigonometric identities, logarithmic properties, double precision, and/or range reduction. These are some of the techniques that can be used when one wants to guard against the degradation of precision in a calculation. Of course, we cannot always know when a loss of significance has occurred in a long computation, but we should be alert to the possibility and take steps to avoid it, if possible.

Significant Digits

We first address the elusive concept of significant digits in a number. Suppose that x is a real number expressed in normalized scientific notation in the decimal system

$$
x= \pm r \times 10^{n} \quad\left(\frac{1}{10} \leqq r<1\right)
$$

For example, x might be

$$
x=0.3721498 \times 10^{-5}
$$

The digits $3,7,2,1,4,9,8$ used to express r do not all have the same significance because they represent different powers of 10 . Thus, we say that 3 is the most significant digit, and the significance of the digits diminishes from left to right. In this example, 8 is the least significant digit.

If x is a mathematically exact real number, then its approximate decimal form can be given with as many significant digits as we wish. Thus, we may write

$$
\frac{\pi}{10} \approx 0.314159265358979
$$

and all the digits given are correct. If x is a measured quantity, however, the situation is quite different. Every measured quantity involves an error whose magnitude depends on the nature of the measuring device. Thus, if a meter stick is used, it is not reasonable to measure any length with precision better than 1 millimeter. Therefore, the result of measuring, say, a plate glass window with a meter stick should not be reported as 2.73594 meters. That would be misleading. Only digits that are believed to be correct or in error by at most a few units should be reported. It is a scientific convention that the least significant digit given in a measured quantity should be in error by at most five units; that is, the result is rounded correctly.

Similar remarks pertain to quantities computed from measured quantities. For example, if the side of a square is reported to be $s=0.736$ meter, then one can assume that the error does not exceed a few units in the third decimal place. The diagonal of that square is then

$$
s \sqrt{2} \approx 0.1040861182 \times 10^{1}
$$

but should be reported as 0.1041×10^{1} or (more conservatively) 0.104×10^{1}. The infinite precision available in $\sqrt{2}$,

$$
\sqrt{2}=1.414213562373095 \ldots
$$

does not convey any more precision to $s \sqrt{2}$ than was already present in s.

Computer-Caused Loss of Significance

Perhaps it is surprising that a loss of significance can occur within the computer. It is essential to understand this process so that blind trust will not be placed in numerical output from a computer. One of the most common causes for a deterioration in precision is the subtraction of one quantity from another nearly equal quantity. This effect is potentially quite serious and can be catastrophic. The closer these two numbers are to each other, the more pronounced is the effect.

To illustrate this phenomenon, let us consider the assignment statement

$$
y \leftarrow x-\sin (x)
$$

and suppose that at some point in a computer program this statement is executed with an x value of $\frac{1}{15}$. Assume further that our computer works with floating-point numbers that have ten decimal digits. Then

$$
\begin{aligned}
x & \leftarrow 0.6666666667 \times 10^{-1} \\
\sin (x) & \leftarrow 0.6661729492 \times 10^{-1} \\
x-\sin (x) & \leftarrow 0.0004937175 \times 10^{-1} \\
x-\sin (x) & \leftarrow 0.4937175000 \times 10^{-4}
\end{aligned}
$$

In the last step, the result has been shifted to normalized floating-point form. Three zeros have then been supplied by the computer in the three least significant decimal places. We refer to these as spurious zeros; they are not significant digits. In fact, the ten-decimal-digit correct value is

$$
\frac{1}{15}-\sin \frac{1}{15} \approx 0.4937174327 \times 10^{-4}
$$

Another way of interpreting this is to note that the final digit in $x-\sin (x)$ is derived from the tenth digits in x and $\sin (x)$. When the eleventh digit in either x or $\sin (x)$ is $5,6,7,8$, or 9 , the numerical values are rounded up to ten digits so that their tenth digits may be altered by plus one unit. Since these tenth digits may be in error, the final digit in $x-\sin (x)$ may also be in error-which it is!

EXAMPLE 1 If $x=0.3721448693$ and $y=0.37202$ 14371, what is the relative error in the computation of $x-y$ in a computer that has five decimal digits of accuracy?

Solution The numbers would first be rounded to $\tilde{x}=0.37214$ and $\tilde{y}=0.37202$. Then we have $\tilde{x}-\tilde{y}=0.00012$, while the correct answer is $x-y=0.0001234322$. The relative error involved is

$$
\frac{|(x-y)-(\tilde{x}-\tilde{y})|}{|x-y|}=\frac{0.0000034322}{0.0001234322} \approx 3 \times 10^{-2}
$$

This magnitude of relative error must be judged quite large when compared with the relative error of \widetilde{x} and \tilde{y}. (They cannot exceed $\frac{1}{2} \times 10^{-4}$ by the coarsest estimates, and in this example, they are, in fact, approximately 1.3×10^{-5}.)

It should be emphasized that this discussion pertains not to the operation

$$
\mathrm{fl}(x-y) \leftarrow x-y
$$

but rather to the operation

$$
\mathrm{fl}[\mathrm{fl}(x)-\mathrm{fl}(y)] \leftarrow x-y
$$

Roundoff error in the former case is governed by the equation

$$
\mathrm{fl}(x-y)=(x-y)(1+\delta)
$$

where $|\delta| \leqq 2^{-24}$ on a 32 -bit word-length computer, and on a five-decimal-digit computer in the example above $|\delta| \leqq \frac{1}{2} \times 10^{-4}$.

In Example 1, we observe that the computed difference of 0.00012 has only two significant figures of accuracy, whereas in general, one expects the numbers and calculations in this computer to have five significant figures of accuracy.

The remedy for this difficulty is first to anticipate that it may occur and then to reprogram. The simplest technique may be to carry out part of a computation in double- or extended-precision arithmetic (that means roughly twice as many significant digits), but often a slight change in the formulas is required. Several illustrations of this will be given, and the reader will find additional ones among the problems.

Consider Example 1, but imagine that the calculations to obtain x, y, and $x-y$ are being done in double precision. Suppose that single-precision arithmetic is used thereafter. In the computer, all ten digits of x, y, and $x-y$ will be retained, but at the end, $x-y$ will be rounded to its five-digit form, which is 0.12343×10^{-3}. This answer has five significant digits of accuracy, as we would like. Of course, the programmer or analyst must know in advance where the double-precision arithmetic will be necessary in the computation. Programming everything in double precision is very wasteful if it is not needed. This approach has another drawback: There may be such serious cancellation of significant digits that even double precision might not help.

Theorem on Loss of Precision

Before considering other techniques for avoiding this problem, we ask the following question: Exactly how many significant binary digits are lost in the subtraction $x-y$ when x is close to y ? The closeness of x and y is conveniently measured by $|1-(y / x)|$. Here is the result:

THEOREM 1

LOSS OF PRECISION THEOREM

Let x and y be normalized floating-point machine numbers, where $x>y>0$. If $2^{-p} \leqq 1-(y / x) \leqq 2^{-q}$ for some positive integers p and q, then at most p and at least q significant binary bits are lost in the subtraction $x-y$.

Proof We prove the second part of the theorem and leave the first as an exercise. To this end, let $x=r \times 2^{n}$ and $y=s \times 2^{m}$, where $\frac{1}{2} \leqq r, s<1$. (This is the normalized binary floating-point
form.) Since $y<x$, the computer may have to shift y before carrying out the subtraction. In any case, y must first be expressed with the same exponent as x. Hence, $y=\left(s 2^{m-n}\right) \times 2^{n}$ and

$$
x-y=\left(r-s 2^{m-n}\right) \times 2^{n}
$$

The mantissa of this number satisfies the equations and inequality

$$
r-s 2^{m-n}=r\left(1-\frac{s 2^{m}}{r 2^{n}}\right)=r\left(1-\frac{y}{x}\right)<2^{-q}
$$

Hence, to normalize the representation of $x-y$, a shift of at least q bits to the left is necessary. Then at least q (spurious) zeros are supplied on the right-hand end of the mantissa. This means that at least q bits of precision have been lost.

EXAMPLE 2 In the subtraction $37.593621-37.584216$, how many bits of significance will be lost?
Solution Let x denote the first number and y the second. Then

$$
1-\frac{y}{x}=0.0002501754
$$

This lies between 2^{-12} and 2^{-11}. These two numbers are 0.000244 and 0.00048 8. Hence, at least 11 but not more than 12 bits are lost.

Here is an example in decimal form: let $x=.6353$ and $y=.6311$. These are close, and $1-y / x=.00661<10^{-2}$. In the subtraction, we have $x-y=.0042$. There are two significant figures in the answer, although there were four significant figures in x and y.

Avoiding Loss of Significance in Subtraction

Now we take up various techniques that can be used to avoid the loss of significance that may occur in subtraction. Consider the function

$$
\begin{equation*}
f(x)=\sqrt{x^{2}+1}-1 \tag{1}
\end{equation*}
$$

whose values may be required for x near zero. Since $\sqrt{x^{2}+1} \approx 1$ when $x \approx 0$, we see that there is a potential loss of significance in the subtraction. However, the function can be rewritten in the form

$$
\begin{equation*}
f(x)=\left(\sqrt{x^{2}+1}-1\right)\left(\frac{\sqrt{x^{2}+1}+1}{\sqrt{x^{2}+1}+1}\right)=\frac{x^{2}}{\sqrt{x^{2}+1}+1} \tag{2}
\end{equation*}
$$

by rationalizing the numerator-that is, removing the radical in the numerator. This procedure allows terms to be canceled and thereby removes the subtraction. For example, if we use five-decimal-digit arithmetic and if $x=10^{-3}$, then $f(x)$ will be computed incorrectly as zero by the first formula but as $\frac{1}{2} \times 10^{-6}$ by the second. If we use the first formula together with double precision, the difficulty is ameliorated but not circumvented altogether. For example, in double precision, we have the same problem when $x=10^{-6}$.

As another example, suppose that the values of

$$
\begin{equation*}
f(x)=x-\sin x \tag{3}
\end{equation*}
$$

are required near $x=0$. A careless programmer might code this function just as indicated in Equation (3), not realizing that serious loss of accuracy will occur. Recall from calculus that

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1
$$

to see that $\sin x \approx x$ when $x \approx 0$. One cure for this problem is to use the Taylor series for $\sin x$:

$$
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots
$$

This series is known to represent $\sin x$ for all real values of x. For x near zero, it converges quite rapidly. Using this series, we can write the function f as

$$
\begin{equation*}
f(x)=x-\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}-\cdots\right)=\frac{x^{3}}{3!}-\frac{x^{5}}{5!}+\frac{x^{7}}{7!}-\cdots \tag{4}
\end{equation*}
$$

We see in this equation where the original difficulty arose; namely, for small values of x, the term x in the sine series is much larger than $x^{3} / 3$! and thus more important. But when $f(x)$ is formed, this dominant x term disappears, leaving only the lesser terms. The series that starts with $x^{3} / 3$! is very effective for calculating $f(x)$ when x is small.

In this example, further analysis is needed to determine the range in which Series (4) should be used and the range in which Formula (3) can be used. Using the Theorem on Loss of Precision, we see that the loss of bits in the subtraction of Formula (3) can be limited to at most one bit by restricting x so that $\frac{1}{2} \leqq 1-\sin x / x$. (Here we are considering only the case when $\sin x>0$.) With a calculator, it is easy to see that x must be at least 1.9. Thus, for $|x|<1.9$, we use the first few terms in the Series (4), and for $|x| \geqq 1.9$, we use $f(x)=x-\sin x$. One can verify that for the worst case $(x=1.9)$, ten terms in the series give $f(x)$ with an error of at most 10^{-16}. (That is good enough for double precision on a 32-bit word-length computer.)

To construct a function procedure for $f(x)$, notice that the terms in the series can be obtained inductively by the algorithm

$$
\left\{\begin{aligned}
t_{1} & =\frac{x^{3}}{6} \\
t_{n+1} & =\frac{-t_{n} x^{2}}{(2 n+2)(2 n+3)} \quad(n \geqq 1)
\end{aligned}\right.
$$

Then the partial sums can be obtained inductively by

$$
\left\{\begin{aligned}
s_{1} & =t_{1} \\
s_{n+1} & =s_{n}+t_{n+1} \quad(n \geqq 1)
\end{aligned}\right.
$$

so that

$$
s_{n}=\sum_{k=1}^{n} t_{k}=\sum_{k=1}^{n}(-1)^{k+1}\left[\frac{x^{2 k+1}}{(2 k+1)!}\right]
$$

Suitable pseudocode for a function is given here:

```
real function \(f(x)\)
integer \(i, n \leftarrow 10 ; \quad\) real \(s, t, x\)
if \(|x| \geqq 1.9\) then
    \(s \leftarrow x-\sin x\)
    else
    \(t \leftarrow x^{3} / 6\)
    \(s \leftarrow t\)
    for \(i=2\) to \(n\) do
        \(t \leftarrow-t x^{2} /[(2 i+2)(2 i+3)]\)
        \(s \leftarrow s+t\)
    end for
end if
\(f \leftarrow s\)
end function \(f\)
```

EXAMPLE 3 How can accurate values of the function

$$
f(x)=e^{x}-e^{-2 x}
$$

be computed in the vicinity of $x=0$?
Solution Since e^{x} and $e^{-2 x}$ are both equal to 1 when $x=0$, there will be a loss of significance because of subtraction when x is close to zero. Inserting the appropriate Taylor series, we obtain

$$
\begin{aligned}
f(x) & =\left(1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots\right)-\left(1-2 x+\frac{4 x^{2}}{2!}-\frac{8 x^{3}}{3!}+\cdots\right) \\
& =3 x-\frac{3}{2} x^{2}+\frac{3}{2} x^{3}-\cdots
\end{aligned}
$$

An alternative is to write

$$
\begin{aligned}
f(x) & =e^{-2 x}\left(e^{3 x}-1\right) \\
& =e^{-2 x}\left(3 x+\frac{9}{2!} x^{2}+\frac{27}{3!} x^{3}+\cdots\right)
\end{aligned}
$$

By using the Theorem on Loss of Precision, we find that at most one bit is lost in the subtraction $e^{x}-e^{-2 x}$ when $x>0$ and

$$
\frac{1}{2} \leqq 1-\frac{e^{-2 x}}{e^{x}}
$$

This inequality is valid when $x \geqq \frac{1}{3} \ln 2=0.23105$. Similar reasoning when $x<0$ shows that for $x \leqq-0.23105$, at most one bit is lost. Hence, the series should be used for $|x|<$ 0.23105 .

EXAMPLE 4 Criticize the assignment statement

$$
y \leftarrow \cos ^{2}(x)-\sin ^{2}(x)
$$

Solution When $\cos ^{2}(x)-\sin ^{2}(x)$ is computed, there will be a loss of significance at $x=\pi / 4$ (and other points). The simple trigonometric identity

$$
\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta
$$

should be used. Thus, the assignment statement should be replaced by

$$
y \leftarrow \cos (2 x)
$$

EXAMPLE 5 Criticize the assignment statement

$$
y \leftarrow \ln (x)-1
$$

Solution If the expression $\ln x-1$ is used for x near e, there will be a cancellation of digits and a loss of accuracy. One can use elementary facts about logarithms to overcome the difficulty. Thus, we have $y=\ln x-1=\ln x-\ln e=\ln (x / e)$. Here is a suitable assignment statement

$$
y \leftarrow \ln \left(\frac{x}{e}\right)
$$

Range Reduction

Another cause of loss of significant figures is the evaluation of various library functions with very large arguments. This problem is more subtle than the ones previously discussed. We illustrate with the sine function.

A basic property of the function $\sin x$ is its periodicity:

$$
\sin x=\sin (x+2 n \pi)
$$

for all real values of x and for all integer values of n. Because of this relationship, one needs to know only the values of $\sin x$ in some fixed interval of length 2π to compute $\sin x$ for arbitrary x. This property is used in the computer evaluation of $\sin x$ and is called range reduction.

Suppose now that we want to evaluate $\sin (12532.14)$. By subtracting integer multiples of 2π, we find that this equals $\sin (3.47)$ if we retain only two decimal digits of accuracy. From $\sin (12532.14)=\sin (12532.14-2 k \pi)$, we want $12532=2 k \pi$ and $k=3989 / 2 \pi \approx 1994$. Consequently, we obtain $12532.14-2(1994) \pi=3.49$ and $\sin (12532.14) \approx \sin (3.49)$. Thus, although our original argument 12532.14 had seven significant figures, the reduced argument has only three. The remaining digits disappeared in the subtraction of 3988π. Since 3.47 has only three significant figures, our computed value of $\sin (12532.14)$ will have no more than three significant figures. This decrease in precision is unavoidable if there is no way of increasing the precision of the original argument. If the original argument (12532.14 in this example) can be obtained with more significant figures, these additional figures will be present in the reduced argument (3.47 in this example). In some cases, double- or extended-precision programming will help.

EXAMPLE 6 For $\sin x$, how many binary bits of significance are lost in range reduction to the interval $[0,2 \pi)$?

Solution Given an argument $x>2 \pi$, we determine an integer n that satisfies the inequality $0 \leqq x-2 n \pi<2 \pi$. Then in evaluating elementary trigonometric functions, we use
$f(x)=f(x-2 n \pi)$. In the subtraction $x-2 n \pi$, there will be a loss of significance. By the Theorem on Loss of Precision, at least q bits are lost if

$$
1-\frac{2 n \pi}{x} \leqq 2^{-q}
$$

Since

$$
1-\frac{2 n \pi}{x}=\frac{x-2 n \pi}{x}<\frac{2 \pi}{x}
$$

we conclude that at least q bits are lost if $2 \pi / x \leqq 2^{-q}$. Stated otherwise, at least q bits are lost if $2^{q} \leqq x / 2 \pi$.

Summary

(1) To avoid loss of significance in subtraction, one may be able to reformulate the expression using rationalizing, series expansions, or mathematical identities.
(2) If x and y are positive normalized floating-point machine numbers with

$$
2^{-p} \leqq 1-\frac{y}{x} \leqq 2^{-q}
$$

then at most p and at least q significant binary bits are lost in computing $x-y$. Note that it is permissible to leave out the hypothesis $x>y$ here.

Additional References

For supplemental study and reading of material related to this chapter, see Appendix B as well as the following references: Acton [1996], Bornemann, Laurie, Wagon, and Waldvogel [2004], Goldberg [1991], Higham [2002], Hodges [1983], Kincaid and Cheney [2002], Overton [2001], Salamin [1976], Wilkinson [1963], and others listed in the Bibliography.

Problems 2.2

1. How can values of the function $f(x)=\sqrt{x+4}-2$ be computed accurately when x is small?
2. Calculate $f\left(10^{-2}\right)$ for the function $f(x)=e^{x}-x-1$. The answer should have five significant figures and can easily be obtained with pencil and paper. Contrast it with the straightforward evaluation of $f\left(10^{-2}\right)$ using $e^{0.01} \approx 1.0101$.
3. What is a good way to compute values of the function $f(x)=e^{x}-e$ if full machine precision is needed? Note: There is some difficulty when $x=1$.
${ }^{a} \mathbf{4}$. What difficulty could the following assignment cause?

$$
y \leftarrow 1-\sin x
$$

Circumvent it without resorting to a Taylor series if possible.
5. The hyperbolic sine function is defined by $\sinh x=\frac{1}{2}\left(e^{x}-e^{-x}\right)$. What drawback could there be in using this formula to obtain values of the function? How can values of $\sinh x$ be computed to full machine precision when $|x| \leqq \frac{1}{2}$?
${ }^{a}$ 6. Determine the first two nonzero terms in the expansion about zero for the function

$$
f(x)=\frac{\tan x-\sin x}{x-\sqrt{1+x^{2}}}
$$

Give an approximate value for $f(0.0125)$.
7. Find a method for computing

$$
y \leftarrow \frac{1}{x}(\sinh x-\tanh x)
$$

that avoids loss of significance when x is small. Find appropriate identities to solve this problem without using Taylor series.
${ }^{a}$. Find a way to calculate accurate values for

$$
f(x)=\frac{\sqrt{1+x^{2}}-1}{x^{2}}-\frac{x^{2} \sin x}{x-\tan x}
$$

Determine $\lim _{x \rightarrow 0} f(x)$.
9. For some values of x, the assignment statement $y \leftarrow 1-\cos x$ involves a difficulty. What is it, what values of x are involved, and what remedy do you propose?
${ }^{a}$ 10. For some values of x, the function $f(x)=\sqrt{x^{2}+1}-x$ cannot be accurately computed by using this formula. Explain and find a way around the difficulty.
${ }^{a} \mathbf{1 1}$. The inverse hyperbolic sine is given by $f(x)=\ln \left(x+\sqrt{x^{2}+1}\right)$. Show how to avoid loss of significance in computing $f(x)$ when x is negative. Hint: Find and exploit the relationship between $f(x)$ and $f(-x)$.
12. On most computers, a highly accurate routine for $\cos x$ is provided. It is proposed to base a routine for $\sin x$ on the formula $\sin x= \pm \sqrt{1-\cos ^{2} x}$. From the standpoint of precision (not efficiency), what problems do you foresee and how can they be avoided if we insist on using the routine for $\cos x$?
${ }^{a}$ 13. Criticize and recode the assignment statement $z \leftarrow \sqrt{x^{4}+4}-2$ assuming that z will sometimes be needed for an x close to zero.
14. How can values of the function $f(x)=\sqrt{x+2}-\sqrt{x}$ be computed accurately when x is large?
15. Write a function that computes accurate values of $f(x)=\sqrt[4]{x+4}-\sqrt[4]{x}$ for positive x.
${ }^{a}$ 16. Find a way to calculate $f(x)=\left(\cos x-e^{-x}\right) / \sin x$ correctly. Determine $f(0.008)$ correctly to ten decimal places (rounded).
17. Without using series, how could the function

$$
f(x)=\frac{\sin x}{x-\sqrt{x^{2}-1}}
$$

be computed to avoid loss of significance?
18. Write a function procedure that returns accurate values of the hyperbolic tangent function

$$
\tanh x=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}
$$

for all values of x. Notice the difficulty when $|x|<\frac{1}{2}$.
19. Find a good way to compute $\sin x+\cos x-1$ for x near zero.
${ }^{a}$ 20. Find a good way to compute $\arctan x-x$ for x near zero.
21. Find a good bound for $|\sin x-x|$ using Taylor series and assuming that $|x|<\frac{1}{10}$.
${ }^{a}$ 22. How would you compute $\left(e^{2 x}-1\right) /(2 x)$ to avoid loss of significance near zero?
23. For any $x_{0}>-1$, the sequence defined recursively by

$$
x_{n+1}=2^{n+1}\left(\sqrt{1+2^{-n} x_{n}}-1\right) \quad(n \geqq 0)
$$

converges to $\ln \left(x_{0}+1\right)$. Arrange this formula in a way that avoids loss of significance.
24. Indicate how the following formulas may be useful for arranging computations to avoid loss of significant digits.

$$
\begin{aligned}
& { }^{a} \text { a. } \sin x-\sin y=2 \sin \frac{1}{2}(x-y) \cos \frac{1}{2}(x+n n y) \\
& \begin{array}{ll}
\text { b. } \log x-\log y=\log (x / y) & \text { c. } e^{x-y}=e^{x} / e^{y} \\
\text { d. } 1-\cos x=2 \sin ^{2}(x / 2) \\
\text { e. } \arctan x-\arctan y=\arctan \left(\frac{x-y}{1+x y}\right) &
\end{array}
\end{aligned}
$$

25. What is a good way to compute $\tan x-x$ when x is near zero?
26. Find ways to compute these functions without serious loss of significant figures:
a. $e^{x}-\sin x-\cos x$
${ }^{a}$ b. $\ln (x)-1$
c. $\log x-\log (1 / x)$
${ }^{a}$ d. $x^{-2}\left(\sin x-e^{x}+1\right)$
e. $x-\operatorname{arctanh} x$
27. Let

$$
a(x)=\frac{1-\cos x}{\sin x} \quad b(x)=\frac{\sin x}{1+\cos x} \quad c(x)=\frac{x}{2}+\frac{x^{3}}{24}
$$

Show that $b(x)$ is identical to $a(x)$ and that $c(x)$ approximates $a(x)$ in a neighborhood of zero.
${ }^{a}$ 28. On your computer determine the range of x for which $(\sin x) / x \approx 1$ with full machine precision. Hint: Use Taylor series.
${ }^{a}$ 29. Use of the familiar quadratic formula

$$
x=\frac{1}{2 a}\left(-b \pm \sqrt{b^{2}-4 a c}\right)
$$

will cause a problem when the quadratic equation $x^{2}-10^{5} x+1=0$ is solved with a machine that carries only eight decimal digits. Investigate the example, observe the difficulty, and propose a remedy. Hint: An example in the text is similar.
${ }^{a} \mathbf{3 0}$. When accurate values for the roots of a quadratic equation are desired, some loss of significance may occur if $b^{2} \approx 4 a c$. What (if anything) can be done to overcome this when writing a computer routine?
31. Refer to the discussion of the function $f(x)=x-\sin x$ given in the text. Show that when $0<x<1.9$, there will be no undue loss of significance from subtraction in Equation (3).
32. Discuss the problem of computing $\tan \left(10^{100}\right)$. (See Gleick [1992], p. 178.)
33. Let x and y be two normalized binary floating-point machine numbers. Assume that $x=q \times 2^{n}, y=r \times 2^{n-1}, \frac{1}{2} \leqq r, q<1$, and $2 q-1 \geqq r$. How much loss of significance occurs in subtracting $x-y$? Answer the same question when $2 q-1<r$. Observe that the Theorem on Loss of Precision is not strong enough to solve this problem precisely.
34. Prove the first part of the Theorem on Loss of Precision.
35. Show that if x is a machine number on a 32 -bit computer that satisfies the inequality $x>\pi 2^{25}$, then $\sin x$ will be computed with no significant digits.
36. Let x and y be two positive normalized floating-point machine numbers in a 32 -bit computer. Let $x=q \times 2^{m}$ and $y=r \times 2^{n}$ with $\frac{1}{2} \leqq r, q<1$. Show that if $n=m$, then at least one bit of significance is lost in the subtraction $x-y$.
37. (Student Research Project) Read about and discuss the difference between cancellation error, a bad algorithm, and an ill-conditioned problem. Suggestion: One example involves the quadratic equation. Read Stewart [1996].
38. On a three-significant-digit computer, calculate $\sqrt{9.01}-3.00$, with as much accuracy as possible.

Computer Problems 2.2

${ }^{a}$ 1. Write a routine for computing the two roots x_{1} and x_{2} of the quadratic equation $f(x)=$ $a x^{2}+b x+c=0$ with real constants a, b, and c and for evaluating $f\left(x_{1}\right)$ and $f\left(x_{2}\right)$. Use formulas that reduce roundoff errors and write efficient code. Test your routine on the following (a, b, c) values: $(0,0,1) ;(0,1,0) ;(1,0,0) ;(0,0,0) ;(1,1,0) ;(2,10,1)$; $(1,-4,3.99999) ;(1,-8.01,16.004) ;\left(2 \times 10^{17}, 10^{18}, 10^{17}\right)$; and $\left(10^{-17},-10^{17}, 10^{17}\right)$.
2. (Continuation) Write and test a routine for solving a quadratic equation that may have complex roots.
3. Alter and test the pseudocode in the text for computing $x-\sin x$ by using nested multiplication to evaluate the series.
4. Write a routine for the function $f(x)=e^{x}-e^{-2 x}$ using the examples in the text for guidance.
5. Write code using double or extended precision to evaluate $f(x)=\cos \left(10^{4} x\right)$ on the interval $[0,1]$. Determine how many significant figures the values of $f(x)$ will have.
6. Write a procedure to compute $f(x)=\sin x-1+\cos x$. The routine should produce nearly full machine precision for all x in the interval $[0, \pi / 4]$. Hint: The trigonometric identity $\sin ^{2} \theta=\frac{1}{2}(1-\cos 2 \theta)$ may be useful.
7. Write a procedure to compute $f(x, y)=\int_{1}^{x} t^{y} d t$ for arbitrary x and y. Note: Notice the exceptional case $y=-1$ and the numerical problem near the exceptional case.
8. Suppose that we wish to evaluate the function $f(x)=(x-\sin x) / x^{3}$ for values of x close to zero.
a. Write a routine for this function. Evaluate $f(x)$ sixteen times. Initially, let $x \leftarrow 1$, and then let $x \leftarrow \frac{1}{10} x$ fifteen times. Explain the results. Note: L'Hôpital's rule indicates that $f(x)$ should tend to $\frac{1}{6}$. Test this code.
b. Write a function procedure that produces more accurate values of $f(x)$ for all values of x. Test this code.
9. Write a program to print a table of the function $f(x)=5-\sqrt{25+x^{2}}$ for $x=0$ to 1 with steps of 0.01 . Be sure that your program yields full machine precision, but do not program the problem in double precision. Explain the results.
${ }^{a} \mathbf{1 0}$. Write a routine that computes e^{x} by summing n terms of the Taylor series until the $n+1$ st term t is such that $|t|<\varepsilon=10^{-6}$. Use the reciprocal of e^{x} for negative values of x. Test on the following data: $0,+1,-1,0.5,-0.123,-25.5,-1776,3.14159$. Compute the relative error, the absolute error, and n for each case, using the exponential function on your computer system for the exact value. Sum no more than 25 terms.
11. (Continuation) The computation of e^{x} can be reduced to computing e^{u} for $|u|<(\ln 2) / 2$ only. This algorithm removes powers of 2 and computes e^{u} in a range where the series converges very rapidly. It is given by

$$
e^{x}=2^{m} e^{u}
$$

where m and u are computed by the steps

$$
\begin{array}{ll}
z \leftarrow x / \ln 2 ; & m \leftarrow \text { integer }\left(z \pm \frac{1}{2}\right) \\
w \leftarrow z-m ; & u \leftarrow w \ln 2
\end{array}
$$

Here the minus sign is used if $x<0$ because $z<0$. Incorporate this range reduction technique into the code.
12. (Continuation) Write a routine that uses range reduction $e^{x}=2^{m} e^{u}$ and computes e^{u} from the even part of the Gaussian continued fraction; that is,

$$
e^{u}=\frac{s+u}{s-u} \quad \text { where } \quad s=2+u^{2}\left(\frac{2520+28 u^{2}}{15120+420 u^{2}+u^{4}}\right)
$$

Test on the data given in Computer Problem 2.2.10. Note: Some of the computer problems in this section contain rather complicated algorithms for computing various intrinsic functions that correspond to those actually used on a large mainframe computer system. Descriptions of these and other similar library functions are frequently found in the supporting documentation of your computer system.
13. Quite important in many numerical calculations is the accurate computation of the absolute value $|z|$ of a complex number $z=a+b i$. Design and carry out a computer
experiment to compare the following three schemes:
a. $|z|=\left(a^{2}+b^{2}\right)^{1 / 2}$
b. $|z|=v\left[1+\left(\frac{w}{v}\right)^{2}\right]^{1 / 2}$
c. $|z|=2 v\left[\frac{1}{4}+\left(\frac{w}{2 v}\right)^{2}\right]^{1 / 2}$
where $v=\max \{|a|,|b|\}$ and $w=\min \{|a|,|b|\}$. Use very small and large numbers for the experiment.
${ }^{a}$ 14. For what range of x is the approximation $\left(e^{x}-1\right) / 2 x \approx 0.5$ correct to 15 decimal digits of accuracy? Using this information, write a function procedure for $\left(e^{x}-1\right) / 2 x$, producing 15 decimals of accuracy throughout the interval $[-10,10]$.
${ }^{a}$ 15. In the theory of Fourier series, some numbers known as Lebesgue constants play a role. A formula for them is

$$
\rho_{n}=\frac{1}{2 n+1}+\frac{2}{\pi} \sum_{k=1}^{n} \frac{1}{k} \tan \frac{\pi k}{2 n+1}
$$

Write and run a program to compute $\rho_{1}, \rho_{2}, \ldots, \rho_{100}$ with eight decimal digits of accuracy. Then test the validity of the inequality

$$
0 \leqq \frac{4}{\pi^{2}} \ln (2 n+1)+1-\rho_{n} \leqq 0.0106
$$

16. Compute in double or extended precision the following number:

$$
x=\left[\frac{1}{\pi} \ln \left(640320^{3}+744\right)\right]^{2}
$$

What is the point of this problem? (See Good [1972].)
17. Write a routine to compute $\sin x$ for x in radians as follows. First, using properties of the sine function, reduce the range so that $-\pi / 2 \leqq x \leqq \pi / 2$. Then if $|x|<10^{-8}$, set $\sin x \approx x$; if $|x|>\pi / 6$, set $u=x / 3$, compute $\sin u$ by the formula below, and then set $\sin x \approx\left[3-4 \sin ^{2} u\right] \sin u$; if $|x| \leqq \pi / 6$, set $u=x$ and compute $\sin u$ as follows:

$$
\sin u \approx u\left[\frac{1-\left(\frac{29593}{207636}\right) u^{2}+\left(\frac{34911}{7613320}\right) u^{4}-\left(\frac{479249}{11511339840}\right) u^{6}}{1+\left(\frac{1671}{69212}\right) u^{2}+\left(\frac{97}{351384}\right) u^{4}+\left(\frac{2623}{1644477120}\right) u^{6}}\right]
$$

Try to determine whether the sine function on your computer system uses this algorithm. Note: This is the Padé rational approximation for sine.
18. Write a routine to compute the natural logarithm by the algorithm outlined here based on telescoped rational and Gaussian continued fractions for $\ln x$ and test for several values of x. First check whether $x=1$ and return zero if so. Reduce the range of x by determining n and r such that $x=r \times 2^{n}$ with $\frac{1}{2} \leqq r<1$. Next, set $u=$ $(r-\sqrt{2} / 2) /(r+\sqrt{2} / 2)$, and compute $\ln [(1+u) /(1-u)]$ by the approximation

$$
\ln \left(\frac{1+u}{1-u}\right) \approx u\left(\frac{20790-21545.27 u^{2}+4223.9187 u^{4}}{10395-14237.635 u^{2}+4778.8377 u^{4}-230.41913 u^{6}}\right)
$$

which is valid for $|u|<3-2 \sqrt{2}$. Finally, set

$$
\ln x \approx\left(n-\frac{1}{2}\right) \ln 2+\ln \left[\frac{1+u}{1-u}\right]
$$

19. Write a routine to compute the tangent of x in radians, using the algorithm below. Test the resulting routine over a range of values of x. First, the argument x is reduced to $|x| \leqq \pi / 2$ by adding or subtracting multiples of π. If we have $0 \leqq|x| \leqq 1.7 \times 10^{-9}$, set $\tan x \approx x$. If $|x|>\pi / 4$, set $u=\pi / 2-x$; otherwise, set $u=x$. Now compute the approximation

$$
\tan u \approx u\left(\frac{135135-17336.106 u^{2}+379.23564 u^{4}-1.0118625 u^{6}}{135135-62381.106 u^{2}+3154.9377 u^{4}+28.17694 u^{6}}\right)
$$

Finally, if $|x|>\pi / 4$, set $\tan x \approx 1 / \tan u$; if $|x| \leqq \pi / 4$, set $\tan x \approx \tan u$. Note: This algorithm is obtained from the telescoped rational and Gaussian continued fraction for the tangent function.
20. Write a routine to compute $\arcsin x$ based on the following algorithm, using telescoped polynomials for the arcsine. If $|x|<10^{-8}$, set $\arcsin x \approx x$. Otherwise, if $0 \leqq x \leqq \frac{1}{2}$, set $u=x, a=0$, and $b=1$; if $\frac{1}{2}<x \leqq \frac{1}{2} \sqrt{3}$, set $u=2 x^{2}-1, a=\pi / 4$, and $b=\frac{1}{2}$; if $\frac{1}{2} \sqrt{3}<x \leqq \frac{1}{2} \sqrt{2+\sqrt{3}}$, set $u=8 x^{4}-8 x^{2}+1, a=3 \pi / 8$, and $b=\frac{1}{4}$; if $\frac{1}{2} \sqrt{2+\sqrt{3}}<x \leqq 1$, set $u=\sqrt{\frac{1}{2}(1-x)}, a=\pi / 2$, and $b=-2$. Now compute the approximation

$$
\begin{aligned}
\arcsin u \approx u(1.0 & +\frac{1}{6} u^{2}+0.075 u^{4}+0.04464286 u^{6}+0.03038182 u^{8} \\
& +0.022375 u^{10}+0.01731276 u^{12}+0.01433124 u^{14} \\
& +0.009342806 u^{16}+0.01835667 u^{18}-0.01186224 u^{20} \\
& \left.+0.03162712 u^{22}\right)
\end{aligned}
$$

Finally, set $\arcsin x \approx a+b \arcsin u$. Test this routine for various values of x.
21. Write and test a routine to compute $\arctan x$ for x in radians as follows. If $0 \leqq x \leqq 1.7 \times$ 10^{-9}, set $\arctan x \approx x$. If $1.7 \times 10^{-9}<x \leqq 2 \times 10^{-2}$, use the series approximation

$$
\arctan x \approx x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}
$$

Otherwise, set $y=x, a=0$, and $b=1$ if $0 \leqq x \leqq 1$; set $y=1 / x, a=\pi / 2$, and $b=-1$ if $1<x$. Then set $c=\pi / 16$ and $d=\tan c$ if $0 \leqq y \leqq \sqrt{2}-1$ and $c=3 \pi / 16$ and $d=\tan c$ if $\sqrt{2}-1<y \leqq 1$. Compute $u=(y-d) /(1+d y)$ and the approximation

$$
\arctan u \approx u\left(\frac{135135+171962.46 u^{2}+52490.4832 u^{4}+2218.1 u^{6}}{135135+217007.46 u^{2}+97799.3033 u^{4}+10721.3745 u^{6}}\right)
$$

Finally, set $\arctan x \approx a+b(c+\arctan u)$. Note: This algorithm uses telescoped rational and Gaussian continued fractions.
22. A fast algorithm for computing $\arctan x$ to n-bit precision for x in the interval $(0,1]$ is as follows: Set $a=2^{-n / 2}, b=x /\left(1+\sqrt{1+x^{2}}\right), c=1$, and $d=1$. Then repeatedly
update these variables by these formulas (in order from left to right and top to bottom):

$$
\begin{aligned}
& \text { real } a, b, c, d \\
& c \leftarrow \frac{2 c}{1+a} ; \quad d \leftarrow \frac{2 a b}{1+b^{2}} ; \quad d \leftarrow \frac{d}{1+\sqrt{1-d^{2}}} \\
& d \leftarrow \frac{b+d}{1-b d} ; \quad b \leftarrow \frac{d}{1+\sqrt{1+d^{2}}} ; \quad a \leftarrow \frac{2 \sqrt{a}}{1+a}
\end{aligned}
$$

After each sweep, print $f=c \ln [(1+b) /(1-b)]$. Stop when $1-a \leqq 2^{-n}$. Write a doubleprecision routine to implement this algorithm and test it for various values of x. Compare the results to those obtained from the arctangent function on your computer system. Note: This fast multiple-precision algorithm depends on the theory of elliptic integrals, using the arithmetic-geometric mean iteration and ascending Landen transformations. Other fast algorithms for trigonometric functions are discussed in Brent [1976].
23. On your computer, show that in single precision, you have only six decimal digits of accuracy if you enter 20 digits. Show that going to double precision is effective only if all work is done in double precision. For example, if you use pi $=3.14$ or pi $=$ $22 / 7$, you will lose all the precision that you have gained by using double precision. Remember that the number of significant digits in the final results is what counts!
24. In some programming languages such as Java and $\mathrm{C}++$, show that mixed-mode arithmetic can lead to results such as $(4 / 3) * \mathrm{pi}=\mathrm{pi}$ when pi is a floating-point number because the fraction inside the parentheses is computed in integer mode.
25. (Student Research Project) Investigate interval arithmetic, which has the goal of obtaining results with a guaranteed precision.

3

Locating Roots of Equations

An electric power cable is suspended (at points of equal height) from two towers that are 100 meters apart. The cable is allowed to dip 10 meters in the middle. How long is the cable?

It is known that the curve assumed by a suspended cable is a catenary. When the y-axis passes through the lowest point, we can assume an equation of the form $y=\lambda \cosh (x / \lambda)$. Here λ is a parameter to be determined. The conditions of the problem are that $y(50)=y(0)+10$. Hence, we obtain

$$
\lambda \cosh \left(\frac{50}{\lambda}\right)=\lambda+10
$$

By the methods of this chapter, the parameter is found to be $\lambda=126.632$. After this value is substituted into the arc length formula of the catenary, the length is determined to be 102.619 meters. (See Computer Problem 5.1.4.)

3.1 Bisection Method

Introduction

Let f be a real- or complex-valued function of a real or complex variable. A number r, real or complex, for which $f(r)=0$ is called a root of that equation or a zero of f. For example, the function

$$
f(x)=6 x^{2}-7 x+2
$$

has $\frac{1}{2}$ and $\frac{2}{3}$ as zeros, as can be verified by direct substitution or by writing f in its factored form:

$$
f(x)=(2 x-1)(3 x-2)
$$

For another example, the function

$$
g(x)=\cos 3 x-\cos 7 x
$$

has not only the obvious zero $x=0$, but every integer multiple of $\pi / 5$ and of $\pi / 2$ as well, which we discover by applying the trigonometric identity

$$
\cos A-\cos B=2 \sin \left[\frac{1}{2}(a+b)\right] \sin \left[\frac{1}{2}(b-a)\right]
$$

Consequently, we find

$$
g(x)=2 \sin (5 x) \sin (2 x)
$$

Why is locating roots important? Frequently, the solution to a scientific problem is a number about which we have little information other than that it satisfies some equation. Since every equation can be written so that a function stands on one side and zero on the other, the desired number must be a zero of the function. Thus, if we possess an arsenal of methods for locating zeros of functions, we shall be able to solve such problems.

We illustrate this claim by use of a specific engineering problem whose solution is the root of an equation. In a certain electrical circuit, the voltage V and current I are related by two equations of the form

$$
\left\{\begin{array}{l}
I=a\left(e^{b V}-1\right) \\
c=d I+V
\end{array}\right.
$$

in which a, b, c, and d are constants. For our purpose, these four numbers are assumed to be known. When these equations are combined by eliminating I between them, the result is a single equation:

$$
c=a d\left(e^{b V}-1\right)+V
$$

In a concrete case, this might reduce to

$$
12=14.3\left(e^{2 V}-1\right)+V
$$

and its solution is required. (It turns out that $V \approx 0.299$ in this case.)
In some problems in which a root of an equation is sought, we can perform the required calculation with a hand calculator. But how can we locate zeros of complicated functions such as these?

$$
\begin{aligned}
& f(x)=3.24 x^{8}-2.42 x^{7}+10.34 x^{6}+11.01 x^{2}+47.98 \\
& g(x)=2^{x^{2}}-10 x+1 \\
& h(x)=\cosh \left(\sqrt{x^{2}+1}-e^{x}\right)+\log |\sin x|
\end{aligned}
$$

What is needed is a general numerical method that does not depend on special properties of our functions. Of course, continuity and differentiability are special properties, but they are
common attributes of functions that are usually encountered. The sort of special property that we probably cannot easily exploit in general-purpose codes is typified by the trigonometric identity mentioned previously.

Hundreds of methods are available for locating zeros of functions, and three of the most useful have been selected for study here: the bisection method, Newton's method, and the secant method.

Let f be a function that has values of opposite sign at the two ends of an interval. Suppose also that f is continuous on that interval. To fix the notation, let $a<b$ and $f(a) f(b)<0$. It then follows that f has a root in the interval (a, b). In other words, there must exist a number r that satisfies the two conditions $a<r<b$ and $f(r)=0$. How is this conclusion reached? One must recall the Intermediate-Value Theorem. ${ }^{*}$ If x traverses an interval $[a, b]$, then the values of $f(x)$ completely fill out the interval between $f(a)$ and $f(b)$. No intermediate values can be skipped. Hence, a specific function f must take on the value zero somewhere in the interval (a, b) because $f(a)$ and $f(b)$ are of opposite signs.

Bisection Algorithm and Pseudocode

The bisection method exploits this property of continuous functions. At each step in this algorithm, we have an interval $[a, b]$ and the values $u=f(a)$ and $v=f(b)$. The numbers u and v satisfy $u v<0$. Next, we construct the midpoint of the interval, $c=\frac{1}{2}(a+b)$, and compute $w=f(c)$. It can happen fortuitously that $f(c)=0$. If so, the objective of the algorithm has been fulfilled. In the usual case, $w \neq 0$, and either $w u<0$ or $w v<0$. (Why?) If $w u<0$, we can be sure that a root of f exists in the interval $[a, c]$. Consequently, we store the value of c in b and w in v. If $w u>0$, then we cannot be sure that f has a root in $[a, c]$, but since $w v<0, f$ must have a root in $[c, b]$. In this case, we store the value of c in a and w in u. In either case, the situation at the end of this step is just like that at the beginning except that the final interval is half as large as the initial interval. This step can now be repeated until the interval is satisfactorily small, say $|b-a|<\frac{1}{2} \times 10^{-6}$. At the end, the best estimate of the root would be $(a+b) / 2$, where $[a, b]$ is the last interval in the procedure.

Now let us construct pseudocode to carry out this procedure. We shall not try to create a piece of high-quality software with many "bells and whistles," but we will write the pseudocode in the form of a procedure for general use. This will afford the reader an opportunity to review how a main program and one or more procedures can be connected.

As a general rule, in programming routines to locate the roots of arbitrary functions, unnecessary evaluations of the function should be avoided because a given function may be costly to evaluate in terms of computer time. Thus, any value of the function that may be needed later should be stored rather than recomputed. A careless programming of the bisection method might violate this principle.

The procedure to be constructed will operate on an arbitrary function f. An interval $[a, b]$ is also specified, and the number of steps to be taken, $n \max$, is given. Pseudocode to

[^3]perform nmax steps in the bisection algorithm follows:

```
procedure Bisection \((f, a, b\), nmax,\(\varepsilon)\)
integer \(n\), nmax; real \(a, b, c, f a, f b, f c\), error
\(f a \leftarrow f(a)\)
\(f b \leftarrow f(b)\)
if \(\operatorname{sign}(f a)=\operatorname{sign}(f b)\) then
    output \(a, b, f a, f b\)
    output "function has same signs at \(a\) and \(b\) "
    return
end if
error \(\leftarrow b-a\)
for \(n=0\) to nmax do
    error \(\leftarrow\) error \(/ 2\)
    \(c \leftarrow a+\) error
    \(f c \leftarrow f(c)\)
    output \(n, c, f c\), error
    if \(\mid\) error \(\mid<\varepsilon\) then
        output "convergence"
        return
    end if
    if \(\operatorname{sign}(f a) \neq \operatorname{sign}(f c)\) then
        \(b \leftarrow c\)
        \(f b \leftarrow f c\)
    else
        \(a \leftarrow c\)
        \(f a \leftarrow f c\)
    end if
end for
end procedure Bisection
```

Many modifications are incorporated to enhance the pseudocode. For example, we use $f a, f b, f c$ as mnemonics for u, v, w, respectively. Also, we illustrate some techniques of structured programming and some other alternatives, such as a test for convergence. For example, if u, v, or w is close to zero, then $u v$ or $w u$ may underflow. Similarly, an overflow situation may arise. A test involving the intrinsic function sign could be used to avoid these difficulties, such as a test that determines whether $\operatorname{sign}(u) \neq \operatorname{sign}(v)$. Here, the iterations terminate if they exceed nmax or if the error bound (discussed later in this section) is less than ε. The reader should trace the steps in the routine to see that it does what is claimed.

Examples

Now we want to illustrate how the bisection pseudocode can be used. Suppose that we have two functions, and for each, we seek a zero in a specified interval:

$$
\begin{array}{ll}
f(x)=x^{3}-3 x+1 & \text { on }[0,1] \\
g(x)=x^{3}-2 \sin x & \text { on }[0.5,2]
\end{array}
$$

First, we write two procedure functions to compute $f(x)$ and $g(x)$. Then we input the initial intervals and the number of steps to be performed in a main program. Since this is a rather simple example, this information could be assigned directly in the main program or by way of statements in the subprograms rather than being read into the program. Also, depending on the computer language being used, an external or interface statement is needed to tell the compiler that the parameter f in the bisection procedure is not an ordinary variable with numerical values but the name of a function procedure defined externally to the main program. In this example, there would be two of these function procedures and two calls to the bisection procedure.

A call program or main program that calls the second bisection routine might be written as follows:

```
program Test_Bisection
integer n, nmax }\leftarrow2
real }a,b,\varepsilon\leftarrow\frac{1}{2}1\mp@subsup{0}{}{-6
external function f,g
a\leftarrow0.0
b}\leftarrow1.
call Bisection(f, a, b, nmax, \varepsilon)
a\leftarrow0.5
b}\leftarrow2.
call Bisection(g, a, b, nmax, \varepsilon)
end program Test_Bisection
real function f(x)
real }
f\leftarrow\mp@subsup{x}{}{3}-3x+1
end function f
real function g(x)
real }
g\leftarrowx\mp@subsup{x}{}{3}-2\operatorname{sin}x
end function g
```

The computer results for the iterative steps of the bisection method for $f(x)$:

n	c_{n}	$f\left(c_{n}\right)$	error
0	0.5	-0.375	0.5
1	0.25	0.266	0.25
2	0.375	-7.23×10^{-2}	0.125
3	0.3125	9.30×10^{-2}	6.25×10^{-2}
4	0.34375	9.37×10^{-3}	3.125×10^{-2}
\vdots			
19	0.3472967	-9.54×10^{-7}	9.54×10^{-7}
20	0.3472962	3.58×10^{-7}	4.77×10^{-7}

Also, the results for $g(x)$ are as follows:

n	c_{n}	$g\left(c_{n}\right)$	error
0	1.25	5.52×10^{-2}	0.75
1	0.875	-0.865	0.375
2	1.0625	-0.548	0.188
3	1.15625	-0.285	9.38×10^{-2}
4	1.203125	-0.125	4.69×10^{-2}
\vdots			
19	1.2361827	-4.88×10^{-6}	1.43×10^{-6}
20	1.2361834	-2.15×10^{-6}	7.15×10^{-7}

To verify these results, we use built-in procedures in mathematical software such as Matlab, Mathematica, or Maple to find the desired roots of f and g to be 0.3472963553 and 1.236183928 , respectively. Since f is a polynomial, we can use a routine for finding numerical approximations to all the zeros of a polynomial function. However, when more complicated nonpolynomial functions are involved, there is generally no systematic procedure for finding all zeros. In this case, a routine can be used to search for zeros (one at a time), but we have to specify a point at which to start the search, and different starting points may result in the same or different zeros. It may be particularly troublesome to find all the zeros of a function whose behavior is unknown.

Convergence Analysis

Now let us investigate the accuracy with which the bisection method determines a root of a function. Suppose that f is a continuous function that takes values of opposite sign at the ends of an interval $\left[a_{0}, b_{0}\right]$. Then there is a root r in $\left[a_{0}, b_{0}\right]$, and if we use the midpoint $c_{0}=\left(a_{0}+b_{0}\right) / 2$ as our estimate of r, we have

$$
\left|r-c_{0}\right| \leqq \frac{b_{0}-a_{0}}{2}
$$

as illustrated in Figure 3.1. If the bisection algorithm is now applied and if the computed quantities are denoted by $a_{0}, b_{0}, c_{0}, a_{1}, b_{1}, c_{1}$ and so on, then by the same reasoning,

$$
\left|r-c_{n}\right| \leqq \frac{b_{n}-a_{n}}{2} \quad(n \geqq 0)
$$

Since the widths of the intervals are divided by 2 in each step, we conclude that

$$
\begin{equation*}
\left|r-c_{n}\right| \leqq \frac{b_{0}-a_{0}}{2^{n+1}} \tag{1}
\end{equation*}
$$

FIGURE 3.1 Bisection method:
Illustrating error upper bound

To summarize:

- THEOREM 1

BISECTION METHOD THEOREM

If the bisection algorithm is applied to a continuous function f on an interval $[a, b]$, where $f(a) f(b)<0$, then, after n steps, an approximate root will have been computed with error at most $(b-a) / 2^{n+1}$.

If an error tolerance has been prescribed in advance, it is possible to determine the number of steps required in the bisection method. Suppose that we want $\left|r-c_{n}\right|<\varepsilon$. Then it is necessary to solve the following inequality for n :

$$
\frac{b-a}{2^{n+1}}<\varepsilon
$$

By taking logarithms (with any convenient base), we obtain

$$
\begin{equation*}
n>\frac{\log (b-a)-\log (2 \varepsilon)}{\log 2} \tag{2}
\end{equation*}
$$

EXAMPLE 1 How many steps of the bisection algorithm are needed to compute a root of f to full machine single precision on a 32-bit word-length computer if $a=16$ and $b=17$?

Solution The root is between the two binary numbers $a=(10000.0)_{2}$ and $b=(10001.0)_{2}$. Thus, we already know five of the binary digits in the answer. Since we can use only 24 bits altogether, that leaves 19 bits to determine. We want the last one to be correct, so we want the error to be less than 2^{-19} or 2^{-20} (being conservative). Since a 32 -bit word-length computer has a 24-bit mantissa, we can expect the answer to have an accuracy of only 2^{-20}. From the equation above, we want $(b-a) / 2^{n+1}<\varepsilon$. Since $b-a=1$ and $\varepsilon=2^{-20}$, we have $1 / 2^{n+1}<2^{-20}$. Taking reciprocals gives $2^{n+1}>2^{20}$, or $n \geqq 20$. Alternatively, we can use Equation (2), which in this case is

$$
n>\frac{\log 1-\log 2^{-19}}{\log 2}
$$

Using a basic property of \log arithms $\left(\log x^{y}=y \log x\right)$, we find that $n \geqq 20$. In this example, each step of the algorithm determines the root with one additional binary digit of precision.

A sequence $\left\{x_{n}\right\}$ exhibits linear convergence to a limit x if there is a constant C in the interval $[0,1)$ such that

$$
\begin{equation*}
\left|x_{n+1}-x\right| \leqq C\left|x_{n}-x\right| \quad(n \geqq 1) \tag{3}
\end{equation*}
$$

If this inequality is true for all n, then

$$
\left|x_{n+1}-x\right| \leqq C\left|x_{n}-x\right| \leqq C^{2}\left|x_{n-1}-x\right| \leqq \cdots \leqq C^{n}\left|x_{1}-x\right|
$$

Thus, it is a consequence of linear convergence that

$$
\begin{equation*}
\left|x_{n+1}-x\right| \leqq A C^{n} \quad(0 \leqq C<1) \tag{4}
\end{equation*}
$$

The sequence produced by the bisection method obeys Inequality (4), as we see from Equation (1). However, the sequence need not obey Inequality (3).

The bisection method is the simplest way to solve a nonlinear equation $f(x)=0$. It arrives at the root by constraining the interval in which a root lies, and it eventually makes the interval quite small. Because the bisection method halves the width of the interval at each step, one can predict exactly how long it will take to find the root within any desired degree of accuracy. In the bisection method, not every guess is closer to the root than the previous guess because the bisection method does not use the nature of the function itself. Often the bisection method is used to get close to the root before switching to a faster method.

False Position (Regula Falsi) Method and Modifications

The false position method retains the main feature of the bisection method: that a root is trapped in a sequence of intervals of decreasing size. Rather than selecting the midpoint of each interval, this method uses the point where the secant lines intersect the x-axis.

FIGURE 3.2 False position method

In Figure 3.2, the secant line over the interval $[a, b]$ is the chord between $(a, f(a))$ and $(b, f(b))$. The two right triangles in the figure are similar, which means that

$$
\frac{b-c}{f(b)}=\frac{c-a}{-f(a)}
$$

It is easy to show that

$$
c=b-f(b)\left[\frac{a-b}{f(a)-f(b)}\right]=a-f(a)\left[\frac{b-a}{f(b)-f(a)}\right]=\frac{a f(b)-b f(a)}{f(b)-f(a)}
$$

We then compute $f(c)$ and proceed to the next step with the interval $[a, c]$ if $f(a) f(c)<0$ or to the interval $[c, b]$ if $f(c) f(b)<0$.

In the general case, the false position method starts with the interval $\left[a_{0}, b_{0}\right]$ containing a root: $f\left(a_{0}\right)$ and $f\left(b_{0}\right)$ are of opposite signs. The false position method uses intervals [a_{k}, b_{k}] that contain roots in almost the same way that the bisection method does. However, instead of finding the midpoint of the interval, it finds where the secant line joining $\left(a_{k}, f\left(a_{k}\right)\right)$ and $\left(b_{k}, f\left(b_{k}\right)\right)$ crosses the x-axis and then selects it to be the new endpoint.

At the k th step, it computes

$$
c_{k}=\frac{a_{k} f\left(b_{k}\right)-b_{k} f\left(a_{k}\right)}{f\left(b_{k}\right)-f\left(a_{k}\right)}
$$

If $f\left(a_{k}\right)$ and $f\left(c_{k}\right)$ have the same sign, then set $a_{k+1}=c_{k}$ and $b_{k+1}=b_{k}$; otherwise, set $a_{k+1}=a_{k}$ and $b_{k+1}=c_{k}$. The process is repeated until the root is approximated sufficiently well.

For some functions, the false position method may repeatedly select the same endpoint, and the process may degrade to linear convergence. There are various approaches to rectify this. For example, when the same endpoint is to be retained twice, the modified false position method uses

$$
c_{k}^{(m)}= \begin{cases}\frac{a_{k} f\left(b_{k}\right)-2 b_{k} f\left(a_{k}\right)}{f\left(b_{k}\right)-2 f\left(a_{k}\right)}, & \text { if } f\left(a_{k}\right) f\left(b_{k}\right)<0 \\ \frac{2 a_{k} f\left(b_{k}\right)-b_{k} f\left(a_{k}\right)}{2 f\left(b_{k}\right)-f\left(a_{k}\right)}, & \text { if } f\left(a_{k}\right) f\left(b_{k}\right)>0\end{cases}
$$

So rather than selecting points on the same side of the root as the regular false position method does, the modified false position method changes the slope of the straight line so that it is closer to the root. See Figure 3.3.

FIGURE 3.3 Modified false position method

The bisection method uses only the fact that $f(a) f(b)<0$ for each new interval $[a, b]$, but the false position method uses the values of $f(a)$ and $f(b)$. This is an example showing how one can include additional information in an algorithm to build a better one. In the next section, Newton's method uses not only the function but also its first derivative.

Some variants of the modified false position procedure have superlinear convergence, which we discuss in Section 3.3. See, for example, Ford [1995]. Another modified false position method replaces the secant lines by straight lines with ever-smaller slope until the iterate falls to the opposite side of the root. (See Conte and de Boor [1980].) Early versions of the false position method date back to a Chinese mathematical text (200 B.C.E. to 100 C.E.) and an Indian mathematical text (3 B.C.E.).

Summary

(1) For finding a zero r of a given continuous function f in an interval $[a, b], n$ steps of the bisection method produce a sequence of intervals $[a, b]=\left[a_{0}, b_{0}\right],\left[a_{1}, b_{1}\right],\left[a_{2}, b_{2}\right], \ldots$, [a_{n}, b_{n}] each containing the desired root of the function. The midpoints of these intervals $c_{0}, c_{1}, c_{2}, \ldots, c_{n}$ form a sequence of approximations to the root, namely, $c_{i}=\frac{1}{2}\left(a_{i}+b_{i}\right)$. On each interval $\left[a_{i}, b_{i}\right]$, the error $e_{i}=r-c_{i}$ obeys the inequality

$$
\left|e_{i}\right| \leqq \frac{1}{2}\left(b_{i}-a_{i}\right)
$$

and after n steps we have

$$
\left|e_{n}\right| \leqq \frac{1}{2^{n+1}}\left(b_{0}-a_{0}\right)
$$

(2) For an error tolerance ε such that $\left|e_{n}\right|<\varepsilon, n$ steps are needed, where n satisfies the inequality

$$
n>\frac{\log (b-a)-\log 2 \varepsilon}{\log 2}
$$

(3) For the k th step of the false position method over the interval $\left[a_{k}, b_{k}\right]$, let

$$
c_{k}=\frac{a_{k} f\left(b_{k}\right)-b_{k} f\left(a_{k}\right)}{f\left(b_{k}\right)-f\left(a_{k}\right)}
$$

If $f\left(a_{k}\right) f\left(c_{k}\right)>0$, set $a_{k+1}=c_{k}$ and $b_{k+1}=b_{k}$; otherwise, set $a_{k+1}=a_{k}$ and $b_{k+1}=c_{k}$.

Problems 3.1

${ }^{a}$ 1. Find where the graphs of $y=3 x$ and $y=e^{x}$ intersect by finding roots of $e^{x}-3 x=0$ correct to four decimal digits.
2. Give a graphical demonstration that the equation $\tan x=x$ has infinitely many roots. Determine one root precisely and another approximately by using a graph. Hint: Use the approach of the preceding problem.
3. Demonstrate graphically that the equation $50 \pi+\sin x=100 \arctan x$ has infinitely many solutions.
${ }^{a}$ 4. By graphical methods, locate approximations to all roots of the nonlinear equation $\ln (x+1)+\tan (2 x)=0$.
5. Give an example of a function for which the bisection method does not converge linearly.
6. Draw a graph of a function that is discontinuous yet the bisection method converges. Repeat, getting a function for which it diverges.
7. Prove Inequality (1).
8. If $a=0.1$ and $b=1.0$, how many steps of the bisection method are needed to determine the root with an error of at most $\frac{1}{2} \times 10^{-8}$?
${ }^{a}$ 9. Find all the roots of $f(x)=\cos x-\cos 3 x$. Use two different methods.
${ }^{a}$ 10. (Continuation) Find the root or roots of $\ln \left[(1+x) /\left(1-x^{2}\right)\right]=0$.
11. If f has an inverse, then the equation $f(x)=0$ can be solved by simply writing $x=f^{-1}(0)$. Does this remark eliminate the problem of finding roots of equations? Illustrate with $\sin x=1 / \pi$.
${ }^{a}$ 12. How many binary digits of precision are gained in each step of the bisection method? How many steps are required for each decimal digit of precision?
13. Try to devise a stopping criterion for the bisection method to guarantee that the root is determined with relative error at most ε.
14. Denote the successive intervals that arise in the bisection method by $\left[a_{0}, b_{0}\right],\left[a_{1}, b_{1}\right]$, [a_{2}, b_{2}], and so on.
a. Show that $a_{0} \leqq a_{1} \leqq a_{2} \leqq \cdots$ and that $b_{0} \geqq b_{1} \geqq b_{2} \geqq \cdots$.
b. Show that $b_{n}-a_{n}=2^{-n}\left(b_{0}-a_{0}\right)$.
c. Show that, for all $n, a_{n} b_{n}+a_{n-1} b_{n-1}=a_{n-1} b_{n}+a_{n} b_{n-1}$.
15. (Continuation) Can it happen that $a_{0}=a_{1}=a_{2}=\cdots$
16. (Continuation) Let $c_{n}=\left(a_{n}+b_{n}\right) / 2$. Show that

$$
\lim _{n \rightarrow \infty} c_{n}=\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}
$$

${ }^{a}$ 17. (Continuation) Consider the bisection method with the initial interval $\left[a_{0}, b_{0}\right]$. Show that after ten steps with this method,

$$
\left|\frac{1}{2}\left(a_{10}+b_{10}\right)-\frac{1}{2}\left(a_{9}+b_{9}\right)\right|=2^{-11}\left(b_{0}-a_{0}\right)
$$

Also, determine how many steps are required to guarantee an approximation of a root to six decimal places (rounded).
18. (True-False) If the bisection method generates intervals $\left[a_{0}, b_{0}\right],\left[a_{1}, b_{1}\right]$, and so on, which of these inequalities are true for the root r that is being calculated? Give proofs or counterexamples in each case.
a. $\left|r-a_{n}\right| \leqq 2\left|r-b_{n}\right|$
${ }^{a}$ b. $\left|r-a_{n}\right| \leqq 2^{-n-1}\left(b_{0}-a_{0}\right)$
c. $\left|r-\frac{1}{2}\left(a_{n}+b_{n}\right)\right| \leqq 2^{-n-2}\left(b_{0}-a_{0}\right)$
${ }^{a}$ d. $0 \leqq r-a_{n} \leqq 2^{-n}\left(b_{0}-a_{0}\right)$
e. $\left|r-b_{n}\right| \leqq 2^{-n-1}\left(b_{0}-a_{0}\right)$
19. (True-False) Using the notation of the text, determine which of these assertions are true and which are generally false:
${ }^{a}$ a. $\left|r-c_{n}\right|<\left|r-c_{n-1}\right|$
b. $a_{n} \leqq r \leqq c_{n}$
c. $c_{n} \leqq r \leqq b_{n}$
d. $\left|r-a_{n}\right| \leqq 2^{-n}$
${ }^{a}$ e. $\left|r-b_{n}\right| \leqq 2^{-n}\left(b_{0}-a_{0}\right)$
20. Prove that $\left|c_{n}-c_{n+1}\right|=2^{-n-2}\left(b_{0}-a_{0}\right)$.
${ }^{a}$ 21. If the bisection method is applied with starting interval $[a, a+1]$ and $a \geqq 2^{m}$, where $m \geqq 0$, what is the correct number of steps to compute the root with full machine precision on a 32 -bit word-length computer?
22. If the bisection method is applied with starting interval $\left[2^{m}, 2^{m+1}\right]$, where m is a positive or negative integer, how many steps should be taken to compute the root to full machine precision on a 32 -bit word-length computer?
${ }^{a}$ 23. Every polynomial of degree n has n zeros (counting multiplicities) in the complex plane. Does every real polynomial have n real zeros? Does every polynomial of infinite degree $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ have infinitely many zeros?

Computer Problems 3.1

1. Using the bisection method, determine the point of intersection of the curves given by $y=x^{3}-2 x+1$ and $y=x^{2}$.
2. Find a root of the following equation in the interval $[0,1]$ by using the bisection method: $9 x^{4}+18 x^{3}+38 x^{2}-57 x+14=0$.
3. Find a root of the equation $\tan x=x$ on the interval $[4,5]$ by using the bisection method. What happens on the interval [1, 2]?
4. Find a root of the equation $6\left(e^{x}-x\right)=6+3 x^{2}+2 x^{3}$ between -1 and +1 using the bisection method.
5. Use the bisection method to find a zero of the equation $\lambda \cosh (50 / \lambda)=\lambda+10$ that begins this chapter.
6. Program the bisection method as a recursive procedure and test it on one or two of the examples in the text.
7. Use the bisection method to determine roots of these functions on the intervals indicated. Process all three functions in one computer run.

$$
\begin{array}{ll}
f(x)=x^{3}+3 x-1 & \text { on }[0,1] \\
g(x)=x^{3}-2 \sin x & \text { on }[0.5,2] \\
h(x)=x+10-x \cosh (50 / x) & \text { on }[120,130]
\end{array}
$$

Find each root to full machine precision. Use the correct number of steps, at least approximately. Repeat using the false position method.
8. Test the three bisection routines on $f(x)=x^{3}+2 x^{2}+10 x-20$, with $a=1$ and $b=2$. The zero is 1.36880 8108. In programming this polynomial function, use nested multiplication. Repeat using the modified false position method.
9. Write a program to find a zero of a function f in the following way: In each step, an interval $[a, b]$ is given and $f(a) f(b)<0$. Then c is computed as the root of the linear function that agrees with f at a and b. We retain either $[a, c]$ or $[c, b]$, depending on whether $f(a) f(c)<0$ or $f(c) f(b)<0$. Test your program on several functions.
${ }^{a}$ 10. Select a routine from your program library to solve polynomial equations and use it to find the roots of the equation

$$
\begin{aligned}
x^{8}-36 x^{7}+546 x^{6}-4536 x^{5}+ & 22449 x^{4}-67284 x^{3} \\
& +118124 x^{2}-109584 x+40320=0
\end{aligned}
$$

The correct roots are the integers $1,2, \ldots, 8$. Next, solve the same equation when the coefficient of x^{7} is changed to -37 . Observe how a minor perturbation in the coefficients can cause massive changes in the roots. Thus, the roots are unstable functions of the coefficients. (Be sure to program the problem to allow for complex roots.) Cultural Note: This is a simplified version of Wilkinson's polynomial, which is found in Computer Problem 3.3.9.
${ }^{a}$ 11. A circular metal shaft is being used to transmit power. It is known that at a certain critical angular velocity ω, any jarring of the shaft during rotation will cause the shaft to deform or buckle. This is a dangerous situation because the shaft might shatter under the increased centrifugal force. To find this critical velocity ω, we must first compute a number x that satisfies the equation

$$
\tan x+\tanh x=0
$$

This number is then used in a formula to obtain ω. Solve for $x(x>0)$.
12. Using built-in routines in mathematical software systems such as Matlab, Mathematica, or Maple, find the roots for $f(x)=x^{3}-3 x+1$ on $[0,1]$ and $g(x)=x^{3}-\sin x$ on $[0.5,2]$ to more digits of accuracy than shown in the text.
13. (Engineering problem) Nonlinear equations occur in almost all fields of engineering. For example, suppose a given task is expressed in the form $f(x)=0$ and the objective is to find values of x that satisfy this condition. It is often difficult to find an explicit solution and an approximate solution is sought with the aid of mathematical software. Find a solution of

$$
f(x)=\frac{1}{\sqrt{2 \pi}} e^{-(1 / 2) x^{2}}+\frac{1}{10} \sin (\pi x)
$$

Plot the curve in the range $[-3.5,3.5]$ for x values and $[-0.5,0.5]$ for $y=f(x)$ values.
14. (Circuit problem) A simple circuit with resistance R, capacitance C in series with a battery of voltage V is given by $Q=C V\left[1-e^{-T /(R C)}\right]$, where Q is the charge of the capacitor and T is the time needed to obtain the charge. We wish to solve for the unknown C. For example, solve this problem

$$
f(x)=\left[10 x\left(1-e^{-0.004 /(2000 x)}\right)-0.00001\right]
$$

Plot the curve. Hint: You may wish to magnify the vertical scale by using $y=10^{5} f(x)$.
15. (Engineering polynomials) Equations such as $A+B x^{2} e^{C x}=0$ and $A+B x+$ $C x^{2}+D x^{3}+E x^{4}=0$ occur in engineering problems. Using mathematical software, find one or more solutions to the following equations and plot their curves:
a. $2-x^{2} e^{-0.385 x}=0$
b. $1-32 x+160 x^{2}-256 x^{3}+128 x^{4}=0$
16. (Reinforced concrete) In the design of reinforced concrete with regard to stress, one needs to solve numerically a quadratic equation such as

$$
2414707.2 x[450-0.822 x(225)]-265,000,000=0
$$

Find approximate values of the roots.
17. (Board in hall problem) In a building, two intersecting halls with widths $w_{1}=9$ feet and $w_{2}=7$ feet meet at an angle $\alpha=125^{\circ}$, as shown:

Assuming a two-dimensional situation, what is the longest board that can negotiate the turn? Ignore the thickness of the board. The relationship between the angles θ and the length of the board $\ell=\ell_{1}+\ell_{2}$ is $\ell_{1}=w_{1} \csc (\beta), \ell_{2}=w_{2} \csc (\gamma), \beta=\pi-\alpha-\gamma$ and $\ell=w_{1} \csc (\pi-\alpha-\gamma)+w_{2} \csc (\gamma)$. The maximum length of the board that can make the turn is found by minimizing ℓ as a function of γ. Taking the derivative and setting $d \ell / d \gamma=0$, we obtain

$$
w_{1} \cot (\pi-\alpha-\gamma) \csc (\pi-\alpha-\gamma)-w_{2} \cot (\gamma) \csc (\gamma)=0
$$

Substitute in the known values and numerically solve the nonlinear equation. This problem is similar to an example in Gerald and Wheatley [1999].
18. Find the rectangle of maximum area if its vertices are at $(0,0),(x, 0),(x, \cos x)$, $(0, \cos x)$. Assume that $0 \leqq x \leqq \pi / 2$.
19. Program the false position algorithm and test it on some examples such as some of the nonlinear problems in the text or in the computer problems. Compare your results with those given for the bisection method.
20. Program the modified false position method, test it, and compare it to the false position method when using some sample functions.

3.2 Newton's Method

The procedure known as Newton's method is also called the Newton-Raphson iteration. It has a more general form than the one seen here, and the more general form can be used to find roots of systems of equations. Indeed, it is one of the more important procedures
in numerical analysis, and its applicability extends to differential equations and integral equations. Here it is being applied to a single equation of the form $f(x)=0$. As before, we seek one or more points at which the value of the function f is zero.

Interpretations of Newton's Method

In Newton's method, it is assumed at once that the function f is differentiable. This implies that the graph of f has a definite slope at each point and hence a unique tangent line. Now let us pursue the following simple idea. At a certain point $\left(x_{0}, f\left(x_{0}\right)\right)$ on the graph of f, there is a tangent, which is a rather good approximation to the curve in the vicinity of that point. Analytically, it means that the linear function

$$
l(x)=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+f\left(x_{0}\right)
$$

is close to the given function f near x_{0}. At x_{0}, the two functions l and f agree. We take the zero of l as an approximation to the zero of f. The zero of l is easily found:

$$
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
$$

Thus, starting with point x_{0} (which we may interpret as an approximation to the root sought), we pass to a new point x_{1} obtained from the preceding formula. Naturally, the process can be repeated (iterated) to produce a sequence of points:

$$
x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}, \quad x_{3}=x_{2}-\frac{f\left(x_{2}\right)}{f^{\prime}\left(x_{2}\right)}, \quad \text { etc. }
$$

Under favorable conditions, the sequence of points will approach a zero of f.
The geometry of Newton's method is shown in Figure 3.4. The line $y=l(x)$ is tangent to the curve $y=f(x)$. It intersects the x-axis at a point x_{1}. The slope of $l(x)$ is $f^{\prime}\left(x_{0}\right)$.

FIGURE 3.4
Newton's method

There are other ways of interpreting Newton's method. Suppose again that x_{0} is an initial approximation to a root of f. We ask: What correction h should be added to x_{0} to obtain the root precisely? Obviously, we want

$$
f\left(x_{0}+h\right)=0
$$

If f is a sufficiently well-behaved function, it will have a Taylor series at x_{0} [see Equation (11) in Section 1.2]. Thus, we could write

$$
f\left(x_{0}\right)+h f^{\prime}\left(x_{0}\right)+\frac{h^{2}}{2} f^{\prime \prime}\left(x_{0}\right)+\cdots=0
$$

Determining h from this equation is, of course, not easy. Therefore, we give up the expectation of arriving at the true root in one step and seek only an approximation to h. This can be obtained by ignoring all but the first two terms in the series:

$$
f\left(x_{0}\right)+h f^{\prime}\left(x_{0}\right)=0
$$

The h that solves this is not the h that solves $f\left(x_{0}+h\right)=0$, but it is the easily computed number

$$
h=-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
$$

Our new approximation is then

$$
x_{1}=x_{0}+h=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
$$

and the process can be repeated. In retrospect, we see that the Taylor series was not needed after all because we used only the first two terms. In the analysis to be given later, it is assumed that $f^{\prime \prime}$ is continuous in a neighborhood of the root. This assumption enables us to estimate the errors in the process.

If Newton's method is described in terms of a sequence x_{0}, x_{1}, \ldots, then the following recursive or inductive definition applies:

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

Naturally, the interesting question is whether

$$
\lim _{n \rightarrow \infty} x_{n}=r
$$

where r is the desired root.

EXAMPLE 1 If $f(x)=x^{3}-x+1$ and $x_{0}=1$, what are x_{1} and x_{2} in the Newton iteration?
Solution From the basic formula, $x_{1}=x_{0}-f\left(x_{0}\right) / f^{\prime}\left(x_{0}\right)$. Now $f^{\prime}(x)=3 x^{2}-1$, and so $f^{\prime}(1)=2$. Also, we find $f(1)=1$. Hence, we have $x_{1}=1-\frac{1}{2}=\frac{1}{2}$. Similarly, we obtain $f\left(\frac{1}{2}\right)=\frac{5}{8}$, $f^{\prime}\left(\frac{1}{2}\right)=-\frac{1}{4}$, and $x_{2}=3$.

Pseudocode

A pseudocode for Newton's method can be written as follows:

```
procedure \(\operatorname{Newton}\left(f, f^{\prime}, x\right.\), nmax \(\left., \varepsilon, \delta\right)\)
integer \(n, n m a x ; \quad\) real \(x, f x, f p, \varepsilon, \delta\)
external function \(f, f^{\prime}\)
\(f x \leftarrow f(x)\)
output \(0, x, f x\)
for \(n=1\) to \(n \max\) do
    \(f p \leftarrow f^{\prime}(x)\)
    if \(|f p|<\delta\) then
        output "small derivative"
        return
    end if
    \(d \leftarrow f x / f p\)
    \(x \leftarrow x-d\)
    \(f x \leftarrow f(x)\)
    output \(n, x, f x\)
    if \(|d|<\varepsilon\) then
        output "convergence"
        return
    end if
end for
end procedure Newton
```

Using the initial value of x as the starting point, we carry out a maximum of nmax iterations of Newton's method. Procedures must be supplied for the external functions $f(x)$ and $f^{\prime}(x)$. The parameters ε and δ are used to control the convergence and are related to the accuracy desired or to the machine precision available.

Illustration

Now we illustrate Newton's method by locating a root of $x^{3}+x=2 x^{2}+3$. We apply the method to the function $f(x)=x^{3}-2 x^{2}+x-3$, starting with $x_{0}=3$. Of course, $f^{\prime}(x)=$ $3 x^{2}-4 x+1$, and these two functions should be arranged in nested form for efficiency:

$$
\begin{aligned}
f(x) & =((x-2) x+1) x-3 \\
f^{\prime}(x) & =(3 x-4) x+1
\end{aligned}
$$

To see in greater detail the rapid convergence of Newton's method, we use arithmetic with double the normal precision in the program and obtain the following results:

n	x_{n}	$f\left(x_{n}\right)$
0	3.0	9.0
1	2.4375	2.04
2	2.2130327224731445	0.256
3	2.1755549386143684	6.46×10^{-3}
4	2.1745601006550714	4.48×10^{-6}
5	2.1745594102932841	1.97×10^{-12}

FIGURE 3.5
Three steps of Newton's
method $f(x)=$ $x^{3}-2 x^{2}+x-3$

Notice the doubling of the accuracy in $f(x)$ (and also in x) until the maximum precision of the computer is encountered. Figure 3.5 shows a computer plot of three iterations of Newton's method for this sample problem.

Using mathematical software that allows for complex roots such as in Matlab, Maple, or Mathematica, we find that the polynomial has a single real root, 2.17456, and a pair of complex conjugate roots, $-0.0872797 \pm 1.17131 i$.

Convergence Analysis

Anyone who has experimented with Newton's method-for instance, by working some of the problems in this section-will have observed the remarkable rapidity in the convergence of the sequence to the root. This phenomenon is also noticeable in the example just given. Indeed, the number of correct figures in the answer is nearly doubled at each successive step. Thus in the example above, we have first 0 and then $1,2,3,6,12,24, \ldots$ accurate digits from each Newton iteration. Five or six steps of Newton's method often suffice to yield full machine precision in the determination of a root. There is a theoretical basis for this dramatic performance, as we shall now see.

Let the function f, whose zero we seek, possess two continuous derivatives f^{\prime} and $f^{\prime \prime}$, and let r be a zero of f. Assume further that r is a simple zero; that is, $f^{\prime}(r) \neq 0$. Then Newton's method, if started sufficiently close to r, converges quadratically to r. This means that the errors in successive steps obey an inequality of the form

$$
\left|r-x_{n+1}\right| \leqq c\left|r-x_{n}\right|^{2}
$$

We shall establish this fact presently, but first, an informal interpretation of the inequality may be helpful.

Suppose, for simplicity, that $c=1$. Suppose also that x_{n} is an estimate of the root r that differs from it by at most one unit in the k th decimal place. This means that

$$
\left|r-x_{n}\right| \leqq 10^{-k}
$$

The two inequalities above imply that

$$
\left|r-x_{n+1}\right| \leqq 10^{-2 k}
$$

In other words, x_{n+1} differs from r by at most one unit in the ($2 k$)th decimal place. So x_{n+1} has approximately twice as many correct digits as x_{n} ! This is the doubling of significant digits alluded to previously.

■ THEOREM 1

NEWTON'S METHOD THEOREM

If f, f^{\prime}, and $f^{\prime \prime}$ are continuous in a neighborhood of a root r of f and if $f^{\prime}(r) \neq 0$, then there is a positive δ with the following property: If the initial point in Newton's method satisfies $\left|r-x_{0}\right| \leqq \delta$, then all subsequent points x_{n} satisfy the same inequality, converge to r, and do so quadratically; that is,

$$
\left|r-x_{n+1}\right| \leqq c(\delta)\left|r-x_{n}\right|^{2}
$$

where $c(\delta)$ is given by Equation (2) below.

Proof To establish the quadratic convergence of Newton's method, let $e_{n}=r-x_{n}$. The formula that defines the sequence $\left\{x_{n}\right\}$ then gives

$$
e_{n+1}=r-x_{n+1}=r-x_{n}+\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=e_{n}+\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=\frac{e_{n} f^{\prime}\left(x_{n}\right)+f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

By Taylor's Theorem (see Section 1.2), there exists a point ξ_{n} situated between x_{n} and r for which

$$
0=f(r)=f\left(x_{n}+e_{n}\right)=f\left(x_{n}\right)+e_{n} f^{\prime}\left(x_{n}\right)+\frac{1}{2} e_{n}^{2} f^{\prime \prime}\left(\xi_{n}\right)
$$

(The subscript on ξ_{n} emphasizes the dependence on x_{n}.) This last equation can be rearranged to read

$$
e_{n} f^{\prime}\left(x_{n}\right)+f\left(x_{n}\right)=-\frac{1}{2} e_{n}^{2} f^{\prime \prime}\left(\xi_{n}\right)
$$

and if this is used in the previous equation for e_{n+1}, the result is

$$
\begin{equation*}
e_{n+1}=-\frac{1}{2}\left(\frac{f^{\prime \prime}\left(\xi_{n}\right)}{f^{\prime}\left(x_{n}\right)}\right) e_{n}^{2} \tag{1}
\end{equation*}
$$

This is, at least qualitatively, the sort of equation we want. Continuing the analysis, we define a function

$$
\begin{equation*}
c(\delta)=\frac{1}{2} \frac{\max _{|x-r| \leqq \delta}\left|f^{\prime \prime}(x)\right|}{\min _{|x-r| \leqq \delta}\left|f^{\prime}(x)\right|} \quad(\delta>0) \tag{2}
\end{equation*}
$$

By virtue of this definition, we can assert that, for any two points x and ξ within distance δ of the root r, the inequality $\frac{1}{2}\left|f^{\prime \prime}(\xi) / f^{\prime}(x)\right| \leqq c(\delta)$ is true. Now select δ so small that $\delta c(\delta)<1$. This is possible because as δ approaches $0, c(\delta)$ converges to $\frac{1}{2}\left|f^{\prime \prime}(r) / f^{\prime}(r)\right|$, and so $\delta c(\delta)$ converges to 0 . Recall that we assumed that $f^{\prime}(r) \neq 0$. Let $\rho=\delta c(\delta)$. In the remainder of this argument, we hold $\delta, c(\delta)$, and ρ fixed with $\rho<1$.

Suppose now that some iterate x_{n} lies within distance δ from the root r. We have

$$
\left|e_{n}\right|=\left|r-x_{n}\right| \leqq \delta \quad \text { and } \quad\left|\xi_{n}-r\right| \leqq \delta
$$

By the definition of $c(\delta)$, it follows that $\frac{1}{2}\left|f^{\prime \prime}\left(\xi_{n}\right)\right| /\left|f^{\prime}\left(x_{n}\right)\right| \leqq c(\delta)$. From Equation (1), we now have

$$
\left|e_{n+1}\right|=\frac{1}{2}\left|\frac{f^{\prime \prime}\left(\xi_{n}\right)}{f^{\prime}\left(x_{n}\right)}\right| e_{n}^{2} \leqq c(\delta) e_{n}^{2} \leqq \delta c(\delta)\left|e_{n}\right|=\rho\left|e_{n}\right|
$$

Consequently, x_{n+1} is also within distance δ of r because

$$
\left|r-x_{n+1}\right|=\left|e_{n+1}\right| \leqq \rho\left|e_{n}\right| \leqq\left|e_{n}\right| \leqq \delta
$$

If the initial point x_{0} is chosen within distance δ of r, then

$$
\left|e_{n}\right| \leqq \rho\left|e_{n-1}\right| \leqq \rho^{2}\left|e_{n-1}\right| \leqq \cdots \leqq \rho^{n}\left|e_{0}\right|
$$

Since $0<\rho<1, \lim _{n \rightarrow \infty} \rho^{n}=0$ and $\lim _{n \rightarrow \infty} e_{n}=0$. In other words, we obtain

$$
\lim _{n \rightarrow \infty} x_{n}=r
$$

In this process, we have $\left|e_{n+1}\right| \leqq c(\delta) e_{n}^{2}$.

In the use of Newton's method, consideration must be given to the proper choice of a starting point. Usually, one must have some insight into the shape of the graph of the function. Sometimes a coarse graph is adequate, but in other cases, a step-by-step evaluation of the function at various points may be necessary to find a point near the root. Often several steps of the bisection method is used initially to obtain a suitable starting point, and Newton's method is used to improve the precision.

Although Newton's method is truly a marvelous invention, its convergence depends upon hypotheses that are difficult to verify a priori. Some graphical examples will show what can happen. In Figure 3.6(a), the tangent to the graph of the function f at x_{0} intersects the x-axis at a point remote from the root r, and successive points in Newton's iteration recede

FIGURE 3.6
Failure of Newton's method due to bad starting points

(c) Cycle
from r instead of converging to r. The difficulty can be ascribed to a poor choice of the initial point x_{0}; it is not sufficiently close to r. In Figure 3.6(b), the tangent to the curve is parallel to the x-axis and $x_{1}= \pm \infty$, or it is assigned the value of machine infinity in a computer. In Figure 3.6(c), the iteration values cycle because $x_{2}=x_{0}$. In a computer, roundoff errors or limited precision may eventually cause this situation to become unbalanced such that the iterates either spiral inward and converge or spiral outward and diverge.

The analysis that establishes the quadratic convergence discloses another troublesome hypothesis; namely, $f^{\prime}(r) \neq 0$. If $f^{\prime}(r)=0$, then r is a zero of f and f^{\prime}. Such a zero is termed a multiple zero of f-in this case, at least a double zero. Newton's iteration for a multiple zero converges only linearly! Ordinarily, one would not know in advance that the zero sought was a multiple zero. If one knew that the multiplicity was m, however, Newton's method could be accelerated by modifying the equation to read

$$
x_{n+1}=x_{n}-m \frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

in which m is the multiplicity of the zero in question. The multiplicity of the zero r is the least m such that $f^{(k)}(r)=0$ for $0 \leqq k<m$, but $f^{(m)}(r) \neq 0$. (See Problem 3.2.35.)

As is shown in Figure 3.7, the equation $p_{2}(x)=x^{2}-2 x+1=0$ has a root at 1 of multiplicity 2 , and the equation $p_{3}(x)=x^{3}-3 x^{2}+3 x-1=0$ has a root at 1 of multiplicity 3. It is instructive to plot these curves. Both curves are rather flat at the roots, which slows down the convergence of the regular Newton's method. Also, the figures illustrate the curves of two nonlinear functions with multiplicities as well as their regions of uncertainty about the curves. So the computed solutions could be anywhere within the indicated intervals on the x-axis. This is an indication of the difficulty in obtaining precise solutions of nonlinear functions with multiplicities.

FIGURE 3.7
Curves p_{2} and p_{3} with multiplicity 2 and 3

(b) $p_{3}(x)=x^{3}-3 x^{2}+3 x-1$

Systems of Nonlinear Equations

Some physical problems involve the solution of systems of N nonlinear equations in N unknowns. One approach is to linearize and solve, repeatedly. This is the same strategy used by Newton's method in solving a single nonlinear equation. Not surprisingly, a natural extension of Newton's method for nonlinear systems can be found. The topic of systems of nonlinear equations requires some familiarity with matrices and their inverses. (See Appendix D.)

In the general case, a system of N nonlinear equations in N unknowns x_{i} can be displayed in the form

$$
\left\{\begin{aligned}
f_{1}\left(x_{1}, x_{2}, \ldots, x_{N}\right) & =0 \\
f_{2}\left(x_{1}, x_{2}, \ldots, x_{N}\right) & =0 \\
& \vdots \\
f_{N}\left(x_{1}, x_{2}, \ldots, x_{N}\right) & =0
\end{aligned}\right.
$$

Using vector notation, we can write this system in a more elegant form:

$$
\mathbf{F}(\mathbf{X})=\mathbf{0}
$$

by defining column vectors as

$$
\begin{aligned}
& \mathbf{F}=\left[f_{1}, f_{2}, \ldots, f_{N}\right]^{T} \\
& \mathbf{X}=\left[x_{1}, x_{2}, \ldots, x_{N}\right]^{T}
\end{aligned}
$$

The extension of Newton's method for nonlinear systems is

$$
\mathbf{X}^{(k+1)}=\mathbf{X}^{(k)}-\left[\mathbf{F}^{\prime}\left(\mathbf{X}^{(k)}\right)\right]^{-1} \mathbf{F}\left(\mathbf{X}^{(k)}\right)
$$

where $\mathbf{F}^{\prime}\left(\mathbf{X}^{(k)}\right)$ is the Jacobian matrix, which will be defined presently. It comprises partial derivatives of \mathbf{F} evaluated at $\mathbf{X}^{(k)}=\left[x_{1}^{(k)}, x_{2}^{(k)}, \ldots, x_{N}^{(k)}\right]^{T}$. This formula is similar to the previously seen version of Newton's method except that the derivative expression is not in the denominator but in the numerator as the inverse of a matrix. In the computational form of the formula, $\mathbf{X}^{(0)}=\left[x_{1}^{(0)}, x_{2}^{(0)}, \ldots, x_{N}^{(0)}\right]^{T}$ is an initial approximation vector, taken to be close to the solution of the nonlinear system, and the inverse of the Jacobian matrix is not computed but rather a related system of equations is solved.

We illustrate the development of this procedure using three nonlinear equations

$$
\left\{\begin{array}{l}
f_{1}\left(x_{1}, x_{2}, x_{3}\right)=0 \tag{3}\\
f_{2}\left(x_{1}, x_{2}, x_{3}\right)=0 \\
f_{3}\left(x_{1}, x_{2}, x_{3}\right)=0
\end{array}\right.
$$

Recall the Taylor expansion in three variables for $i=1,2,3$:

$$
\begin{equation*}
f_{i}\left(x_{1}+h_{1}, x_{2}+h_{2}, x_{3}+h_{3}\right)=f_{i}\left(x_{1}, x_{2}, x_{3}\right)+h_{1} \frac{\partial f_{i}}{\partial x_{1}}+h_{2} \frac{\partial f_{i}}{\partial x_{2}}+h_{3} \frac{\partial f_{i}}{\partial x_{3}}+\cdots \tag{4}
\end{equation*}
$$

where the partial derivatives are evaluated at the point $\left(x_{1}, x_{2}, x_{3}\right)$. Here only the linear terms in step sizes h_{i} are shown. Suppose that the vector $\mathbf{X}^{(0)}=\left(x_{1}^{(0)}, x_{2}^{(0)}, x_{3}^{(0)}\right)^{T}$ is an approximate solution to (3). Let $\mathbf{H}=\left[h_{1}, h_{2}, h_{3}\right]^{T}$ be a computed correction to the initial guess so that $\mathbf{X}^{(0)}+\mathbf{H}=\left[x_{1}^{(0)}+h_{1}, x_{2}^{(0)}+h_{2}, x_{3}^{(0)}+h_{3}\right]^{T}$ is a better approximate solution. Discarding the higher-order terms in the Taylor expansion (4), we have in vector notation

$$
\begin{equation*}
\mathbf{0} \approx \mathbf{F}\left(\mathbf{X}^{(0)}+\mathbf{H}\right) \approx \mathbf{F}\left(\mathbf{X}^{(0)}\right)+\mathbf{F}^{\prime}\left(\mathbf{X}^{(0)}\right) \mathbf{H} \tag{5}
\end{equation*}
$$

where the Jacobian matrix is defined by

$$
\mathbf{F}^{\prime}\left(\mathbf{X}^{(0)}\right)=\left[\begin{array}{lll}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \frac{\partial f_{1}}{\partial x_{3}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \frac{\partial f_{2}}{\partial x_{3}} \\
\frac{\partial f_{3}}{\partial x_{1}} & \frac{\partial f_{3}}{\partial x_{2}} & \frac{\partial f_{3}}{\partial x_{3}}
\end{array}\right]
$$

Here all of the partial derivatives are evaluated at $\mathbf{X}^{(0)}$; namely,

$$
\frac{\partial f_{i}}{\partial x_{j}}=\frac{\partial f_{i}\left(\mathbf{X}^{(0)}\right)}{\partial x_{j}}
$$

Also, we assume that the Jacobian matrix $\mathbf{F}^{\prime}\left(\mathbf{X}^{(0)}\right)$ is nonsingular, so its inverse exists. Solving for \mathbf{H} in (5), we have

$$
\mathbf{H} \approx-\left[\mathbf{F}^{\prime}\left(\mathbf{X}^{(0)}\right)\right]^{-1} \mathbf{F}\left(\mathbf{X}^{(0)}\right)
$$

Let $\mathbf{X}^{(1)}=\mathbf{X}^{(0)}+\mathbf{H}$ be the better approximation after the correction; we then arrive at the first iteration of Newton's method for nonlinear systems

$$
\mathbf{X}^{(1)}=\mathbf{X}^{(0)}-\left[\mathbf{F}^{\prime}\left(\mathbf{X}^{(0)}\right)\right]^{-1} \mathbf{F}\left(\mathbf{X}^{(0)}\right)
$$

In general, Newton's method uses this iteration:

$$
\mathbf{X}^{(k+1)}=\mathbf{X}^{(k)}-\left[\mathbf{F}^{\prime}\left(\mathbf{X}^{(k)}\right)\right]^{-1} \mathbf{F}\left(\mathbf{X}^{(k)}\right)
$$

In practice, the computational form of Newton's method does not involve inverting the Jacobian matrix but rather solves the Jacobian linear systems

$$
\begin{equation*}
\left[\mathbf{F}^{\prime}\left(\mathbf{X}^{(k)}\right)\right] \mathbf{H}^{(k)}=-\mathbf{F}\left(\mathbf{X}^{(k)}\right) \tag{6}
\end{equation*}
$$

The next iteration of Newton's method is then

$$
\begin{equation*}
\mathbf{X}^{(k+1)}=\mathbf{X}^{(k)}+\mathbf{H}^{(k)} \tag{7}
\end{equation*}
$$

This is Newton's method for nonlinear systems. The linear system (6) can be solved by procedures Gauss and Solve as discussed in Chapter 7. Small systems of order 2 can be solved easily. (See Problem 3.2.39.)

EXAMPLE 2 As an illustration, we can write a pseudocode to solve the following nonlinear system of equations using a variant of Newton's method given by (6) and (7):

$$
\left\{\begin{array}{r}
x+y+z=3 \tag{8}\\
x^{2}+y^{2}+z^{2}=5 \\
e^{x}+x y-x z=1
\end{array}\right.
$$

Solution With a sharp eye, the reader immediately sees that the solution of this system is $x=0, y=$ $1, z=2$. But in most realistic problems, the solution is not so obvious. We wish to develop
a numerical procedure for finding such a solution. Here is a pseudocode:

$$
\begin{aligned}
& \mathbf{X}=\left[\begin{array}{lll}
0.1, & 1.2, & 2.5
\end{array}\right]^{T} \\
& \text { for } k=1 \text { to } 10 \text { do } \\
& \qquad \mathbf{F}=\left[\begin{array}{c}
x_{1}+x_{2}+x_{3}-3 \\
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-5 \\
e^{x_{1}}+x_{1} x_{2}-x_{1} x_{3}-1
\end{array}\right] \\
& \qquad \mathbf{J}=\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 x_{1} & 2 x_{2} & 2 x_{3} \\
e^{x_{1}}+x_{2}-x_{3} & x_{1} & -x_{1}
\end{array}\right] \\
& \quad \text { solve } \mathbf{J H}=\mathbf{F} \\
& \mathbf{X}=\mathbf{X}-\mathbf{H} \\
& \text { end for }
\end{aligned}
$$

When programmed and executed on a computer, we found that it converges to $\boldsymbol{x}=(0,1,2)$, but when we change to a different starting vector, $(1,0,1)$, it converges to another root, (1.2244, -0.0931, 1.8687). (Why?)

We can use mathematical software such as in Matlab, Maple, or Mathematica and their built-in procedures for solving the system of nonlinear equations (8). The important application area of solving systems of nonlinear equations is used in Chapter 16 on minimization of functions.

Fractal Basins of Attraction

The applicability of Newton's method for finding complex roots is one of its outstanding strengths. One need only program Newton's method using complex arithmetic.

The frontiers of numerical analysis and nonlinear dynamics overlap in some intriguing ways. Computer-generated displays with fractal patterns, such as in Figure 3.8, can easily be created with the help of the Newton iteration. The resulting pictures show intricately

FIGURE 3.8 Basins of attraction

interwoven sets in the plane that are quite beautiful if displayed on a color computer monitor. One begins with a polynomial in the complex variable z. For example, $p(z)=z^{4}-1$ is suitable. This polynomial has four zeros, which are the fourth roots of unity. Each of these zeros has a basin of attraction, that is, the set of all points z_{0} such that Newton's iteration, started at z_{0}, will converge to that zero. These four basins of attraction are disjoint from each other, because if the Newton iteration starting at z_{0} converges to one zero, then it cannot also converge to another zero. One would naturally expect each basin to be a simple set surrounding the zero in the complex plane. But they turn out to be far from simple. To see what they are, we can systematically determine, for a large number of points, which zero of p the Newton iteration converges to if started at z_{0}. Points in each basin can be assigned different colors. The (rare) points for which the Newton iteration does not converge can be left uncolored. Computer Problem 3.2.27 suggests how to do this.

Summary

(1) For finding a zero of a continuous and differentiable function f, Newton's method is given by

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \quad(n \geqq 0)
$$

It requires a given initial value x_{0} and two function evaluations (for f and f^{\prime}) per step.
(2) The errors are related by

$$
e_{n+1}=-\frac{1}{2}\left(\frac{f^{\prime \prime}\left(\xi_{n}\right)}{f^{\prime}\left(x_{n}\right)}\right) e_{n}^{2}
$$

which leads to the inequality

$$
\left|e_{n+1}\right| \leqq c\left|e_{n}\right|^{2}
$$

This means that Newton's method has quadratic convergence behavior for x_{0} sufficiently close to the root r.
(3) For an $N \times N$ system of nonlinear equations $\mathbf{F}(\mathbf{X})=\mathbf{0}$, Newton's method is written as

$$
\mathbf{X}^{(k+1)}=\mathbf{X}^{(k)}-\left[\mathbf{F}^{\prime}\left(\mathbf{X}^{(k)}\right)\right]^{-1} \mathbf{F}\left(\mathbf{X}^{(k)}\right) \quad(k \geqq 0)
$$

which involves the Jacobian matrix $\mathbf{F}^{\prime}\left(\mathbf{X}^{(k)}\right)=\mathbf{J}=\left[\left(\partial f_{i}\left(\mathbf{X}^{(k)}\right) / \partial x_{j}\right)\right]_{N \times N}$. In practice, one solves the Jacobian linear system

$$
\left[\mathbf{F}^{\prime}\left(\mathbf{X}^{(k)}\right)\right] \mathbf{H}^{(k)}=-\mathbf{F}\left(\mathbf{X}^{(k)}\right)
$$

using Gaussian elimination and then finds the next iterate from the equation

$$
\mathbf{X}^{(k+1)}=\mathbf{X}^{(k)}+\mathbf{H}^{(k)}
$$

Additional References

For additional details and sample plots, see Kincaid and Cheney [2002] or Epureanu and Greenside [1998]. For other references on fractals, see Crilly, Earnshall, and Jones [1991], Feder [1998], Hastings and Sugihara [1993], and Novak [1998].

Moreover, an expository paper by Ypma [1995] traces the historical development of Newton's method through notes, letters, and publications by Isaac Newton, Joseph Raphson, and Thomas Simpson.

Problems 3.2

1. Verify that when Newton's method is used to compute \sqrt{R} (by solving the equation $x^{2}=R$), the sequence of iterates is defined by

$$
x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{R}{x_{n}}\right)
$$

2. (Continuation) Show that if the sequence $\left\{x_{n}\right\}$ is defined as in the preceding problem, then

$$
x_{n+1}^{2}-R=\left[\frac{x_{n}^{2}-R}{2 x_{n}}\right]^{2}
$$

Interpret this equation in terms of quadratic convergence.
${ }^{a}$ 3. Write Newton's method in simplified form for determining the reciprocal of the square root of a positive number. Perform two iterations to approximate $1 / \pm \sqrt{5}$, starting with $x_{0}=1$ and $x_{0}=-1$.
${ }^{a}$ 4. Two of the four zeros of $x^{4}+2 x^{3}-7 x^{2}+3$ are positive. Find them by Newton's method, correct to two significant figures.
5. The equation $x-R x^{-1}=0$ has $x= \pm R^{1 / 2}$ for its solution. Establish Newton's iterative scheme, in simplified form, for this situation. Carry out five steps for $R=25$ and $x_{0}=1$.
6. Using a calculator, observe the sluggishness with which Newton's method converges in the case of $f(x)=(x-1)^{m}$ with $m=8$ or 12 . Reconcile this with the theory. Use $x_{0}=1.1$.
${ }^{a}$ 7. What linear function $y=a x+b$ approximates $f(x)=\sin x$ best in the vicinity of $x=\pi / 4$? How does this problem relate to Newton's method?
8. In Problems 1.2.11 and 1.2.12, several methods are suggested for computing $\ln 2$. Compare them with the use of Newton's method applied to the equation $e^{x}=2$.
${ }^{a} 9$. Define a sequence $x_{n+1}=x_{n}-\tan x_{n}$ with $x_{0}=3$. What is $\lim _{n \rightarrow \infty} x_{n}$?
10. The iteration formula $x_{n+1}=x_{n}-\left(\cos x_{n}\right)\left(\sin x_{n}\right)+R \cos ^{2} x_{n}$, where R is a positive constant, was obtained by applying Newton's method to some function $f(x)$. What was $f(x)$? What can this formula be used for?
${ }^{a}$ 11. Establish Newton's iterative scheme in simplified form, not involving the reciprocal of x, for the function $f(x)=x R-x^{-1}$. Carry out three steps of this procedure using $R=4$ and $x_{0}=-1$.
12. Consider the following procedures:
${ }^{a}$ a. $x_{n+1}=\frac{1}{3}\left(2 x_{n}-\frac{r}{x_{n}^{2}}\right)$
b. $x_{n+1}=\frac{1}{2} x_{n}+\frac{1}{x_{n}}$

Do they converge for any nonzero initial point? If so, to what values?
13. Each of the following functions has $\sqrt[3]{R}$ as a zero for any positive real number R. Determine the formulas for Newton's method for each and any necessary restrictions on the choice for x_{0}.
${ }^{a}$ a. $a(x)=x^{3}-R$
b. $b(x)=1 / x^{3}-1 / R$
${ }^{a}$ c. $c(x)=x^{2}-R / x$
d. $d(x)=x-R / x^{2}$
${ }^{a}$ e. $e(x)=1-R / x^{3}$
f. $f(x)=1 / x-x^{2} / R$
${ }^{a}$ g. $g(x)=1 / x^{2}-x / R$
h. $h(x)=1-x^{3} / R$
14. Determine the formulas for Newton's method for finding a root of the function $f(x)=$ $x-e / x$. What is the behavior of the iterates?
${ }^{a}$ 15. If Newton's method is used on $f(x)=x^{3}-x+1$ starting with $x_{0}=1$, what will x_{1} be?
16. Locate the root of $f(x)=e^{-x}-\cos x$ that is nearest $\pi / 2$.
${ }^{a}$ 17. If Newton's method is used on $f(x)=x^{5}-x^{3}+3$ and if $x_{n}=1$, what is x_{n+1} ?
18. Determine Newton's iteration formula for computing the cube root of N / M for nonzero integers N and M.
${ }^{a} \mathbf{1 9}$. For what starting values will Newton's method converge if the function f is $f(x)=$ $x^{2} /\left(1+x^{2}\right)$?
20. Starting at $x=3, x<3$, or $x>3$, analyze what happens when Newton's method is applied to the function $f(x)=2 x^{3}-9 x^{2}+12 x+15$.
${ }^{a}$ 21. (Continuation) Repeat for $f(x)=\sqrt{|x|}$, starting with $x<0$ or $x>0$.
${ }^{a}$ 22. To determine $x=\sqrt[3]{R}$, we can solve the equation $x^{3}=R$ by Newton's method. Write the loop that carries out this process, starting from the initial approximation $x_{0}=R$.
23. The reciprocal of a number R can be computed without division by the iterative formula

$$
x_{n+1}=x_{n}\left(2-x_{n} R\right)
$$

Establish this relation by applying Newton's method to some $f(x)$. Beginning with $x_{0}=0.2$, compute the reciprocal of 4 correct to six decimal digits or more by this rule. Tabulate the error at each step and observe the quadratic convergence.
24. On a certain modern computer, floating-point numbers have a 48-bit mantissa. Moreover, floating-point hardware can perform addition, subtraction, multiplication, and reciprocation, but not division. Unfortunately, the reciprocation hardware produces a result accurate to less than full precision, whereas the other operations produce results accurate to full floating-point precision.
a. Show that Newton's method can be used to find a zero of the function $f(x)=$ $1-1 /(a x)$. This will provide an approximation to $1 / a$ that is accurate to full floating-point precision. How many iterations are required?
b. Show how to obtain an approximation to b / a that is accurate to full floating-point precision.
25. Newton's method for finding \sqrt{R} is

$$
x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{R}{x_{n}}\right)
$$

Perform three iterations of this scheme for computing $\sqrt{2}$, starting with $x_{0}=1$, and of the bisection method for $\sqrt{2}$, starting with interval [1, 2]. How many iterations are needed for each method in order to obtain 10^{-6} accuracy?
26. (Continuation) Newton's method for finding \sqrt{R}, where $R=A B$, gives this approximation:

$$
\sqrt{A B} \approx \frac{A+B}{4}+\frac{A B}{A+B}
$$

Show that if $x_{0}=A$ or B, then two iterations of Newton's method are needed to obtain this approximation, whereas if $x_{0}=\frac{1}{2}(A+B)$, then only one iteration is needed.
${ }^{a}$ 27. Show that Newton's method applied to $x^{m}-R$ and to $1-\left(R / x^{m}\right)$ for determining $\sqrt[m]{R}$ results in two similar yet different iterative formulas. Here $R>0, m \geqq 2$. Which formula is better and why?
28. Using a handheld calculator, carry out three iterations of Newton's method using $x_{0}=1$ and $f(x)=3 x^{3}+x^{2}-15 x+3$.
${ }^{a}$ 29. What happens if the Newton iteration is applied to $f(x)=\arctan x$ with $x_{0}=2$? For what starting values will Newton's method converge? (See Computer Problem 3.2.7.)
30. Newton's method can be interpreted as follows: Suppose that $f(x+h)=0$. Then $f^{\prime}(x) \approx[f(x+h)-f(x)] / h=-f(x) / h$. Continue this argument.
${ }^{a}$ 31. Derive a formula for Newton's method for the function $F(x)=f(x) / f^{\prime}(x)$, where $f(x)$ is a function with simple zeros that is three times continuously differentiable. Show that the convergence of the resulting method to any zero r of $f(x)$ is at least quadratic. Hint: Apply the result in the text to F, making sure that F has the required properties.
${ }^{a}$ 32. The Taylor series for a function f looks like this:

$$
f(x+h)=f(x)+h f^{\prime}(x)+\frac{h^{2}}{2} f^{\prime \prime}(x)+\frac{h^{3}}{6} f^{\prime \prime \prime}(x)+\cdots
$$

Suppose that $f(x), f^{\prime}(x)$, and $f^{\prime \prime}(x)$ are easily computed. Derive an algorithm like Newton's method that uses three terms in the Taylor series. The algorithm should take as input an approximation to the root and produce as output a better approximation to the root. Show that the method is cubically convergent.
33. To avoid computing the derivative at each step in Newton's method, it has been proposed to replace $f^{\prime}\left(x_{n}\right)$ by $f^{\prime}\left(x_{0}\right)$. Derive the rate of convergence for this method.
34. Refer to the discussion of Newton's method and establish that

$$
\lim _{n \rightarrow \infty}\left(e_{n+1} e_{n}^{-2}\right)=-\frac{1}{2}\left[\frac{f^{\prime \prime}(r)}{f^{\prime}(r)}\right]
$$

How can this be used in a practical case to test whether the convergence is quadratic? Devise an example in which $r, f^{\prime}(r)$, and $f^{\prime \prime}(r)$ are all known, and test numerically the convergence of $e_{n+1} e_{n}^{-2}$.
${ }^{a}$ 35. Show that in the case of a zero of multiplicity m, the modified Newton's method

$$
x_{n+1}=x_{n}-m \frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

is quadratically convergent. Hint: Use Taylor series for each of $f\left(r+e_{n}\right)$ and $f^{\prime}\left(r+e_{n}\right)$.
${ }^{a}$ 36. The Steffensen method for solving the equation $f(x)=0$ uses the formula

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{g\left(x_{n}\right)}
$$

in which $g(x)=\{f[x+f(x)]-f(x)\} / f(x)$. It is quadratically convergent, like Newton's method. How many function evaluations are necessary per step? Using Taylor series, show that $g(x) \approx f^{\prime}(x)$ if $f(x)$ is small and thus relate Steffensen's iteration to Newton's. What advantage does Steffensen's have? Establish the quadratic convergence.
${ }^{a} 37$. A proposed Generalization of Newton's method is

$$
x_{n+1}=x_{n}-\omega \frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

where the constant ω is an acceleration factor chosen to increase the rate of convergence. For what range of values of ω is a simple root r of $f(x)$ a point of attraction; that is, $\left|g^{\prime}(r)\right|<1$, where $g(x)=x-\omega f(x) / f^{\prime}(x)$? This method is quadratically convergent only if $\omega=1$ because $g^{\prime}(r) \neq 0$ when $\omega \neq 1$.
38. Suppose that r is a double root of $f(x)=0$; that is, $f(r)=f^{\prime}(r)=0$ but $f^{\prime \prime}(r) \neq 0$, and suppose that f and all derivatives up to and including the second are continuous in some neighborhood of r. Show that $e_{n+1} \approx \frac{1}{2} e_{n}$ for Newton's method and thereby conclude that the rate of convergence is linear near a double root. (If the root has multiplicity m, then $e_{n+1} \approx[(m-1) / m] e_{n}$.)
39. (Simultaneous nonlinear equations) Using the Taylor series in two variables (x, y) of the form

$$
f(x+h, y+k)=f(x, y)+h f_{x}(x, y)+k f_{y}(x, y)+\cdots
$$

where $f_{x}=\partial f / \partial x$ and $f_{y}=\partial f / \partial y$, establish that Newton's method for solving the two simultaneous nonlinear equations

$$
\left\{\begin{array}{l}
f(x, y)=0 \\
g(x, y)=0
\end{array}\right.
$$

can be described with the formulas

$$
x_{n+1}=x_{n}-\frac{f g_{y}-g f_{y}}{f_{x} g_{y}-g_{x} f_{y}}, \quad y_{n+1}=y_{n}-\frac{f_{x} g-g_{x} f}{f_{x} g_{y}-g_{x} f_{y}}
$$

Here the functions f, f_{x}, and so on are evaluated at $\left(x_{n}, y_{n}\right)$.
40. Newton's method can be defined for the equation $f(z)=g(x, y)+i h(x, y)$, where $f(z)$ is an analytic function of the complex variable $z=x+i y(x$ and y real) and $g(x, y)$ and $h(x, y)$ are real functions for all x and y. The derivative $f^{\prime}(z)$ is given by $f^{\prime}(z)=g_{x}+i h_{x}=h_{y}-i g_{y}$ because the Cauchy-Riemann equations $g_{x}=h_{y}$ and $h_{x}=-g_{y}$ hold. Here the partial derivatives are defined as $g_{x}=\partial g / \partial x, g_{y}=\partial g / \partial y$, and so on. Show that Newton's method

$$
z_{n+1}=z_{n}-\frac{f\left(z_{n}\right)}{f^{\prime}\left(z_{n}\right)}
$$

can be written in the form

$$
x_{n+1}=x_{n}-\frac{g h_{y}-h g_{y}}{g_{x} h_{y}-g_{y} h_{x}}, \quad y_{n+1}=y_{n}-\frac{h g_{x}-g h_{x}}{g_{x} h_{y}-g_{y} h_{x}}
$$

Here all functions are evaluated at $z_{n}=x_{n}+i y_{n}$.
${ }^{a}$ 41. Consider the algorithm of which one step consists of two steps of Newton's method. What is its order of convergence?
42. (Continuation) Using the idea of the preceding Problem, show how we can easily create methods of arbitrarily high order for solving $f(x)=0$. Why is the order of a method not the only criterion that should be considered in assessing its merits?
43. If we want to solve the equation $2-x=e^{x}$ using Newton's iteration, what are the equations and functions that must be coded? Give a pseudocode for doing this problem. Include a suitable starting point and a suitable stopping criterion.
44. Suppose that we want to compute $\sqrt{2}$ by using Newton's Method on the equation $x^{2}=2$ (in the obvious, straightforward way). If the starting point is $x_{0}=\frac{7}{5}$, what is the numerical value of the correction that must be added to x_{0} to get x_{1} ? Hint: The arithmetic is quite easy if you do it using ratios of integers.
45. Apply Newton's method to the equation $f(x)=0$ with $f(x)$ as given below. Find out what happens and why.
a. $f(x)=e^{x}$
b. $f(x)=e^{x}+x^{2}$
46. Consider Newton's method $x_{n+1}=x_{n}-f\left(x_{n}\right) / f^{\prime}\left(x_{n}\right)$. If the sequence converges then the limit point is a solution. Explain why or why not.

Computer Problems 3.2

1. Using the procedure Newton and a single computer run, test your code on these examples: $f(t)=\tan t-t$ with $x_{0}=7$ and $g(t)=e^{t}-\sqrt{t+9}$ with $x_{0}=2$. Print each iterate and its accompanying function value.
2. Write a simple, self-contained program to apply Newton's method to the equation $x^{3}+2 x^{2}+10 x=20$, starting with $x_{0}=2$. Evaluate the appropriate $f(x)$ and $f^{\prime}(x)$, using nested multiplication. Stop the computation when two successive points differ by $\frac{1}{2} \times 10^{-5}$ or some other convenient tolerance close to your machine's capability. Print all intermediate points and function values. Put an upper limit of ten on the number of steps.
3. (Continuation) Repeat using double precision and more steps.
${ }^{a} \mathbf{4}$. Find the root of the equation

$$
2 x\left(1-x^{2}+x\right) \ln x=x^{2}-1
$$

in the interval $[0,1]$ by Newton's method using double precision. Make a table that shows the number of correct digits in each step.
${ }^{a}$ 5. In 1685, John Wallis published a book called Algebra, in which he described a method devised by Newton for solving equations. In slightly modified form, this method was also published by Joseph Raphson in 1690. This form is the one now commonly called Newton's method or the Newton-Raphson method. Newton himself discussed the method in 1669 and illustrated it with the equation $x^{3}-2 x-5=0$. Wallis used the same example. Find a root of this equation in double precision, thus continuing the tradition that every numerical analysis student should solve this venerable equation.
6. In celestial mechanics, Kepler's equation is important. It reads $x=y-\varepsilon \sin y$, in which x is a planet's mean anomaly, y its eccentric anomaly, and ε the eccentricity of its orbit. Taking $\varepsilon=0.9$, construct a table of y for 30 equally spaced values of x in the interval $0 \leqq x \leqq \pi$. Use Newton's method to obtain each value of y. The y corresponding to an x can be used as the starting point for the iteration when x is changed slightly.
7. In Newton's method, we progress in each step from a given point x to a new point $x-h$, where $h=f(x) / f^{\prime}(x)$. A refinement that is easily programmed is this: If $|f(x-h)|$ is not smaller than $|f(x)|$, then reject this value of h and use $h / 2$ instead. Test this refinement.
${ }^{a}$ 8. Write a brief program to compute a root of the equation $x^{3}=x^{2}+x+1$, using Newton's method. Be careful to select a suitable starting value.
${ }^{a} 9$. Find the root of the equation $5\left(3 x^{4}-6 x^{2}+1\right)=2\left(3 x^{5}-5 x^{3}\right)$ that lies in the interval $[0,1]$ by using Newton's method and a short program.
10. For each equation, write a brief program to compute and print eight steps of Newton's method for finding a positive root.
${ }^{a}$ a. $x=2 \sin x$
${ }^{a}$ b. $x^{3}=\sin x+7$
${ }^{a}$ c. $\sin x=1-x$
${ }^{a}$ d. $x^{5}+x^{2}=1+7 x^{3}$ for $x \geqq 2$
11. Write and test a recursive procedure for Newton's method.
12. Rewrite and test the Newton procedure so that it is a character function and returns key words such as iterating, success, near-zero, max-iteration. Then a case statement can be used to print the results.
13. Would you like to see the number 0.55887766 come out of a calculation? Take three steps in Newton's method on $10+x^{3}-12 \cos x=0$ starting with $x_{0}=1$.
${ }^{a} \mathbf{1 4}$. Write a short program to solve for a root of the equation $e^{-x^{2}}=\cos x+1$ on $[0,4]$. What happens in Newton's method if we start with $x_{0}=0$ or with $x_{0}=1$?
15. Find the root of the equation $\frac{1}{2} x^{2}+x+1-e^{x}=0$ by Newton's method, starting with $x_{0}=1$, and account for the slow convergence.
16. Using $f(x)=x^{5}-9 x^{4}-x^{3}+17 x^{2}-8 x-8$ and $x_{0}=0$, study and explain the behavior of Newton's method. Hint: The iterates are initially cyclic.
17. Find the zero of the function $f(x)=x-\tan x$ that is closest to 99 (radians) by both the bisection method and Newton's method. Hint: Extremely accurate starting values are needed for this function. Use the computer to construct a table of values of $f(x)$ around 99 to determine the nature of this function.
18. Using the bisection method, find the positive root of $2 x\left(1+x^{2}\right)^{-1}=\arctan x$. Using the root as x_{0}, apply Newton's method to the function $\arctan x$. Interpret the results.
19. If the root of $f(x)=0$ is a double root, then Newton's method can be accelerated by using

$$
x_{n+1}=x_{n}-2 \frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

Numerically compare the convergence of this scheme with Newton's method on a function with a known double root.
20. Program and test Steffensen's method, as described in Problem 3.2.36.
21. Consider the nonlinear system

$$
\left\{\begin{array}{l}
f(x, y)=x^{2}+y^{2}-25=0 \\
g(x, y)=x^{2}-y-2=0
\end{array}\right.
$$

Using a software package that has 2D plotting capabilities, illustrate what is going on in solving such a system by plotting $f(x, y), g(x, y)$, and show their intersection with the (x, y)-plane. Determine approximate roots of these equations from the graphical results.
22. Solve this pair of simultaneous nonlinear equations by first eliminating y and then solving the resulting equation in x by Newton's method. Start with the initial value $x_{0}=1.0$.

$$
\left\{\begin{array}{r}
x^{3}-2 x y+y^{7}-4 x^{3} y=5 \\
y \sin x+3 x^{2} y+\tan x=4
\end{array}\right.
$$

23. Using Equations (7) and (8), code Newton's methods for nonlinear systems. Test your program by solving one or more of the following systems:
a. System in Computer Problem 3.2.21.
b. System in Computer Problem 3.2.22.
c. System (3) using starting values $(0,0,0)$.
d. Using starting values $\left(\frac{3}{4}, \frac{1}{2},-\frac{1}{2}\right)$, solve

$$
\left\{\begin{array}{l}
x+y+z=0 \\
x^{2}+y^{2}+z^{2}=2 \\
x(y+z)=-1
\end{array}\right.
$$

e. Using starting values $(-0.01,-0.01)$, solve

$$
\left\{\begin{array}{l}
4 y^{2}+4 y+52 x-19=0 \\
169 x^{2}+3 y^{2}+111 x-10 y-10=0
\end{array}\right.
$$

f. Select starting values, and solve

$$
\left\{\begin{array}{l}
\sin (x+y)=e^{x-y} \\
\cos (x+6)=x^{2} y^{2}
\end{array}\right.
$$

24. Investigate the behavior of Newton's method for finding complex roots of polynomials with real coefficients. For example, the polynomial $p(x)=x^{2}+1$ has the complex conjugate pair of roots $\pm i$ and Newton's method is $x_{n+1}=\frac{1}{2}\left(x_{n}-1 / x_{n}\right)$. First, program this method using real arithmetic and real numbers as starting values. Second, modify the program using complex arithmetic but still using only real starting values. Finally, use complex numbers as starting values. Observe the behavior of the iterates in each case.
25. Using Problem 3.2.40, find a complex root of each of the following:
a. $z^{3}-z-1=0$
b. $z^{4}-2 z^{3}-2 i z^{2}+4 i z=0$
c. $2 z^{3}-6(1+i) z^{2}-6(1-i)=0$
d. $z=e^{z}$

Hint: For the last part, use Euler's relation $e^{i y}=\cos y+i \sin y$.
26. In the Newton method for finding a root r of $f(x)=0$, we start with x_{0} and compute the sequence x_{1}, x_{2}, \ldots using the formula $x_{n+1}=x_{n}-f\left(x_{n}\right) / f^{\prime}\left(x_{n}\right)$. To avoid computing the derivative at each step, it has been proposed to replace $f^{\prime}\left(x_{n}\right)$ with $f^{\prime}\left(x_{0}\right)$ in all steps. It has also been suggested that the derivative in Newton's formula be computed only every other step. This method is given by

$$
\left\{\begin{array}{l}
x_{2 n+1}=x_{2 n}-\frac{f\left(x_{2 n}\right)}{f^{\prime}\left(x_{2 n}\right)} \\
x_{2 n+2}=x_{2 n+1}-\frac{f\left(x_{2 n+1}\right)}{f^{\prime}\left(x_{2 n}\right)}
\end{array}\right.
$$

Numerically compare both proposed methods to Newton's method for several simple functions that have known roots. Print the error of each method on every iteration to monitor the convergence. How well do the proposed methods work?
27. (Basin of attraction) Consider the complex polynomial $z^{3}-1$, whose zeros are the three cube roots of unity. Generate a picture showing three basins of attraction in the complex plane in the square region defined by $-1 \leqq \operatorname{Real}(z) \leqq 1$ and $-1 \leqq \operatorname{Imaginary}(z) \leqq 1$. To do this, use a mesh of 1000×1000 pixels inside the square. The center point of each pixel is used to start the iteration of Newton's method. Assign a particular basin color to each pixel if convergence to a root is obtained with $n \max =10$ iterations. The large number of iterations suggested can be avoided by doing some analysis with the aid of Theorem 1, since the iterates get within a certain neighborhood of the root and the iteration can be stopped. The criterion for convergence is to check both $\left|z_{n+1}-z_{n}\right|<\varepsilon$ and $\left|z_{n+1}^{3}-1\right|<\varepsilon$ with a small value such as $\varepsilon=10^{-4}$ as well as a maximum number of iterations. Hint: It is best to debug your program and get a crude picture with only a small number of pixels such as 10×10.
28. (Continuation) Repeat for the polynomial $z^{4}-1=0$.
29. Write real function $\operatorname{Sqrt}(x)$ to compute the square root of a real argument x by the following algorithm: First, reduce the range of x by finding a real number r and an
integer m such that $x=2^{2 m} r$ with $\frac{1}{4} \leqq r<1$. Next, compute x_{2} by using three iterations of Newton's method given by

$$
x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{r}{x_{n}}\right)
$$

with the special initial approximation

$$
x_{0}=1.27235367+0.242693281 r-\frac{1.02966039}{1+r}
$$

Then set $\sqrt{x} \approx 2^{m} x_{2}$. Test this algorithm on various values of x. Obtain a listing of the code for the square-root function on your computer system. By reading the comments, try to determine what algorithm it uses.
30. The following method has third-order convergence for computing \sqrt{R} :

$$
x_{n+1}=\frac{x_{n}\left(x_{n}^{2}+3 R\right)}{3 x_{n}^{2}+R}
$$

Carry out some numerical experiments using this method and the method of the preceding problem to see whether you observe a difference in the rate of convergence. Use the same starting procedures of range reduction and initial approximation.
31. Write real function CubeRoot (x) to compute the cube root of a real argument x by the following procedure: First, determine a real number r and an integer m such that $x=r 2^{3 m}$ with $\frac{1}{8} \leqq r<1$. Compute x_{4} using four iterations of Newton's method:

$$
x_{n+1}=\frac{2}{3}\left(x_{n}+\frac{r}{2 x_{n}^{2}}\right)
$$

with the special starting value

$$
x_{0}=2.502926-\frac{8.045125(r+0.3877552)}{(r+4.612244)(r+0.3877552)-0.3598496}
$$

Then set $\sqrt[3]{x} \approx 2^{m} x_{4}$. Test this algorithm on a variety of x values.
32. Use mathematical software such as in Maple or Mathematica to compute ten iterates of Newton's method starting with $x_{0}=0$ for $f(x)=x^{3}-2 x^{2}+x-3$. With 100 decimal places of accuracy and after nine iterations, show that the value of x is

$$
\begin{array}{r}
2.17455941029298007420231898869565392567594872533708 \\
2498336733920302364764792757606611528969388320640
\end{array}
$$

Show that the values of the function at each iteration are 9.0, 2.0, 0.26, $0.0065,0.45 \times$ $10^{-5}, 0.22 \times 10^{-11}, 0.50 \times 10^{-24}, 0.27 \times 10^{-49}, 0.1 \times 10^{-98}$, and 0.1×10^{-98}. Again notice that the number of digits of accuracy in Newton's method doubles (approximately) with each iteration once they are sufficiently close to the root. (Also, see Bornemann, Wagon, and Waldvogel [2004] for a 100-Digit Challenge, which is a study in high-accuracy numerical computing.)
33. (Continuation) Use Maple or Mathematica to discover that this root is exactly

$$
\sqrt[3]{\frac{79}{54}+\frac{1}{6} \sqrt{77}}+\frac{1}{9 \sqrt[3]{\frac{79}{54}+\frac{1}{6} \sqrt{77}}}+\frac{2}{3}
$$

Clearly, the decimal results are of more interest to us in our study of numerical methods.
34. (Continuation) Find all the roots including complex roots.
35. Numerically, find all the roots of the following systems of nonlinear equations. Then plot the curves to verify your results:
a. $y=2 x^{2}+3 x-4, y=x^{2}+2 x+3$
b. $y+x+3=0, x^{2}+y^{2}=17$
c. $y=\frac{1}{2} x-5, y=x^{2}+2 x-15$
d. $x y=1, x+y=2$
e. $y=x^{2}, x^{2}+(y-2)^{2}=4$
f. $3 x^{2}+2 y^{2}=35,4 x^{2}-3 y^{2}=24$
g. $x^{2}-x y+y^{2}=21, x^{2}+2 x y-8 y^{2}=0$
36. Apply Newton's method on these test problems:
a. $f(x)=x^{2}$. Hint: The first derivative is zero at the root and convergence may not be quadratic.
b. $f(x)=x+x^{4 / 3}$. Hint: There is no second derivative at the root and convergence may fail to be quadratic.
c. $f(x)=x+x^{2} \sin (2 / x)$ for $x \neq 0$ and $f(0)=0$ and $f^{\prime}(x)=1+2 x \sin (2 / x)-$ $2 \cos (2 / x)$ for $x \neq 0$ and $f^{\prime}(0)=1$. Hint: The derivative of this function is not continuous at the root and convergence may fail.
37. Let $\mathbf{F}(\mathbf{X})=\left[\begin{array}{l}x_{1}^{2}-x_{2}+c \\ x_{2}^{2}-x_{1}+c\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$. Each component equation $f_{1}(x)=0$ and $f_{2}(x)=$ 0 describes a parabola. Any point $\left(x^{*}, y^{*}\right)$ where these two parabolas intersect is a solution to the nonlinear system of equations. Using Newton's method for systems of nonlinear equations, find the solutions for each of these values of the parameter $c=\frac{1}{2}, \frac{1}{4},-\frac{1}{2},-1$. Give the Jacobian matrix for each. Also for each of these values, plot the resulting curves showing the points of intersection. (Heath 2000, p. 218)
38. Let $\mathbf{F}(\mathbf{X})=\left[\begin{array}{l}x_{1}^{2}+2 x_{2}-2 \\ x_{1}+4 x_{2}^{2}-4\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$. Solve this nonlinear system starting with $\mathbf{X}^{(0)}=$ $(1,2)$. Give the Jacobian matrix. Also plot the resulting curves showing the point(s) of intersection.
39. Using Newton's method, find the zeros of $f(z)=z^{3}-z$ with these starting values $z^{(0)}=1+1.5 i, 1+1.1 i, 1+1.2 i, 1+1.3 i$.
40. Use Halley's method to produce a plot of the basins of attraction for $p(z)=z^{6}-1$. Compare to Figure 3.8.
41. (Global positioning system project) Each time a GPS is used, a system of nonlinear equations of the form

$$
\begin{aligned}
& \left(x-a_{1}\right)^{2}+\left(y-b_{1}\right)^{2}+\left(z-c_{i}\right)^{2}=\left[\left(C\left(t_{1}-D\right)\right]^{2}\right. \\
& \left(x-a_{2}\right)^{2}+\left(y-b_{2}\right)^{2}+\left(z-c_{i}\right)^{2}=\left[\left(C\left(t_{2}-D\right)\right]^{2}\right. \\
& \left(x-a_{3}\right)^{2}+\left(y-b_{3}\right)^{2}+\left(z-c_{i}\right)^{2}=\left[\left(C\left(t_{3}-D\right)\right]^{2}\right. \\
& \left(x-a_{4}\right)^{2}+\left(y-b_{4}\right)^{2}+\left(z-c_{i}\right)^{2}=\left[\left(C\left(t_{4}-D\right)\right]^{2}\right.
\end{aligned}
$$

is solved for the (x, y, z) coordinates of the receiver. For each satellite i, the locations are $\left(a_{i}, b_{i}, c_{i}\right)$, and t_{i} is the synchronized transmission time from the satellite. Further, C is the speed of light, and D is the difference between the synchronized time of the satellite clocks and the earth-bound receiver clock. While there are only two points on the intersection of three spheres (one of which can be determined to be the desired location), a fourth sphere (satellite) must be used to resolve the inaccuracy in the clock contained in the low-cost receiver on earth. Explore various ways for solving such a nonlinear system. See Hofmann-Wellenhof, Lichtenegger, and Collins [2001], Sauer [2006], and Strang and Borre [1997].

42. Use mathematical software such as in Matlab, Maple, or Mathematica and their built-in procedures to solve the system of nonlinear equations (8) in Example 2. Also, plot the given surfaces and the solution obtained. Hint: You may need to use a slightly perturbed starting point $(0.5,1.5,0.5)$ to avoid a singularity in the Jacobian matrix.

3.3 Secant Method

We now consider a general-purpose procedure that converges almost as fast as Newton's method. This method mimics Newton's method but avoids the calculation of derivatives. Recall that Newton's iteration defines x_{n+1} in terms of x_{n} via the formula

$$
\begin{equation*}
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \tag{1}
\end{equation*}
$$

In the secant method, we replace $f^{\prime}\left(x_{n}\right)$ in Formula (1) by an approximation that is easily computed. Since the derivative is defined by

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

we can say that for small h,

$$
f^{\prime}(x) \approx \frac{f(x+h)-f(x)}{h}
$$

(In Section 4.3, we revisit this subject and learn that this is a finite difference approximation to the first derivative.) In particular, if $x=x_{n}$ and $h=x_{n-1}-x_{n}$, we have

$$
\begin{equation*}
f^{\prime}\left(x_{n}\right) \approx \frac{f\left(x_{n-1}\right)-f\left(x_{n}\right)}{x_{n-1}-x_{n}} \tag{2}
\end{equation*}
$$

When this is used in Equation (1), the result defines the secant method:

$$
\begin{equation*}
x_{n+1}=x_{n}-\left(\frac{x_{n}-x_{n-1}}{f\left(x_{n}\right)-f\left(x_{n-1}\right)}\right) f\left(x_{n}\right) \tag{3}
\end{equation*}
$$

The secant method (like Newton's) can be used to solve systems of equations as well.
The name of the method is taken from the fact that the right member of Equation (2) is the slope of a secant line to the graph of f (see Figure 3.9). Of course, the left member is the slope of a tangent line to the graph of f. (Similarly, Newton's method could be called the "tangent method.")

FIGURE 3.9
Secant method

A few remarks about Equation (3) are in order. Clearly, x_{n+1} depends on two previous elements of the sequence. So to start, two points (x_{0} and x_{1}) must be provided. Equation (3) can then generate x_{2}, x_{3}, \ldots In programming the secant method, we could calculate and test the quantity $f\left(x_{n}\right)-f\left(x_{n-1}\right)$. If it is nearly zero, an overflow can occur in Equation (3). Of course, if the method is succeeding, the points x_{n} will be approaching a zero of f, so $f\left(x_{n}\right)$ will be converging to zero. (We are assuming that f is continuous.) Also, $f\left(x_{n-1}\right)$ will be converging to zero, and, a fortiori, $f\left(x_{n}\right)-f\left(x_{n-1}\right)$ will approach zero. If the terms $f\left(x_{n}\right)$ and $f\left(x_{n-1}\right)$ have the same sign, additional significant digits are canceled in the subtraction. So we could perhaps halt the iteration when $\left|f\left(x_{n}\right)-f\left(x_{n-1}\right)\right| \leqq \delta\left|f\left(x_{n}\right)\right|$ for some specified tolerance δ, such as $\frac{1}{2} \times 10^{-6}$. (See Computer Problem 3.3.18.)

Secant Algorithm

A pseudocode for nmax steps of the secant method applied to the function f starting with the interval $[a, b]=\left[x_{0}, x_{1}\right]$ can be written as follows:

```
procedure Secant(f,a,b,nmax, \varepsilon)
integer n, nmax; real }a,b,fa,fb,\varepsilon,
external function f
fa}\leftarrowf(a
fb}\leftarrowf(b
```

```
if \(|f a|>|f b|\) then
    \(a \longleftrightarrow b\)
    \(f a \longleftrightarrow f b\)
end if
output \(0, a, f a\)
output \(1, b, f b\)
for \(n=2\) to nmax do
    if \(|f a|>|f b|\) then
        \(a \longleftrightarrow b\)
        \(f a \longleftrightarrow f b\)
    end if
    \(d \leftarrow(b-a) /(f b-f a)\)
    \(b \leftarrow a\)
    \(f b \leftarrow f a\)
    \(d \leftarrow d \cdot f a\)
    if \(|d|<\varepsilon\) then
        output "convergence"
        return
    end if
    \(a \leftarrow a-d\)
    \(f a \leftarrow f(a)\)
    output \(n, a, f a\)
end for
end procedure Secant
```

Here \longleftrightarrow means interchange values. The endpoints $[a, b]$ are interchanged, if necessary, to keep $|f(a)| \leqq|f(b)|$. Consequently, the absolute values of the function are nonincreasing; thus, we have $\left|f\left(x_{n}\right)\right| \geqq\left|f\left(x_{n+1}\right)\right|$ for $n \geqq 1$.

EXAMPLE 1 If the secant method is used on $p(x)=x^{5}+x^{3}+3$ with $x_{0}=-1$ and $x_{1}=1$, what is x_{8} ?
Solution The output from the computer program corresponding to the pseudocode for the secant method is as follows. (We used a 32-bit word-length computer.)

n	x_{n}	$p\left(x_{n}\right)$
0	-1.0	1.0
1	1.0	5.0
2	-1.5	-7.97
3	-1.05575	0.512
4	-1.11416	-9.991×10^{-2}
5	-1.10462	7.593×10^{-3}
6	-1.10529	1.011×10^{-4}
7	-1.10530	2.990×10^{-7}
8	-1.10530	2.990×10^{-7}

We can use mathematical software to find the single real root, -1.1053 , and the two pairs of complex roots, $-0.319201 \pm 1.35008 i$ and $0.871851 \pm 0.806311 i$.

Convergence Analysis

The advantages of the secant method are that (after the first step) only one function evaluation is required per step (in contrast to Newton's iteration, which requires two) and that it is almost as rapidly convergent. It can be shown that the basic secant method defined by Equation (3) obeys an equation of the form

$$
\begin{equation*}
e_{n+1}=-\frac{1}{2}\left(\frac{f^{\prime \prime}\left(\xi_{n}\right)}{f^{\prime}\left(\zeta_{n}\right)}\right) e_{n} e_{n-1} \approx-\frac{1}{2}\left(\frac{f^{\prime \prime}(r)}{f^{\prime}(r)}\right) e_{n} e_{n-1} \tag{4}
\end{equation*}
$$

where ξ_{n} and ζ_{n} are in the smallest interval that contains r, x_{n}, and x_{n-1}. Thus, the ratio $e_{n+1}\left(e_{n} e_{n-1}\right)^{-1}$ converges to $-\frac{1}{2} f^{\prime \prime}(r) / f^{\prime}(r)$. The rapidity of convergence of this method is, in general, between those for bisection and for Newton's method.

To prove the second part of Equation (4), we begin with the definition of the secant method in Equation (3) and the error

$$
\begin{align*}
e_{n+1} & =r-x_{n+1} \\
& =r-\frac{f\left(x_{n}\right) x_{n-1}-f\left(x_{n-1}\right) x_{n}}{f\left(x_{n}\right)-f\left(x_{n-1}\right)} \\
& =\frac{f\left(x_{n}\right) e_{n-1}-f\left(x_{n-1}\right) e_{n}}{f\left(x_{n}\right)-f\left(x_{n-1}\right)} \\
& =\left[\frac{x_{n}-x_{n-1}}{f\left(x_{n}\right)-f\left(x_{n-1}\right)}\right]\left[\frac{\frac{f\left(x_{n}\right)}{e_{n}}-\frac{f\left(x_{n-1}\right)}{e_{n-1}}}{x_{n}-x_{n-1}}\right] e_{n} e_{n-1} \tag{5}
\end{align*}
$$

By Taylor's Theorem, we establish

$$
f\left(x_{n}\right)=f\left(r-e_{n}\right)=f(r)-e_{n} f^{\prime}(r)+\frac{1}{2} e_{n}^{2} f^{\prime \prime}(r)+\mathcal{O}\left(e_{n}^{3}\right)
$$

Since $f(r)=0$, this gives us

$$
\frac{f\left(x_{n}\right)}{e_{n}}=-f^{\prime}(r)+\frac{1}{2} e_{n} f^{\prime \prime}(r)+\mathcal{O}\left(e_{n}^{2}\right)
$$

Changing the index to $n-1$ yields

$$
\frac{f\left(x_{n-1}\right)}{e_{n-1}}=-f^{\prime}(r)+\frac{1}{2} e_{n-1} f^{\prime \prime}(r)+\mathcal{O}\left(e_{n-1}^{2}\right)
$$

By subtraction between these equations, we arrive at

$$
\frac{f\left(x_{n}\right)}{e_{n}}-\frac{f\left(x_{n-1}\right)}{e_{n-1}}=\frac{1}{2}\left(e_{n}-e_{n-1}\right) f^{\prime \prime}(r)+\mathcal{O}\left(e_{n-1}^{2}\right)
$$

Since $x_{n}-x_{n-1}=e_{n-1}-e_{n}$, we reach the equation

$$
\frac{\frac{f\left(x_{n}\right)}{e_{n}}-\frac{f\left(x_{n-1}\right)}{e_{n-1}}}{x_{n}-x_{n-1}} \approx-\frac{1}{2} f^{\prime \prime}(r)
$$

The first bracketed expression in Equation (5) can be written as

$$
\frac{x_{n}-x_{n-1}}{f\left(x_{n}\right)-f\left(x_{n-1}\right)} \approx \frac{1}{f^{\prime}(r)}
$$

Hence, we have shown the second part of Equation (4).
We leave the establishment of the first part of Equation (4) as a problem because it depends on some material to be covered in Chapter 4. (See Problem 3.3.18.)

From Equation (4), the order of convergence for the secant method can be expressed in terms of the inequality

$$
\begin{equation*}
\left|e_{n+1}\right| \leqq C\left|e_{n}\right|^{\alpha} \tag{6}
\end{equation*}
$$

where $\alpha=\frac{1}{2}(1+\sqrt{5}) \approx 1.62$ is the golden ratio. Since $\alpha>1$, we say that the convergence is superlinear. Assuming that Inequality (6) is true, we can show that the secant method converges under certain conditions.

Let $c=c(\delta)$ be defined as in Equation (2) of Section 3.2. If $\left|r-x_{n}\right| \leqq \delta$ and $\left|r-x_{n-1}\right| \leqq \delta$, for some root r, then Equation (4) yields

$$
\begin{equation*}
\left|e_{n+1}\right| \leqq c\left|e_{n}\right|\left|e_{n-1}\right| \tag{7}
\end{equation*}
$$

Suppose that the initial points x_{0} and x_{1} are sufficiently close to r that $c\left|e_{0}\right| \leqq D$ and $c\left|e_{1}\right| \leqq D$ for some $D<1$. Then

$$
\begin{aligned}
& c\left|e_{1}\right| \leqq D, \quad c\left|e_{0}\right| \leqq D \\
& c\left|e_{2}\right| \leqq c\left|e_{1}\right| c\left|e_{0}\right| \leqq D^{2} \\
& c\left|e_{3}\right| \leqq c\left|e_{2}\right| c\left|e_{1}\right| \leqq D^{3} \\
& c\left|e_{4}\right| \leqq c\left|e_{3}\right| c\left|e_{2}\right| \leqq D^{5} \\
& c\left|e_{5}\right| \leqq c\left|e_{4}\right| c\left|e_{3}\right| \leqq D^{8} \\
& \text { etc. }
\end{aligned}
$$

In general, we have

$$
\begin{equation*}
\left|e_{n}\right| \leqq c^{-1} D^{\lambda_{n+1}} \tag{8}
\end{equation*}
$$

where inductively,

$$
\left\{\begin{array}{l}
\lambda_{1}=1, \quad \lambda_{2}=1 \tag{9}\\
\lambda_{n}=\lambda_{n-1}+\lambda_{n-2} \quad(n \geqq 3)
\end{array}\right.
$$

This is the recurrence relation for generating the famous Fibonacci sequence, 1, 1, 2, 3, 5, $8, \ldots$ It can be shown to have the surprising explicit form

$$
\begin{equation*}
\lambda_{n}=\frac{1}{\sqrt{5}}\left(\alpha^{n}-\beta^{n}\right) \tag{10}
\end{equation*}
$$

where $\alpha=\frac{1}{2}(1+\sqrt{5})$ and $\beta=\frac{1}{2}(1-\sqrt{5})$. Since $D<1$ and $\lambda_{n} \rightarrow \infty$, we conclude from Inequality (8) that $e_{n} \rightarrow 0$. Hence, $x_{n} \rightarrow r$ as $n \rightarrow \infty$, and the secant method converges to the root r if x_{0} and x_{1} are sufficiently close to it.

Next, we show that Inequality (6) is in fact reasonable-not a proof. From Equations (7), we now have

$$
\begin{aligned}
\left|e_{n+1}\right| & \leqq c\left|e_{n}\right|\left|e_{n-1}\right| \\
& =c\left|e_{n}\right|^{\alpha}\left|e_{n}\right|^{1-\alpha}\left|e_{n-1}\right| \\
& \approx c\left|e_{n}\right|^{\alpha}\left(c^{-1} D^{\lambda_{n+1}}\right)^{1-\alpha}\left(c^{-1} D^{\lambda_{n}}\right) \\
& =\left|e_{n}\right|^{\alpha} c^{\alpha-1} D^{\lambda_{n+1}(1-\alpha)+\lambda_{n}} \\
& =\left|e_{n}\right|^{\alpha} c^{\alpha-1} D^{\lambda_{n+2}-\alpha \lambda_{n+1}}
\end{aligned}
$$

by using an approximation to Inequality (8). In the last line, we used the recurrence relation (9). Now $\lambda_{n+2}-\alpha \lambda_{n+1}$ converges to zero. (See Problem 3.3.6.). Hence, $c^{\alpha-1} D^{\lambda_{n+2}-\alpha \lambda_{n+1}}$ is bounded, say, by C, as a function of n. Thus, we have

$$
\left|e_{n+1}\right| \approx C\left|e_{n}\right|^{\alpha}
$$

which is a reasonable approximation to Inequality (6).
Another derivation (with a bit of hand waving) for the order of convergence of the secant method can be given by using a general recurrence relation. Equation (4) gives us

$$
e_{n+1} \approx K e_{n} e_{n-1}
$$

where $K=-\frac{1}{2} f^{\prime \prime}(r) / f^{\prime}(r)$. We can write this as

$$
\left|K e_{n+1}\right| \approx\left|K e_{n}\right|\left|K e_{n-1}\right|
$$

Let $z_{i}=\log \left|K e_{i}\right|$. Then we want to solve the recurrence equation

$$
z_{n+1}=z_{n}+z_{n-1}
$$

where z_{0} and z_{1} are arbitrary. This is a linear recurrence relation with constant coefficients similar to the one for the Fibonacci numbers (9) except that the first two values z_{0} and z_{1} are unknown. The solution is of the form

$$
\begin{equation*}
z_{n}=A \alpha^{n}+B \beta^{n} \tag{11}
\end{equation*}
$$

where $\alpha=\frac{1}{2}(1+\sqrt{5})$ and $\beta=\frac{1}{2}(1-\sqrt{5})$. These are the roots of the quadratic equation $\lambda^{2}-\lambda-1=0$. Since $|\alpha|>|\beta|$, the term $A \alpha^{n}$ dominates, and we can say that

$$
z_{n} \approx A \alpha^{n}
$$

for large n and for some constant A. Consequently, we have

$$
\left|K e_{n}\right| \approx 10^{A \alpha^{n}}
$$

Then it follows that

$$
\left|K e_{n+1}\right| \approx 10^{A \alpha^{n+1}}=\left(10^{A \alpha^{n}}\right)^{\alpha}=\left|K e_{n}\right|^{\alpha}
$$

Hence, we have

$$
\begin{equation*}
\left|e_{n+1}\right| \approx C\left|e_{n}\right|^{\alpha} \tag{12}
\end{equation*}
$$

for large n and for some constant C. Again, Inequality (6) is essentially established! A rigorous proof of Inequality (6) is tedious and quite long.

Comparison of Methods

In this chapter, three primary methods for solving an equation $f(x)=0$ have been presented. The bisection method is reliable but slow. Newton's method is fast but often only near the root and requires f^{\prime}. The secant method is nearly as fast as Newton's method and does not require knowledge of the derivative f^{\prime}, which may not be available or may be too expensive to compute. The user of the bisection method must provide two points at which the signs of $f(x)$ differ, and the function f need only be continuous. In using Newton's method, one must specify a starting point near the root, and f must be differentiable. The secant method requires two good starting points. Newton's procedure can be interpreted as the repetition of a two-step procedure summarized by the prescription linearize and solve. This strategy is applicable in many other numerical problems, and its importance cannot be overemphasized. Both Newton's method and the secant method fail to bracket a root. The modified false position method can retain the advantages of both methods.

The secant method is often faster at approximating roots of nonlinear functions in comparison to bisection and false position. Unlike these two methods, the intervals $\left[a_{k}, b_{k}\right]$ do not have to be on opposite sides of the root and have a change of sign. Moreover, the slope of the secant line can become quite small, and a step can move far from the current point. The secant method can fail to find a root of a nonlinear function that has a small slope near the root because the secant line can jump a large amount.

For nice functions and guesses relatively close to the root, most of these methods require relatively few iterations before coming close to the root. However, there are pathological functions that can cause troubles for any of those methods. When selecting a method for solving a given nonlinear problem, one must consider many issues such as what you know about the behavior of the function, an interval $[a, b]$ satisfying $f(a) f(b)<0$, the first derivative of the function, a good initial guess to the desired root, and so on.

Hybrid Schemes

In an effort to find the best algorithm for finding a zero of a given function, various hybrid methods have been developed. Some of these procedures combine the bisection method (used during the early iterations) with either the secant method or the Newton method. Also, adaptive schemes are used for monitoring the iterations and for carrying out stopping rules. More information on some hybrid secant-bisection methods and hybrid Newton-bisection methods with adaptive stopping rules can be found in Bus and Dekker [1975], Dekker [1969], Kahaner, Moler, and Nash [1989], and Novak, Ritter, and Woźniakowski [1995].

Fixed-Point Iteration

For a nonlinear equation $f(x)=0$, we seek a point where the curve f intersects the x-axis $(y=0)$. An alternative approach is to recast the problem as a fixed-point problem $x=g(x)$ for a related nonlinear function g. For the fixed point problem, we seek a point where the curve g intersects the diagonal line $y=x$. A value of x such that $x=g(x)$ is a fixed point of g because x is unchanged when g is applied to it. Many iterative algorithms for solving a nonlinear equation $f(x)=0$ are based on a fixed-point iterative method $x^{(n+1)}=g\left(x^{(n)}\right)$ where g has fixed points that are solutions of $f(x)=0$. An initial starting value $x^{(0)}$
is selected, and the iterative method is applied repeatedly until it converges sufficiently well.

EXAMPLE 2 Apply the fixed-point procedure, where $g(x)=1+2 / x$, starting with $x^{(0)}=1$, to compute a zero of the nonlinear function $f(x)=x^{2}-x-2$. Graphically, trace the convergence process.

Solution The fixed-point method is

$$
x^{(n+1)}=1+\frac{2}{x^{(n)}}
$$

Eight steps of the iterative algorithm are $x^{(0)}=1, x^{(1)}=3, x^{(2)}=5 / 3, x^{(3)}=11 / 5$, $x^{(4)}=21 / 11, x^{(5)}=43 / 21, x^{(6)}=85 / 43, x^{(7)}=171 / 85$, and $x^{(8)}=341 / 171 \approx 1.99415$. In Figure 3.10, we see that these steps spiral into the fixed point 2.

FIGURE 3.10 Fixed point iterations for $f(x)=x^{2}-x-2$

For a given nonlinear equation $f(x)=0$, there may be many equivalent fixed-point problems $x=g(x)$ with different functions g, some better than others. A simple way to characterize the behavior of an iterative method $x^{(n+1)}=g\left(x^{(n)}\right)$ is locally convergent for x^{*} if $x^{*}=g\left(x^{*}\right)$ and $\left|g^{\prime}\left(x^{*}\right)\right|<1$. By locally convergent, we mean that there is an interval containing $x^{(0)}$ such that the fixed-point method converges for any starting value $x^{(0)}$ within that interval. If $\left|g^{\prime}\left(x^{*}\right)\right|>1$, then the fixed-point method diverges for any starting point $x^{(0)}$ other than x^{*}. Fixed-point iterative methods are used in standard practice for solving many science and engineering problems. In fact, the fixed-point theory can simplify the proof of the convergence of Newton's method.

Summary

(1) The secant method for finding a zero r of a function $f(x)$ is written as

$$
x_{n+1}=x_{n}-\left(\frac{x_{n}-x_{n-1}}{f\left(x_{n}\right)-f\left(x_{n-1}\right)}\right) f\left(x_{n}\right)
$$

for $n \geqq 1$, which requires two initial values x_{0} and x_{1}. After the first step, only one new function evaluation per step is needed.
(2) After $n+1$ steps of the secant method, the error iterates $e_{i}=r-x_{i}$ obey the equation

$$
e_{n+1}=-\frac{1}{2}\left(\frac{f^{\prime \prime}\left(\xi_{n}\right)}{f^{\prime}\left(\zeta_{n}\right)}\right) e_{n} e_{n-1}
$$

which leads to the approximation

$$
\left|e_{n+1}\right| \approx C\left|e_{n}\right|^{1 / 2(1+\sqrt{5})} \approx C\left|e_{n}\right|^{1.62}
$$

Therefore, the secant method has superlinear convergence behavior.

Additional References

For supplemental reading and study, see Barnsley [2006], Bus and Dekker [1975], Dekker [1969], Dennis and Schnabel [1983], Epureanu and Greenside [1998], Fauvel, Flood, Shortland, and Wilson [1988], Feder [1988], Ford [1995], Householder [1970], Kelley [1995], Lozier and Olver [1994], Nerinckx and Haegemans [1976], Novak, Ritter, and Woźniakowski [1995], Ortega and Rheinboldt [1970], Ostrowski [1966], Rabinowitz [1970], Traub [1964], Westfall [1995], and Ypma [1995].

Problems 3.3

${ }^{a}$ 1. Calculate an approximate value for $4^{3 / 4}$ using one step of the secant method with $x_{0}=3$ and $x_{1}=2$.
2. If we use the secant method on $f(x)=x^{3}-2 x+2$ starting with $x_{0}=0$ and $x_{1}=1$, what is x_{2} ?
${ }^{a}$ 3. If the secant method is used on $f(x)=x^{5}+x^{3}+3$ and if $x_{n-2}=0$ and $x_{n-1}=1$, what is x_{n} ?
${ }^{a}$ 4. If $x_{n+1}=x_{n}+\left(2-e^{x_{n}}\right)\left(x_{n}-x_{n-1}\right) /\left(e^{x_{n}}-e^{x_{n-1}}\right)$ with $x_{0}=0$ and $x_{1}=1$, what is $\lim _{n \rightarrow \infty} x_{n}$?
5. Using the bisection method, Newton's method, and the secant method, find the largest positive root correct to three decimal places of $x^{3}-5 x+3=0$. (All roots are in $[-3,+3]$.)
6. Prove that in the first analysis of the secant method, $\lambda_{n+1}-\alpha \lambda_{n}$ converges to zero as $n \rightarrow \infty$.
7. Establish Equation (10).
8. Write out the derivation of the order of convergence of the secant method that uses recurrence relations; that is, find the constants A and B in Equation (11), and fill in the details in arriving at Equation (12).
${ }^{a} \mathbf{9}$. What is the appropriate formula for finding square roots using the secant method? (Refer to Problem 3.2.1.)
10. The formula for the secant method can also be written as

$$
x_{n+1}=\frac{x_{n-1} f\left(x_{n}\right)-x_{n} f\left(x_{n-1}\right)}{f\left(x_{n}\right)-f\left(x_{n-1}\right)}
$$

Establish this, and explain why it is inferior to Equation (3) in a computer program.
11. Show that if the iterates in Newton's method converge to a point r for which $f^{\prime}(r) \neq 0$, then $f(r)=0$. Establish the same assertion for the secant method. Hint: In the latter, the Mean-Value Theorem of Differential Calculus is useful. This is the case $n=0$ in Taylor's Theorem.
${ }^{a}$ 12. A method of finding a zero of a given function f proceeds as follows. Two initial approximations x_{0} and x_{1} to the zero are chosen, the value of x_{0} is fixed, and successive iterations are given by

$$
x_{n+1}=x_{n}-\left(\frac{x_{n}-x_{0}}{f\left(x_{n}\right)-f\left(x_{0}\right)}\right) f\left(x_{n}\right)
$$

This process will converge to a zero of f under certain conditions. Show that the rate of convergence to a simple zero is linear under some conditions.
13. Test the following sequences for different types of convergence (i.e., linear, superlinear, or quadratic), where $n=1,2,3 \ldots$.
${ }^{a}$ a. $x_{n}=n^{-2}$
b. $x_{n}=2^{-n} \quad{ }^{a}$ c. $x_{n}=2^{-2^{n}}$
d. $x_{n}=2^{-a_{n}}$ with $a_{0}=a_{1}=1$ and $a_{n+1}=a_{n}+a_{n-1}$ for $n \geqq 2$
14. This problem and the next three deal with the method of functional iteration. The method of functional iteration is as follows: Starting with any x_{0}, we define $x_{n+1}=$ $f\left(x_{n}\right)$, where $n=0,1,2, \ldots$. Show that if f is continuous and if the sequence $\left\{x_{n}\right\}$ converges, then its limit is a fixed point of f.
${ }^{a}$ 15. (Continuation) Show that if f is a function defined on the whole real line whose derivative satisfies $\left|f^{\prime}(x)\right| \leqq c$ with a constant c less than 1 , then the method of functional iteration produces a fixed point of f. Hint: In establishing this, the Mean-Value Theorem from Section 1.2 is helpful.
${ }^{a}$ 16. (Continuation) With a calculator, try the method of functional iteration with $f(x)=$ $x / 2+1 / x$, taking $x_{0}=1$. What is the limit of the resulting sequence?
${ }^{a}$ 17. (Continuation) Using functional iteration, show that the equation $10-2 x+\sin x=0$ has a root. Locate the root approximately by drawing a graph. Starting with your approximate root, use functional iteration to obtain the root accurately by using a calculator. Hint: Write the equation in the form $x=5+\frac{1}{2} \sin x$.
18. Establish the first part of Equation (4) using Equation (5). Hint: Use the relationship between divided differences and derivatives from Section 4.2.

Computer Problems 3.3

${ }^{a}$ 1. Use the secant method to find the zero near -0.5 of $f(x)=e^{x}-3 x^{2}$. This function also has a zero near 4. Find this positive zero by Newton's method.
2. Write
procedure $\operatorname{Secant}(f, x 1, x 2$, epsi, delta, maxf, x, ierr $)$
which uses the secant method to solve $f(x)=0$. The input parameters are as follows: f is the name of the given function; $x 1$ and $x 2$ are the initial estimates of the solution; $e p s i$ is a positive tolerance such that the iteration stops if the difference between two consecutive iterates is smaller than this value; delta is a positive tolerance such that the iteration stops if a function value is smaller in magnitude than this value; and maxf is a positive integer bounding the number of evaluations of the function allowed. The output parameters are as follows: x is the final estimate of the solution, and ierr is an integer error flag that indicates whether a tolerance test was violated. Test this routine using the function of Computer Problem 3.3.1. Print the final estimate of the solution and the value of the function at this point.
3. Find a zero of one of the functions given in the introduction of this chapter using one of the methods introduced in this chapter.
4. Write and test a recursive procedure for the secant method.
5. Rerun the example in this section with $x_{0}=0$ and $x_{1}=1$. Explain any unusual results.
6. Write a simple program to compare the secant method with Newton's method for finding a root of each function.
${ }^{a}$ a. $x^{3}-3 x+1$ with $x_{0}=2$
b. $x^{3}-2 \sin x$ with $x_{0}=\frac{1}{2}$

Use the x_{1} value from Newton's method as the second starting point for the secant method. Print out each iteration for both methods.
${ }^{a} 7$. Write a simple program to find the root of $f(x)=x^{3}+2 x^{2}+10 x-20$ using the secant method with starting values $x_{0}=2$ and $x_{1}=1$. Let it run at most 20 steps, and include a stopping test as well. Compare the number of steps needed here to the number needed in Newton's method. Is the convergence quadratic?
8. Test the secant method on the set of functions $f_{k}(x)=2 e^{-k} x+1-3 e^{-k x}$ for $k=$ $1,2,3, \ldots, 10$. Use the starting points 0 and 1 in each case.
${ }^{a}$ 9. An example by Wilkinson [1963] shows that minute alterations in the coefficients of a polynomial may have massive effects on the roots. Let

$$
f(x)=(x-1)(x-2) \cdots(x-20)
$$

which has become known as the Wilkinson polynomial. The zeros of f are, of course, the integers $1,2, \ldots, 20$. Try to determine what happens to the zero $r=20$ when the function is altered to $f(x)-10^{-8} x^{19}$. Hint: The secant method in double precision will locate a zero in the interval $[20,21]$.
10. Test the secant method on an example in which $r, f^{\prime}(r)$, and $f^{\prime \prime}(r)$ are known in advance. Monitor the ratios $e_{n+1} /\left(e_{n} e_{n-1}\right)$ to see whether they converge to $-\frac{1}{2} f^{\prime \prime}(r) / f^{\prime}(r)$. The function $f(x)=\arctan x$ is suitable for this experiment.
11. Using a function of your choice, verify numerically that the iterative method

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{\sqrt{\left[f^{\prime}\left(x_{n}\right)\right]^{2}-f\left(x_{n}\right) f^{\prime \prime}\left(x_{n}\right)}}
$$

is cubically convergent at a simple root but only linearly convergent at a multiple root.
12. Test numerically whether Olver's method, given by

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}-\frac{1}{2} \frac{f^{\prime \prime}\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}\left[\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}\right]^{2}
$$

is cubically convergent to a root of f. Try to establish that it is.
13. (Continuation) Repeat for Halley's method

$$
x_{n+1}=x_{n}-\frac{1}{a_{n}} \quad \text { with } \quad a_{n}=\frac{f^{\prime}\left(x_{n}\right)}{f\left(x_{n}\right)}-\frac{1}{2}\left[\frac{f^{\prime \prime}\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}\right]
$$

14. (Moler-Morrison algorithm) Computing an approximation for $\sqrt{x^{2}+y^{2}}$ does not require square roots. It can be done as follows:
```
real function \(f(x, y)\)
integer \(n\); real \(a, b, c, x, y\)
\(f \leftarrow \max \{|x|,|y|\}\)
\(a \leftarrow \min \{|x|,|y|\}\)
for \(n=1\) to 3 do
    \(b \leftarrow(a / f)^{2}\)
    \(c \leftarrow b /(4+b)\)
    \(f \leftarrow f+2 c f\)
    \(a \leftarrow c a\)
end for
end function \(f\)
```

Test the algorithm on some simple cases such as $(x, y)=(3,4),(-5,12)$, and $(7,-24)$. Then write a routine that uses the function $f(x, y)$ for approximating the Euclidean norm of a vector $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$; that is, the nonnegative number $\|x\|=\left(x_{1}^{2}+\right.$ $\left.x_{2}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}$.
15. Study the following functions by starting with any initial value of x_{0} in the domain $[0,2]$ and iterating $x_{n+1}=F\left(x_{n}\right)$. First use a calculator and then a computer. Explain the results.
a. Use the tent function

$$
F(x)= \begin{cases}2 x & \text { if } 2 x<1 \\ 2 x-1 & \text { if } 2 x \geqq 1\end{cases}
$$

b. Repeat using the function

$$
F(x)=10 x(\text { modulo } 1)
$$

Hint: Don't be surprised by chaotic behavior. The interested reader can learn more about the dynamics of one-dimensional maps by reading papers such as the one by Bassien [1998].
16. Show how the secant method can be used to solve systems of equations such as those in Computer Problems 3.2.21-3.2.23.
17. (Student research project) Muller's method is an algorithm for computing solutions of an equation $f(x)=0$. It is similar to the secant method in that it replaces f locally by a simple function, and finds a root of it. Naturally, this step is repeated. The simple function chosen in Muller's method is a quadratic polynomial, p, that interpolates f at the three most recent points. After p has been determined, its roots are computed, and one of them is chosen as the next point in the sequence. Since this quadratic function may have complex roots, the algorithm should be programmed with this in mind. Suppose that points x_{n-2}, x_{n-1}, and x_{n} have been computed. Set

$$
p(x)=a\left(x-x_{n}\right)\left(x-x_{n-1}\right)+b\left(x-x_{n}\right)+c
$$

where a, b, and c are determined so that p interpolates f at the three points mentioned previously. Then find the roots of p and take x_{n+1} to be the root of p closest to x_{n}. At the beginning, three points must be furnished by the user. Program the method, allowing for complex numbers throughout. Test your program on the example

$$
p(x)=x^{3}+x^{2}-10 x-10
$$

If the first three points are $1,2,3$, then you should find that the polynomial is $p(x)=$ $7(x-3)(x-2)+14(x-3)-4$ and $x_{4}=3.17971086$. Next, test your code on a polynomial having real coefficients but some complex roots.
18. Program and test the code for the secant algorithm after incorporating the stopping criterion described in the text.
19. Using mathematical software such as Matlab, Mathematica, and Maple, find the real zero of the polynomial $p(x)=x^{5}+x^{3}+3$. Attain more digits of accuracy than shown in the solution to Example 1 in the text.
20. (Continuation) Using mathematical software that allows for complex roots, find all zeros of the polynomial.
21. Program a hybrid method for solving several of the nonlinear problems given as examples in the text, and compare your results with those given.
22. Find the fixed points for each of the following functions:
a. $e^{x}+1$
b. $e^{-x}-x$
c. $x^{2}-4 \sin x$
d. $x^{3}+6 x^{2}+11 x-6$
e. $\sin x$
23. For the nonlinear equation $f(x)=x^{2}-x-2=0$ with roots 1 and 2 , write four fixed-point problems $x=g(x)$ that are equivalent. Plot all of these, and show that they all intersect the line $x=y$. Also, plot the convergence steps of each of these fixed-point iterations for different starting values $x^{(0)}$. Show that the behavior of these fixed-point schemes can vary wildly: slow convergence, fast convergence, and divergence.

4
 Interpolation and Numerical Differentiation

The viscosity of water has been experimentally determined at different temperatures, as indicated in the following table:

Temperature	0°	5°	10°	15°
Viscosity	1.792	1.519	1.308	1.140

From this table, how can we estimate a reasonable value for the viscosity at temperature 8° ?

The method of polynomial interpolation, described in Section 4.1, can be used to create a polynomial of degree 3 that assumes the values in the table. This polynomial should provide acceptable intermediate values for temperatures not tabulated. The value of that polynomial at the point 8° turns out to be 1.386.

4.1 Polynomial Interpolation
 Preliminary Remarks

We pose three problems concerning the representation of functions to give an indication of the subject matter in this chapter, in Chapter 9 (on splines), and in Chapter 12 (on least squares).

First, suppose that we have a table of numerical values of a function:

x	x_{0}	x_{1}	\cdots	x_{n}
y	y_{0}	y_{1}	\cdots	y_{n}

Is it possible to find a simple and convenient formula that reproduces the given points exactly?

The second problem is similar, but it is assumed that the given table of numerical values is contaminated by errors, as might occur if the values came from a physical experiment. Now we ask for a formula that represents the data (approximately) and, if possible, filters out the errors.

As a third problem, a function f is given, perhaps in the form of a computer procedure, but it is an expensive function to evaluate. In this case, we ask for another function g that is simpler to evaluate and produces a reasonable approximation to f. Sometimes in this problem, we want g to approximate f with full machine precision.

In all of these problems, a simple function p can be obtained that represents or approximates the given table or function f. The representation p can always be taken to be a polynomial, although many other types of simple functions can also be used. Once a simple function p has been obtained, it can be used in place of f in many situations. For example, the integral of f could be estimated by the integral of p, and the latter should generally be easier to evaluate.

In many situations, a polynomial solution to the problems outlined above will be unsatisfactory from a practical point of view, and other classes of functions must be considered. In this book, one other class of versatile functions is discussed: the spline functions (see Chapter 9). The present chapter concerns polynomials exclusively, and Chapter 12 discusses general linear families of functions, of which splines and polynomials are important examples.

The obvious way in which a polynomial can fail as a practical solution to one of the preceding problems is that its degree may be unreasonably high. For instance, if the table considered contains 1,000 entries, a polynomial of degree 999 may be required to represent it. Polynomials also may have the surprising defect of being highly oscillatory. If the table is precisely represented by a polynomial p, then $p\left(x_{i}\right)=y_{i}$ for $0 \leqq i \leqq n$. For points other than the given x_{i}, however, $p(x)$ may be a very poor representation of the function from which the table arose. The example in Section 4.2 involving the Runge function illustrates this phenomenon.

Polynomial Interpolation

We begin again with a table of values:

x	x_{0}	x_{1}	\cdots	x_{n}
y	y_{0}	y_{1}	\cdots	y_{n}

and assume that the x_{i} 's form a set of $n+1$ distinct points. The table represents $n+1$ points in the Cartesian plane, and we want to find a polynomial curve that passes through all points. Thus, we seek to determine a polynomial that is defined for all x, and takes on the corresponding values of y_{i} for each of the $n+1$ distinct x_{i} 's in this table. A polynomial p for which $p\left(x_{i}\right)=y_{i}$ when $0 \leqq i \leqq n$ is said to interpolate the table. The points x_{i} are called nodes.

Consider the first and simplest case, $n=0$. Here, a constant function solves the problem. In other words, the polynomial p of degree 0 defined by the equation $p(x)=y_{0}$ reproduces the one-node table.

The next simplest case occurs when $n=1$. Since a straight line can be passed through two points, a linear function is capable of solving the problem. Explicitly, the polynomial p defined by

$$
\begin{aligned}
p(x) & =\left(\frac{x-x_{1}}{x_{0}-x_{1}}\right) y_{0}+\left(\frac{x-x_{0}}{x_{1}-x_{0}}\right) y_{1} \\
& =y_{0}+\left(\frac{y_{1}-y_{0}}{x_{1}-x_{0}}\right)\left(x-x_{0}\right)
\end{aligned}
$$

is of first degree (at most) and reproduces the table. That means (in this case) that $p\left(x_{0}\right)=y_{0}$ and $p\left(x_{1}\right)=y_{1}$, as is easily verified. This p is used for linear interpolation.

EXAMPLE 1 Find the polynomial of least degree that interpolates this table:

x	1.4	1.25
y	3.7	3.9

Solution By the equation above, the polynomial that is sought is

$$
\begin{aligned}
p(x) & =\left(\frac{x-1.25}{1.4-1.25}\right) 3.7+\left(\frac{x-1.4}{1.25-1.4}\right) 3.9 \\
& =3.7+\left(\frac{3.9-3.7}{1.25-1.4}\right)(x-1.4) \\
& =3.7-\frac{4}{3}(x-1.4)
\end{aligned}
$$

As we can see, an interpolating polynomial can be written in a variety of forms; among these are those known as the Newton form and the Lagrange form. The Newton form is probably the most convenient and efficient; however, conceptually, the Lagrange form has several advantages. We begin with the Lagrange form, since it may be easier to understand.

Interpolating Polynomial: Lagrange Form

Suppose that we wish to interpolate arbitrary functions at a set of fixed nodes $x_{0}, x_{1}, \ldots, x_{n}$. We first define a system of $n+1$ special polynomials of degree n known as cardinal polynomials in interpolation theory. These are denoted by $\ell_{0}, \ell_{1}, \ldots, \ell_{n}$ and have the property

$$
\ell_{i}\left(x_{j}\right)=\delta_{i j}= \begin{cases}0 & \text { if } i \neq j \\ 1 & \text { if } i=j\end{cases}
$$

Once these are available, we can interpolate any function f by the Lagrange form of the interpolation polynomial:

$$
\begin{equation*}
p_{n}(x)=\sum_{i=0}^{n} \ell_{i}(x) f\left(x_{i}\right) \tag{1}
\end{equation*}
$$

This function p_{n}, being a linear combination of the polynomials ℓ_{i}, is itself a polynomial of degree at most n. Furthermore, when we evaluate p_{n} at x_{j}, we get $f\left(x_{j}\right)$:

$$
p_{n}\left(x_{j}\right)=\sum_{i=0}^{n} \ell_{i}\left(x_{j}\right) f\left(x_{i}\right)=\ell_{j}\left(x_{j}\right) f\left(x_{j}\right)=f\left(x_{j}\right)
$$

Thus, p_{n} is the interpolating polynomial for the function f at nodes $x_{0}, x_{1}, \ldots, x_{n}$. It remains now only to write the formula for the cardinal polynomial ℓ_{i}, which is

$$
\begin{equation*}
\ell_{i}(x)=\prod_{\substack{j \neq i \\ j=0}}^{n}\left(\frac{x-x_{j}}{x_{i}-x_{j}}\right) \quad(0 \leqq i \leqq n) \tag{2}
\end{equation*}
$$

This formula indicates that $\ell_{i}(x)$ is the product of n linear factors:

$$
\ell_{i}(x)=\left(\frac{x-x_{0}}{x_{i}-x_{0}}\right)\left(\frac{x-x_{1}}{x_{i}-x_{1}}\right) \cdots\left(\frac{x-x_{i-1}}{x_{i}-x_{i-1}}\right)\left(\frac{x-x_{i+1}}{x_{i}-x_{i+1}}\right) \cdots\left(\frac{x-x_{n}}{x_{i}-x_{n}}\right)
$$

(The denominators are just numbers; the variable x occurs only in the numerators.) Thus, ℓ_{i} is a polynomial of degree n. Notice that when $\ell_{i}(x)$ is evaluated at $x=x_{i}$, each factor in the preceding equation becomes 1 . Hence, $\ell_{i}\left(x_{i}\right)=1$. But when $\ell_{i}(x)$ is evaluated at any other node, say, x_{j}, one of the factors in the above equation will be 0 , and $\ell_{i}\left(x_{j}\right)=0$, for $i \neq j$.

Figure 4.1 shows the first few Lagrange cardinal polynomials: $\ell_{0}(x), \ell_{1}(x), \ell_{2}(x)$, $\ell_{3}(x), \ell_{4}(x)$, and $\ell_{5}(x)$.

FIGURE 4.1
First few
Lagrange cardinal polynomials

EXAMPLE 2 Write out the cardinal polynomials appropriate to the problem of interpolating the following table, and give the Lagrange form of the interpolating polynomial:

x	$\frac{1}{3}$	$\frac{1}{4}$	1
$f(x)$	2	-1	7

Solution Using Equation (2), we have

$$
\begin{aligned}
& \ell_{0}(x)=\frac{\left(x-\frac{1}{4}\right)(x-1)}{\left(\frac{1}{3}-\frac{1}{4}\right)\left(\frac{1}{3}-1\right)}=-18\left(x-\frac{1}{4}\right)(x-1) \\
& \ell_{1}(x)=\frac{\left(x-\frac{1}{3}\right)(x-1)}{\left(\frac{1}{4}-\frac{1}{3}\right)\left(\frac{1}{4}-1\right)}=16\left(x-\frac{1}{3}\right)(x-1) \\
& \ell_{2}(x)=\frac{\left(x-\frac{1}{3}\right)\left(x-\frac{1}{4}\right)}{\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)}=2\left(x-\frac{1}{3}\right)\left(x-\frac{1}{4}\right)
\end{aligned}
$$

Therefore, the interpolating polynomial in Lagrange's form is

$$
p_{2}(x)=-36\left(x-\frac{1}{4}\right)(x-1)-16\left(x-\frac{1}{3}\right)(x-1)+14\left(x-\frac{1}{3}\right)\left(x-\frac{1}{4}\right)
$$

Existence of Interpolating Polynomial

The Lagrange interpolation formula proves the existence of an interpolating polynomial for any table of values. There is another constructive way of proving this fact, and it leads to a different formula.

Suppose that we have succeeded in finding a polynomial p that reproduces part of the table. Assume, say, that $p\left(x_{i}\right)=y_{i}$ for $0 \leqq i \leqq k$. We shall attempt to add to p another term that will enable the new polynomial to reproduce one more entry in the table. We consider

$$
p(x)+c\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{k}\right)
$$

where c is a constant to be determined. This is surely a polynomial. It also reproduces the first k points in the table because p itself does so, and the added portion takes the value 0 at each of the points $x_{0}, x_{1}, \ldots, x_{k}$. (Its form is chosen for precisely this reason.) Now we adjust the parameter c so that the new polynomial takes the value y_{k+1} at x_{k+1}. Imposing this condition, we obtain

$$
p\left(x_{k+1}\right)+c\left(x_{k+1}-x_{0}\right)\left(x_{k+1}-x_{1}\right) \cdots\left(x_{k+1}-x_{k}\right)=y_{k+1}
$$

The proper value of c can be obtained from this equation because none of the factors $x_{k+1}-x_{i}$, for $0 \leqq i \leqq k$, can be zero. Remember our original assumption that the x_{i} 's are all distinct.

This analysis is an example of inductive reasoning. We have shown that the process can be started and that it can be continued. Hence, the following formal statement has been partially justified:

THEOREM ON EXISTENCE OF POLYNOMIAL INTERPOLATION

If points $x_{0}, x_{1}, \ldots, x_{n}$ are distinct, then for arbitrary real values $y_{0}, y_{1}, \ldots, y_{n}$, there is a unique polynomial p of degree at most n such that $p\left(x_{i}\right)=y_{i}$ for $0 \leqq i \leqq n$.

Two parts of this formal statement must still be established. First, the degree of the polynomial increases by at most 1 in each step of the inductive argument. At the beginning, the degree was at most 0 , so at the end, the degree is at most n.

Second, we establish the uniqueness of the polynomial p. Suppose that another polynomial q claims to accomplish what p does; that is, q is also of degree at most n and satisfies $q\left(x_{i}\right)=y_{i}$ for $0 \leqq i \leqq n$. Then the polynomial $p-q$ is of degree at most n and takes the value 0 at $x_{0}, x_{1}, \ldots, x_{n}$. Recall, however, that a nonzero polynomial of degree n can have at most n roots. We conclude that $p=q$, which establishes the uniqueness of p.

Interpolating Polynomial: Newton Form

In Example 2, we found the Lagrange form of the interpolating polynomial:

$$
p_{2}(x)=-36\left(x-\frac{1}{4}\right)(x-1)-16\left(x-\frac{1}{3}\right)(x-1)+14\left(x-\frac{1}{3}\right)\left(x-\frac{1}{4}\right)
$$

It can be simplified to

$$
p_{2}(x)=-\frac{79}{6}+\frac{349}{6} x-38 x^{2}
$$

We will now learn that this polynomial can be written in another form called the nested Newton form:

$$
p_{2}(x)=2+\left(x-\frac{1}{3}\right)\left[36+\left(x-\frac{1}{4}\right)(-38)\right]
$$

It involves the fewest arithmetic operations and is recommended for evaluating $p_{2}(x)$. It can not be overemphasized that the Newton and Lagrange forms are just two different derivations for precisely the same polynomial. The Newton form has the advantage of easy extensibility to accommodate additional data points.

The preceding discussion provides a method for constructing an interpolating polynomial. The method is known as the Newton algorithm, and the resulting polynomial is the Newton form of the interpolating polynomial.

EXAMPLE 3 Using the Newton algorithm, find the interpolating polynomial of least degree for this table:

x	0	1	-1	2	-2
y	-5	-3	-15	39	-9

Solution In the construction, five successive polynomials will appear; these are labeled $p_{0}, p_{1}, p_{2}, p_{3}$, and p_{4}. The polynomial p_{0} is defined to be

$$
p_{0}(x)=-5
$$

The polynomial p_{1} has the form

$$
p_{1}(x)=p_{0}(x)+c\left(x-x_{0}\right)=-5+c(x-0)
$$

The interpolation condition placed on p_{1} is that $p_{1}(1)=-3$. Therefore, we have $-5+$ $c(1-0)=-3$. Hence, $c=2$, and p_{1} is

$$
p_{1}(x)=-5+2 x
$$

The polynomial p_{2} has the form

$$
p_{2}(x)=p_{1}(x)+c\left(x-x_{0}\right)\left(x-x_{1}\right)=-5+2 x+c x(x-1)
$$

The interpolation condition placed on p_{2} is that $p_{2}(-1)=-15$. Hence, we have $-5+$ $2(-1)+c(-1)(-1-1)=-15$. This yields $c=-4$, so

$$
p_{2}(x)=-5+2 x-4 x(x-1)
$$

The remaining steps are similar, and the final result is the Newton form of the interpolating polynomial:

$$
p_{4}(x)=-5+2 x-4 x(x-1)+8 x(x-1)(x+1)+3 x(x-1)(x+1)(x-2)
$$

Later, we will develop a better algorithm for constructing the Newton interpolating polynomial. Nevertheless, the method just explained is a systematic one and involves very little computation. An important feature to notice is that each new polynomial in the algorithm is obtained from its predecessor by adding a new term. Thus, at the end, the final polynomial exhibits all the previous polynomials as constituents.

Nested Form

Before continuing, let us rewrite the Newton form of the interpolating polynomial for efficient evaluation.

EXAMPLE 4 Write the polynomial p_{4} of Example 3 in nested form and use it to evaluate $p_{4}(3)$.
Solution We write p_{4} as

$$
p_{4}(x)=-5+x(2+(x-1)(-4+(x+1)(8+(x-2) 3)))
$$

Therefore,

$$
\begin{aligned}
p_{4}(3) & =-5+3(2+2(-4+4(8+3))) \\
& =241
\end{aligned}
$$

Another solution, also in nested form, is

$$
p_{4}(x)=-5+x(4+x(-7+x(2+3 x)))
$$

from which we obtain

$$
p_{4}(3)=-5+3(4+3(-7+3(2+3 \cdot 3)))=241
$$

This form is obtained by expanding and systematic factoring of the original polynomial. It is also known as a nested form and its evaluation is by nested multiplication.

To describe nested multiplication in a formal way (so that it can be translated into a code), consider a general polynomial in the Newton form. It might be

$$
\begin{aligned}
p(x)= & a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)\left(x-x_{1}\right)+\cdots \\
& +a_{n}\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n-1}\right)
\end{aligned}
$$

The nested form of $p(x)$ is

$$
\begin{aligned}
p(x) & \left.\left.=a_{0}+\left(x-x_{0}\right)\left(a_{1}+\left(x-x_{1}\right)\left(a_{2}+\cdots+\left(x-x_{n-1}\right) a_{n}\right)\right) \cdots\right)\right) \\
& =\left(\cdots\left(\left(a_{n}\left(x-x_{n-1}\right)+a_{n-1}\right)\left(x-x_{n-2}\right)+a_{n-2}\right) \cdots\right)\left(x-x_{0}\right)+a_{0}
\end{aligned}
$$

The Newton interpolation polynomial can be written succinctly as

$$
\begin{equation*}
p_{n}(x)=\sum_{i=0}^{n} a_{i} \prod_{j=0}^{i-1}\left(x-x_{j}\right) \tag{3}
\end{equation*}
$$

Here $\prod_{j=0}^{-1}\left(x-x_{j}\right)$ is interpreted to be 1 . Also, we can write it as

$$
p_{n}(x)=\sum_{i=0}^{n} a_{i} \pi_{i}(x)
$$

where

$$
\begin{equation*}
\pi_{i}(x)=\prod_{j=0}^{i-1}\left(x-x_{j}\right) \tag{4}
\end{equation*}
$$

Figure 4.2 shows the first few Newton polynomials: $\pi_{0}(x), \pi_{1}(x), \pi_{2}(x), \pi_{3}(x), \pi_{4}(x)$, and $\pi_{5}(x)$.

FIGURE 4.2
First few Newton polynomials

In evaluating $p(t)$ for a given numerical value of t, we naturally start with the innermost parentheses, forming successively the following quantities:

$$
\begin{aligned}
v_{0} & =a_{n} \\
v_{1} & =v_{0}\left(t-x_{n-1}\right)+a_{n-1} \\
v_{2} & =v_{1}\left(t-x_{n-2}\right)+a_{n-2} \\
& \vdots \\
& \\
v_{n} & =v_{n-1}\left(t-x_{0}\right)+a_{0}
\end{aligned}
$$

The quantity v_{n} is now $p(t)$. In the following pseudocode, a subscripted variable is not needed for v_{i}. Instead, we can write

```
integer \(i, n ; \quad\) real \(t, v ; \quad\) real array \(\left(a_{i}\right)_{0: n},\left(x_{i}\right)_{0: n}\)
\(v \leftarrow a_{n}\)
for \(i=n-1\) to 0 step -1 do
    \(v \leftarrow v\left(t-x_{i}\right)+a_{i}\)
end for
```

Here, the array $\left(a_{i}\right)_{0: n}$ contains the $n+1$ coefficients of the Newton form of the interpolating polynomial (3) of degree at most n, and the array $\left(x_{i}\right)_{0: n}$ contains the $n+1$ nodes x_{i}.

Calculating Coefficients \boldsymbol{a}_{i} Using Divided Differences

We turn now to the problem of determining the coefficients $a_{0}, a_{1}, \ldots, a_{n}$ efficiently. Again we start with a table of values of a function f :

x	x_{0}	x_{1}	x_{2}	\cdots	x_{n}
$f(x)$	$f\left(x_{0}\right)$	$f\left(x_{1}\right)$	$f\left(x_{2}\right)$	\cdots	$f\left(x_{n}\right)$

The points $x_{0}, x_{1}, \ldots, x_{n}$ are assumed to be distinct, but no assumption is made about their positions on the real line.

Previously, we established that for each $n=0,1, \ldots$, there exists a unique polynomial p_{n} such that

- The degree of p_{n} is at most n.
- $p_{n}\left(x_{i}\right)=f\left(x_{i}\right)$ for $i=0,1, \ldots, n$.

It was shown that p_{n} can be expressed in the Newton form

$$
\begin{aligned}
p_{n}(x)= & a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)\left(x-x_{1}\right)+\cdots \\
& +a_{n}\left(x-x_{0}\right) \cdots\left(x-x_{n-1}\right)
\end{aligned}
$$

A crucial observation about p_{n} is that the coefficients a_{0}, a_{1}, \ldots do not depend on n. In other words, p_{n} is obtained from p_{n-1} by adding one more term, without altering the coefficients already present in p_{n-1} itself. This is because we began with the hope that p_{n} could be expressed in the form

$$
p_{n}(x)=p_{n-1}(x)+a_{n}\left(x-x_{0}\right) \cdots\left(x-x_{n-1}\right)
$$

and discovered that it was indeed possible.
A way of systematically determining the unknown coefficients $a_{0}, a_{1}, \ldots, a_{n}$ is to set x equal in turn to $x_{0}, x_{1}, \ldots, x_{n}$ in the Newton form (3) and to write down the resulting equations:

$$
\left\{\begin{array}{l}
f\left(x_{0}\right)=a_{0} \tag{5}\\
f\left(x_{1}\right)=a_{0}+a_{1}\left(x_{1}-x_{0}\right) \\
f\left(x_{2}\right)=a_{0}+a_{1}\left(x_{2}-x_{0}\right)+a_{2}\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right) \\
\quad \text { etc. }
\end{array}\right.
$$

The compact form of Equations (5) is

$$
\begin{equation*}
f\left(x_{k}\right)=\sum_{i=0}^{k} a_{i} \prod_{j=0}^{i-1}\left(x_{k}-x_{j}\right) \quad(0 \leqq k \leqq n) \tag{6}
\end{equation*}
$$

Equations (5) can be solved for the a_{i} 's in turn, starting with a_{0}. Then we see that a_{0} depends on $f\left(x_{0}\right)$, that a_{1} depends on $f\left(x_{0}\right)$ and $f\left(x_{1}\right)$, and so on. In general, a_{k} depends on $f\left(x_{0}\right)$, $f\left(x_{1}\right), \ldots, f\left(x_{k}\right)$. In other words, a_{k} depends on the values of f at the nodes $x_{0}, x_{1}, \ldots, x_{k}$. The traditional notation is

$$
\begin{equation*}
a_{k}=f\left[x_{0}, x_{1}, \ldots, x_{k}\right] \tag{7}
\end{equation*}
$$

This equation defines $f\left[x_{0}, x_{1}, \ldots, x_{k}\right]$. The quantity $f\left[x_{0}, x_{1}, \ldots, x_{k}\right]$ is called the divided difference of order \boldsymbol{k} for f. Notice also that the coefficients $a_{0}, a_{1}, \ldots, a_{k}$ are uniquely determined by System (6). Indeed, there is no possible choice for a_{0} other than $a_{0}=f\left(x_{0}\right)$. Similarly, there is now no choice for a_{1} other than $\left[f\left(x_{1}\right)-a_{0}\right] /\left(x_{1}-x_{0}\right)$ and so on. Using Equations (5), we see that the first few divided differences can be written as

$$
\begin{aligned}
& a_{0}=f\left(x_{0}\right) \\
& a_{1}=\frac{f\left(x_{1}\right)-a_{0}}{x_{1}-x_{0}}=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}} \\
& a_{2}=\frac{f\left(x_{2}\right)-a_{0}-a_{1}\left(x_{2}-x_{0}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)}=\frac{\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}-\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}}{x_{2}-x_{0}}
\end{aligned}
$$

EXAMPLE 5 For the table

x	1	-4	0
$f(x)$	3	13	-23

determine the quantities $f\left[x_{0}\right], f\left[x_{0}, x_{1}\right]$, and $f\left[x_{0}, x_{1}, x_{2}\right]$.
Solution We write out the system of Equations (5) for this concrete case:

$$
\left\{\begin{aligned}
3 & =a_{0} \\
13 & =a_{0}+a_{1}(-5) \\
-23 & =a_{0}+a_{1}(-1)+a_{2}(-1)(4)
\end{aligned}\right.
$$

The solution is $a_{0}=3, a_{1}=-2$, and $a_{2}=7$. Hence, for this function, $f[1]=3$, $f[1,-4]=-2$, and $f[1,-4,0]=7$.

With this new notation, the Newton form of the interpolating polynomial takes the form

$$
\begin{equation*}
p_{n}(x)=\sum_{i=0}^{n}\left\{f\left[x_{0}, x_{1}, \ldots, x_{i}\right] \prod_{j=0}^{i-1}\left(x-x_{j}\right)\right\} \tag{8}
\end{equation*}
$$

with the usual convention that $\prod_{j=0}^{-1}\left(x-x_{j}\right)=1$. Notice that the coefficient of x^{n} in p_{n} is $f\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ because the term x^{n} occurs only in $\prod_{j=0}^{n-1}\left(x-x_{j}\right)$. It follows that if f is a polynomial of degree $\leqq n-1$, then $f\left[x_{0}, x_{1}, \ldots, x_{n}\right]=0$.

We return to the question of how to compute the required divided differences $f\left[x_{0}, x_{1}, \ldots, x_{k}\right]$. From System (5) or (6), it is evident that this computation can be performed recursively. We simply solve Equation (6) for a_{k} as follows:

$$
f\left(x_{k}\right)=a_{k} \prod_{j=0}^{k-1}\left(x_{k}-x_{j}\right)+\sum_{i=0}^{k-1} a_{i} \prod_{j=0}^{i-1}\left(x_{k}-x_{j}\right)
$$

and

$$
a_{k}=\frac{f\left(x_{k}\right)-\sum_{i=0}^{k-1} a_{i} \prod_{j=0}^{i-1}\left(x_{k}-x_{j}\right)}{\prod_{j=0}^{k-1}\left(x_{k}-x_{j}\right)}
$$

Using Equation (7), we have

$$
\begin{equation*}
f\left[x_{0}, x_{1}, \ldots, x_{k}\right]=\frac{f\left(x_{k}\right)-\sum_{i=0}^{k-1} f\left[x_{0}, x_{1}, \ldots, x_{i}\right] \prod_{j=0}^{i-1}\left(x_{k}-x_{j}\right)}{\prod_{j=0}^{k-1}\left(x_{k}-x_{j}\right)} \tag{9}
\end{equation*}
$$

ALGORITHM 1 An Algorithm for Computing the Divided Differences of f

- Set $f\left[x_{0}\right]=f\left(x_{0}\right)$.
- For $k=1,2, \ldots, n$, compute $f\left[x_{0}, x_{1}, \ldots, x_{k}\right]$ by Equation (9).

EXAMPLE 6 Using Algorithm (10), write out the formulas for $f\left[x_{0}\right], f\left[x_{0}, x_{1}\right], f\left[x_{0}, x_{1}, x_{2}\right]$, and $f\left[x_{0}, x_{1}, x_{2}, x_{3}\right]$.

Solution

$$
\begin{aligned}
f\left[x_{0}\right] & =f\left(x_{0}\right) \\
f\left[x_{0}, x_{1}\right] & =\frac{f\left(x_{1}\right)-f\left[x_{0}\right]}{x_{1}-x_{0}} \\
f\left[x_{0}, x_{1}, x_{2}\right] & =\frac{f\left(x_{2}\right)-f\left[x_{0}\right]-f\left[x_{0}, x_{1}\right]\left(x_{2}-x_{0}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)} \\
f\left[x_{0}, x_{1}, x_{2}, x_{3}\right] & =\frac{f\left(x_{3}\right)-f\left[x_{0}\right]-f\left[x_{0}, x_{1}\right]\left(x_{3}-x_{0}\right)-f\left[x_{0}, x_{1}, x_{2}\right]\left(x_{3}-x_{0}\right)\left(x_{3}-x_{1}\right)}{\left(x_{3}-x_{0}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)}
\end{aligned}
$$

Algorithm (10) is easily programmed and is capable of computing the divided differences $f\left[x_{0}\right], f\left[x_{0}, x_{1}\right], \ldots, f\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ at the cost of $\frac{1}{2} n(3 n+1)$ additions, $(n-1)(n-2)$ multiplications, and n divisions excluding arithmetic operations on the indices. A more refined method will now be presented for which the pseudocode requires only three statements (!) and costs only $\frac{1}{2} n(n+1)$ divisions and $n(n+1)$ additions.

At the heart of the new method is the following remarkable theorem:

THEOREM 2

RECURSIVE PROPERTY OF DIVIDED DIFFERENGES

The divided differences obey the formula

$$
\begin{equation*}
f\left[x_{0}, x_{1}, \ldots, x_{k}\right]=\frac{f\left[x_{1}, x_{2}, \ldots, x_{k}\right]-f\left[x_{0}, x_{1}, \ldots, x_{k-1}\right]}{x_{k}-x_{0}} \tag{11}
\end{equation*}
$$

Proof Since $f\left[x_{0}, x_{1}, \ldots, x_{k}\right]$ was defined to be equal to the coefficient a_{k} in the Newton form of the interpolating polynomial p_{k} of Equation (3), we can say that $f\left[x_{0}, x_{1}, \ldots, x_{k}\right]$ is the coefficient of x^{k} in the polynomial p_{k} of degree $\leqq k$, which interpolates f at $x_{0}, x_{1}, \ldots, x_{k}$. Similarly, $f\left[x_{1}, x_{2}, \ldots, x_{k}\right]$ is the coefficient of x^{k-1} in the polynomial q of degree $\leqq k-1$, which interpolates f at $x_{1}, x_{2}, \ldots, x_{k}$. Likewise, $f\left[x_{0}, x_{1}, \ldots, x_{k-1}\right]$ is the coefficient of x^{k-1} in the polynomial p_{k-1} of degree $\leqq k-1$, which interpolates f at $x_{0}, x_{1}, \ldots, x_{k-1}$. The three polynomials p_{k}, q, and p_{k-1} are intimately related. In fact,

$$
\begin{equation*}
p_{k}(x)=q(x)+\frac{x-x_{k}}{x_{k}-x_{0}}\left[q(x)-p_{k-1}(x)\right] \tag{12}
\end{equation*}
$$

To establish Equation (12), observe that the right side is a polynomial of degree at most k. Evaluating it at x_{i}, for $1 \leqq i \leqq k-1$, results in $f\left(x_{i}\right)$:

$$
\begin{aligned}
q\left(x_{i}\right)+\frac{x_{i}-x_{k}}{x_{k}-x_{0}}\left[q\left(x_{i}\right)-p_{k-1}\left(x_{i}\right)\right] & =f\left(x_{i}\right)+\frac{x_{i}-x_{k}}{x_{k}-x_{0}}\left[f\left(x_{i}\right)-f\left(x_{i}\right)\right] \\
& =f\left(x_{i}\right)
\end{aligned}
$$

Similarly, evaluating it at x_{0} and x_{k} gives $f\left(x_{0}\right)$ and $f\left(x_{k}\right)$, respectively. By the uniqueness of interpolating polynomials, the right side of Equation (12) must be $p_{k}(x)$, and Equation (12) is established.

Completing the argument to justify Equation (11), we take the coefficient of x^{k} on both sides of Equation (12). The result is Equation (11). Indeed, we see that $f\left[x_{1}, x_{2}, \ldots, x_{k}\right]$ is the coefficient of x^{k-1} in q, and $f\left[x_{0}, x_{1}, \ldots, x_{k-1}\right]$ is the coefficient of x^{k-1} in p_{k-1}.

Notice that $f\left[x_{0}, x_{1}, \ldots, x_{k}\right]$ is not changed if the nodes $x_{0}, x_{1}, \ldots, x_{k}$ are permuted: thus, for example, $f\left[x_{0}, x_{1}, x_{2}\right]=f\left[x_{1}, x_{2}, x_{0}\right]$. The reason is that $f\left[x_{0}, x_{1}, x_{2}\right]$ is the coefficient of x^{2} in the quadratic polynomial interpolating f at x_{0}, x_{1}, x_{2}, whereas $f\left[x_{1}, x_{2}, x_{0}\right]$ is the coefficient of x^{2} in the quadratic polynomial interpolating f at x_{1}, x_{2}, x_{0}. These two polynomials are, of course, the same. A formal statement in mathematical language is as follows:

INVARIANCE THEOREM

The divided difference $f\left[x_{0}, x_{1}, \ldots, x_{k}\right]$ is invariant under all permutations of the arguments $x_{0}, x_{1}, \ldots, x_{k}$.

Since the variables $x_{0}, x_{1}, \ldots, x_{k}$ and k are arbitrary, the recursive Formula (11) can also be written as

$$
\begin{equation*}
f\left[x_{i}, x_{i+1}, \ldots, x_{j-1}, x_{j}\right]=\frac{f\left[x_{i+1}, x_{i+2}, \ldots, x_{j}\right]-f\left[x_{i}, x_{i+1}, \ldots, x_{j-1}\right]}{x_{j}-x_{i}} \tag{13}
\end{equation*}
$$

The first three divided differences are thus

$$
\begin{aligned}
f\left[x_{i}\right] & =f\left(x_{i}\right) \\
f\left[x_{i}, x_{i+1}\right] & =\frac{f\left[x_{i+1}\right]-f\left[x_{i}\right]}{x_{i+1}-x_{i}} \\
f\left[x_{i}, x_{i+1}, x_{i+2}\right] & =\frac{f\left[x_{i+1}, x_{i+2}\right]-f\left[x_{i}, x_{i+1}\right]}{x_{i+2}-x_{i}}
\end{aligned}
$$

Using Formula (13), we can construct a divided-difference table for a function f. It is customary to arrange it as follows (here $n=3$):

x	$f[]$	$f[]$,	$f[,]$,	$f[,,]$,
x_{0}	$f\left[x_{0}\right]$			
x_{1}	$f\left[x_{1}\right]$	$f\left[x_{0}, x_{1}\right]$		$f\left[x_{0}, x_{1}, x_{2}\right]$
x_{2}	$f\left[x_{2}\right]$	$f\left[x_{1}, x_{2}\right]$		
	$f\left[x_{1}, x_{2}, x_{3}\right]$			
x_{3}	$f\left[x_{3}\right]$	$f\left[x_{2}, x_{1}\right]$		

In the table, the coefficients along the top diagonal are the ones needed to form the Newton form of the interpolating polynomial (3).

EXAMPLE 7 Construct a divided-difference diagram for the function f given in the following table, and write out the Newton form of the interpolating polynomial.

x	1	$\frac{3}{2}$	0	2
$f(x)$	3	$\frac{13}{4}$	3	$\frac{5}{3}$

Solution The first entry is $f\left[x_{0}, x_{1}\right]=\left(\frac{13}{4}-3\right) /\left(\frac{3}{2}-1\right)=\frac{1}{2}$. After completion of column 3, the first entry in column 4 is

$$
f\left[x_{0}, x_{1}, x_{2}\right]=\frac{f\left[x_{1}, x_{2}\right]-f\left[x_{0}, x_{1}\right]}{x_{2}-x_{0}}=\frac{\frac{1}{6}-\frac{1}{2}}{0-1}=\frac{1}{3}
$$

The complete diagram is

x	$f[]$	$f[]$,	$f[,]$,	$f[,,]$,
1	3			
$\frac{3}{2}$	$\frac{13}{4}$	$\frac{1}{2}$		
0	3	$\frac{1}{6}$	$-\frac{5}{3}$	-2
2	$\frac{5}{3}$	$-\frac{2}{3}$		

Thus, we obtain

$$
p_{3}(x)=3+\frac{1}{2}(x-1)+\frac{1}{3}(x-1)\left(x-\frac{3}{2}\right)-2(x-1)\left(x-\frac{3}{2}\right) x
$$

Algorithms and Pseudocode

Turning next to algorithms, we suppose that a table for f is given at points $x_{0}, x_{1}, \ldots, x_{n}$ and that all the divided differences $a_{i j} \equiv f\left[x_{i}, x_{i+1}, \ldots, x_{j}\right]$ are to be computed. The following pseudocode accomplishes this:

```
integer }i,j,n; real array (aij) (a:n\times0:n,( (xi ) 0:n
for }i=0\mathrm{ to }n\mathrm{ do
    ai0}\leftarrowf(\mp@subsup{x}{i}{}
end for
for }j=1\mathrm{ to }n\mathrm{ do
    for }i=0\mathrm{ to }n-j\mathrm{ do
        aij}\leftarrow(\mp@subsup{a}{i+1,j-1}{}-\mp@subsup{a}{i,j-1}{})/(\mp@subsup{x}{i+j}{}-\mp@subsup{x}{i}{}
    end for
end for
```

Observe that the coefficients of the interpolating polynomial (3) are stored in the first row of the array $\left(a_{i j}\right)_{0: n \times 0: n}$.

If the divided differences are being computed for use only in constructing the Newton form of the interpolation polynomial

$$
p_{n}(x)=\sum_{i=0}^{n} a_{i} \prod_{j=0}^{i-1}\left(x-x_{j}\right)
$$

where $a_{i}=f\left[x_{0}, x_{1}, \ldots, x_{i}\right]$, there is no need to store all of them. Only $f\left[x_{0}\right], f\left[x_{0}, x_{1}\right], \ldots$, $f\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ need to be stored.

When a one-dimensional array $\left(a_{i}\right)_{0: n}$ is used, the divided differences can be overwritten each time from the last storage location backward so that, finally, only the desired coefficients
remain. In this case, the amount of computing is the same as in the preceding case, but the storage requirements are less. (Why?) Here is a pseudocode to do this:

```
integer \(i, j, n ; \quad\) real array \(\left(a_{i}\right)_{0: n},\left(x_{i}\right)_{0: n}\)
for \(i=0\) to \(n\) do
    \(a_{i} \leftarrow f\left(x_{i}\right)\)
end for
for \(j=1\) to \(n\) do
    for \(i=n\) to \(j\) step -1 do
        \(a_{i} \leftarrow\left(a_{i}-a_{i-1}\right) /\left(x_{i}-x_{i-j}\right)\)
    end for
end for
```

This algorithm is more intricate, and the reader is invited to verify it-say, in the case $n=3$.
For the numerical experiments suggested in the computer problems, the following two procedures should be satisfactory. The first is called Coef. It requires as input the number n and tabular values in the arrays $\left(x_{i}\right)$ and $\left(y_{i}\right)$. Remember that the number of points in the table is $n+1$. The procedure then computes the coefficients required in the Newton interpolating polynomial, storing them in the array $\left(a_{i}\right)$.

```
procedure \(\operatorname{Coef}\left(n,\left(x_{i}\right),\left(y_{i}\right),\left(a_{i}\right)\right)\)
integer \(i, j, n\); real array \(\left(x_{i}\right)_{0: n},\left(y_{i}\right)_{0: n},\left(a_{i}\right)_{0: n}\)
for \(i=0\) to \(n\) do
    \(a_{i} \leftarrow y_{i}\)
end for
for \(j=1\) to \(n\) do
    for \(i=n\) to \(j\) step -1 do
        \(a_{i} \leftarrow\left(a_{i}-a_{i-1}\right) /\left(x_{i}-x_{i-j}\right)\)
    end for
end for
end procedure Coef
```

The second is function Eval. It requires as input the array $\left(x_{i}\right)$ from the original table and the array $\left(a_{i}\right)$, which is output from Coef. The array $\left(a_{i}\right)$ contains the coefficients for the Newton form of the interpolation polynomial. Finally, as input, a single real value for t is given. The function then returns the value of the interpolating polynomial at t.

```
real function \(\operatorname{Eval}\left(n,\left(x_{i}\right),\left(a_{i}\right), t\right)\)
integer \(i, n\); real \(t\), temp; real array \(\left(x_{i}\right)_{0: n},\left(a_{i}\right)_{0: n}\)
temp \(\leftarrow a_{n}\)
for \(i=n-1\) to 0 step -1 do
    temp \(\leftarrow(\) temp \()\left(t-x_{i}\right)+a_{i}\)
end for
Eval \(\leftarrow\) temp
end function Eval
```

Since the coefficients of the interpolating polynomial need be computed only once, we call Coef first, and then all subsequent calls for evaluating this polynomial are accomplished with Eval. Notice that only the t argument should be changed between successive calls to function Eval.

EXAMPLE 8 Write pseudocode for the Newton form of the interpolating polynomial p for $\sin x$ at ten equidistant points in the interval [$0,1.6875$]. The code finds the maximum value of $|\sin x-p(x)|$ over a finer set of equally spaced points in the same interval.

Solution If we take ten points, including the ends of the interval, then we create nine subintervals, each of length $h=0.1875$. The points are then $x_{i}=i h$ for $i=0,1, \ldots, 9$. After obtaining the polynomial, we divide each subinterval into four panels, and we evaluate $|\sin x-p(x)|$ at 37 points (called t in the pseudocode). These are $t_{j}=j h / 4$ for $j=0,1, \ldots, 36$. Here is a suitable main program in pseudocode that calls the procedures Coef and Eval previously given:

```
program Test_Coef_Eval
integer \(j, k, n, j_{\max } ; \quad\) real \(e, h, p, e_{\max }, p_{\max }, t_{\max }\),
real array \(\left(x_{i}\right)_{0: n},\left(y_{i}\right)_{0: n},\left(a_{i}\right)_{0: n}\)
\(n \leftarrow 9\)
\(h \leftarrow 1.6875 / n\)
for \(k=0\) to \(n\) do
    \(x_{k} \leftarrow k h\)
    \(y_{k} \leftarrow \sin \left(x_{k}\right)\)
end for
call \(\operatorname{Coef}\left(n,\left(x_{i}\right),\left(y_{i}\right),\left(a_{i}\right)\right)\)
output \(\left(a_{i}\right) ; e_{\text {max }} \leftarrow 0\)
for \(j=0\) to \(4 n\) do
    \(t \leftarrow j h / 4\)
    \(p \leftarrow \operatorname{Eval}\left(n,\left(x_{i}\right)_{n},\left(a_{i}\right)_{n}, t\right)\)
    \(e \leftarrow|\sin (t)-p|\)
    output \(j, t, p, e\)
    if \(e>e_{\text {max }}\) then
        \(j_{\max } \leftarrow j ; t_{\max } \leftarrow t ; p_{\text {max }} \leftarrow p ; e_{\max } \leftarrow e\)
    end if
end for
output \(j_{\text {max }}, t_{\text {max }}, p_{\text {max }}, e_{\text {max }}\)
end program Test_Coef_Eval
```

The first coefficient in the Newton form of the interpolating polynomial is 0 (why?), and the others range in magnitude from approximately 0.99 to 0.18×10^{-5}. The deviation between $\sin x$ and $p(x)$ is practically zero at each interpolation node. (Because of roundoff errors, they are not precisely zero.) From the computer output, the largest error is at $j_{\max }=35$, where $\sin (1.640625) \approx 0.9975631$ with an error of 1.19×10^{-7}.

Vandermonde Matrix

Another view of interpolation is that for a given set of $n+1$ data points $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right)$, $\ldots,\left(x_{n}, y_{n}\right)$, we want to express an interpolating function $f(x)$ as a linear combination of a set of basis functions $\varphi_{0}, \varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}$ so that

$$
f(x) \approx c_{0} \varphi_{0}(x)+c_{1} \varphi_{1}(x)+c_{2} \varphi_{2}(x)+\cdots+c_{n} \varphi_{n}(x)
$$

Here the coefficients $c_{0}, c_{1}, c_{2}, \ldots, c_{n}$ are to be determined. We want the function f to interpolate the data $\left(x_{i}, y_{i}\right)$. This means that we have linear equations of the form

$$
f\left(x_{i}\right)=c_{0} \varphi_{0}\left(x_{i}\right)+c_{1} \varphi_{1}\left(x_{i}\right)+c_{2} \varphi_{2}\left(x_{i}\right)+\cdots+c_{n} \varphi_{n}\left(x_{i}\right)=y_{i}
$$

for each $i=0,1,2, \ldots, n$. This is a system of linear equations

$$
\mathbf{A c}=\mathbf{y}
$$

Here, the entries in the coefficient matrix \mathbf{A} are given by $a_{i j}=\varphi_{j}\left(x_{i}\right)$, which is the value of the j th basis function evaluated at the i th data point. The right-hand side vector \mathbf{y} contains the known data values y_{i}, and the components of the vector \mathbf{c} are the unknown coefficients c_{i}. Systems of linear equations are discussed in Chapters 7 and 8.

Polynomials are the simplest and most common basis functions. The natural basis for \mathbb{P}_{n} consists of the monomials

$$
\varphi_{0}(x)=1, \varphi_{1}(x)=x, \varphi_{2}(x)=x^{2}, \ldots, \varphi_{n}(x)=x^{n}
$$

Figure 4.3 shows the first few monomials: $1, x, x^{2}, x^{3}, x^{4}$, and x^{5}.

FIGURE 4.3
First few monomials

Consequently, a given polynomial p_{n} has the form

$$
p_{n}(x)=c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{n} x^{n}
$$

The corresponding linear system $\mathbf{A c}=\mathbf{y}$ has the form

$$
\left[\begin{array}{ccccc}
1 & x_{0} & x_{0}^{2} & \cdots & x_{0}^{n} \\
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n} \\
1 & x_{2} & x_{2}^{2} & \cdots & x_{2}^{n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{n}
\end{array}\right]\left[\begin{array}{c}
c_{0} \\
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right]=\left[\begin{array}{c}
y_{0} \\
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]
$$

The coefficient matrix is called a Vandermonde matrix. It can be shown that this matrix is nonsingular provided that the points $x_{0}, x_{1}, x_{2}, \ldots, x_{n}$ are distinct. So we can, in theory, solve the system for the polynomial interpolant. Although the Vandermonde matrix is nonsingular, it is ill-conditioned as n increases. For large n, the monomials are less distinguishable from one another, as shown in Figure 4.4. Moreover, the columns of the Vandermonde become nearly linearly dependent in this case. High-degree polynomials often oscillate wildly and are highly sensitive to small changes in the data.

FIGURE 4.4
First few Chebyshev polynomials

As Figures 4.1, 4.2, and 4.3 show, we have discussed three choices for the basis functions: the Lagrange cardinal polynomials $\ell_{i}(x)$, the Newton polynomials $\pi_{i}(x)$, and the monomials. It turns out that there are better choices for the basis functions; namely, the Chebyshev polynomials have more desirable features.

The Chebyshev polynomials play an important role in mathematics because they have several special properties such as the recursive relation

$$
\left\{\begin{array}{l}
T_{0}(x)=1, T_{1}(x)=x \\
T_{i}(x)=2 x T_{i-1}(x)-T_{i-2}(x)
\end{array}\right.
$$

for $i=2,3,4$, and so on. Thus, the first five Chebyshev polynomials are

$$
\begin{aligned}
& T_{0}(x)=1, \quad T_{1}(x)=x, \quad T_{2}(x)=2 x^{2}-1, \quad T_{3}(x)=4 x^{3}-3 x \\
& T_{4}(x)=8 x^{4}-8 x^{2}+1, \quad T_{5}(x)=16 x^{5}-20 x^{3}+5 x
\end{aligned}
$$

These curves for these polynomials, as is shown in Figure 4.4, are quite different from one another. The Chebyshev polynomials are usually employed on the interval $[-1,1]$.

With changes of variable, they can be used on any interval, but the results will be more complicated.

One of the important properties of the Chebyshev polynomials is the equal oscillation property. Notice in Figure 4.4 that successive extreme points of the Chebyshev polynomials are equal in magnitude and alternate in sign. This property tends to distribute the error uniformly when the Chebyshev polynomials are used as the basis functions. In polynomial interpolation for continuous functions, it is particularly advantageous to select as the interpolation points the roots or the extreme points of a Chebyshev polynomial. This causes the maximum error over the interval of interpolation to be minimized. An example of this is given in Section 4.2. In Section 12.2, we discuss Chebyshev polynomials in more detail.

Inverse Interpolation

A process called inverse interpolation is often used to approximate an inverse function. Suppose that values $y_{i}=f\left(x_{i}\right)$ have been computed at $x_{0}, x_{1}, \ldots, x_{n}$. Using the table

$$
\begin{array}{l|l|l|l|l}
y & y_{0} & y_{1} & \cdots & y_{n} \\
\hline x & x_{0} & x_{1} & \cdots & x_{n}
\end{array}
$$

we form the interpolation polynomial

$$
p(y)=\sum_{i=0}^{n} c_{i} \prod_{j=0}^{i-1}\left(y-y_{j}\right)
$$

The original relationship, $y=f(x)$, has an inverse, under certain conditions. This inverse is being approximated by $x=p(y)$. Procedures Coef and Eval can be used to carry out the inverse interpolation by reversing the arguments x and y in the calling sequence for Coef.

Inverse interpolation can be used to find where a given function f has a root or zero. This means inverting the equation $f(x)=0$. We propose to do this by creating a table of values $\left(f\left(x_{i}\right), x_{i}\right)$ and interpolating with a polynomial, p. Thus, $p\left(y_{i}\right)=x_{i}$. The points x_{i} should be chosen near the unknown root, r. The approximate root is then given by $r \approx p(0)$. See Figure 4.5 for an example of function $y=f(x)$ and its inverse function $x=g(y)$ with the root $r=g(0)$.

FIGURE 4.5
Function $y=f(x)$ and inverse function $x=g(y)$

EXAMPLE 9 For a concrete case, let the table of known values be

y	-0.5789200	-0.3626370	-0.1849160	-0.0340642	0.0969858
x	1.0	2.0	3.0	4.0	5.0

Find the inverse interpolation polynomial.

Solution The nodes in this problem are the points in the row of the table headed y, and the function values being interpolated are in the x row. The resulting polynomial is

$$
p(y)=0.25 y^{4}+1.2 y^{3}+3.69 y^{2}+7.39 y+4.247470086
$$

and $p(0)=4.247470086$. Only the last coefficient is shown with all the digits carried in the calculation, as it is the only one needed for the problem at hand.

Polynomial Interpolation by Neville's Algorithm

Another method of obtaining a polynomial interpolant from a given table of values

x	x_{0}	x_{1}	\cdots	x_{n}
y	y_{0}	y_{1}	\cdots	y_{n}

was given by Neville. It builds the polynomial in steps, just as the Newton algorithm does. The constituent polynomials have interpolating properties of their own.

Let $P_{a, b, \ldots, s}(x)$ be the polynomial interpolating the given data at a sequence of nodes $x_{a}, x_{b}, \ldots, x_{s}$. We start with constant polynomials $P_{i}(x)=f\left(x_{i}\right)$. Selecting two nodes x_{i} and x_{j} with $i>j$, we define recursively

$$
P_{u, \ldots, v}(x)=\left(\frac{x-x_{j}}{x_{i}-x_{j}}\right) P_{u, \ldots, j-1, j+1, \ldots, v}(x)+\left(\frac{x_{i}-x}{x_{i}-x_{j}}\right) P_{u, \ldots, i-1, i+1, \ldots, v}(x)
$$

Using this formula repeatedly, we can create an array of polynomials:

$$
\begin{array}{l|lllll}
x_{0} & P_{0}(x) & & & & \\
x_{1} & P_{1}(x) & P_{0,1}(x) & & & \\
x_{2} & P_{2}(x) & P_{1,2}(x) & P_{0,1,2}(x) & & \\
x_{3} & P_{3}(x) & P_{2,3}(x) & P_{1,2,3}(x) & P_{0,1,2,3}(x) & \\
x_{4} & P_{4}(x) & P_{3,4}(x) & P_{2,3,4}(x) & P_{1,2,3,4}(x) & P_{0,1,2,3,4}(x)
\end{array}
$$

Here, each successive polynomial can be determined from two adjacent polynomials in the previous column.

We can simplify the notation by letting

$$
S_{i j}(x)=P_{i-j, i-j+1, \ldots, i-1, i}(x)
$$

where $S_{i j}(x)$ for $i \geqq j$ denotes the interpolating polynomial of degree j on the $j+1$ nodes $x_{i-j}, x_{i-j+1}, \ldots, x_{i-1}, x_{i}$. Next we can rewrite the recurrence relation above as

$$
S_{i j}(x)=\left(\frac{x-x_{i-j}}{x_{i}-x_{i-j}}\right) S_{i, j-1}(x)+\left(\frac{x_{i}-x}{x_{i}-x_{i-j}}\right) S_{i-1, j-1}(x)
$$

So the displayed array becomes

x_{0}	$S_{00}(x)$				
x_{1}	$S_{10}(x)$	$S_{11}(x)$			
x_{2}	$S_{20}(x)$	$S_{21}(x)$	$S_{22}(x)$		
x_{3}	$S_{30}(x)$	$S_{31}(x)$	$S_{32}(x)$	$S_{33}(x)$	
x_{4}	$S_{40}(x)$	$S_{41}(x)$	$S_{42}(x)$	$S_{43}(x)$	$S_{44}(x)$

To prove some theoretical results, we change the notation by making the superscript the degree of the polynomial. At the beginning, we define constant polynomials (i.e., polynomials of degree 0) as $P_{i}^{0}(x)=y_{i}$ for $0 \leqq i \leqq n$. Then we define

$$
\begin{equation*}
P_{i}^{j}(x)=\left(\frac{x-x_{i-j}}{x_{i}-x_{i-j}}\right) P_{i}^{j-1}(x)+\left(\frac{x_{i}-x}{x_{i}-x_{i-j}}\right) P_{i-1}^{j-1}(x) \tag{14}
\end{equation*}
$$

In this equation, the superscripts are simply indices, not exponents. The range of j is $1 \leqq j \leqq n$, while that of i is $j \leqq i \leqq n$. Formula (14) will be seen again, in slightly different form, in the theory of B splines in Section 9.3.

The interpolation properties of these polynomials are given in the next result.

THEOREM 4

INTERPOLATION PROPERTIES

The polynomials P_{i}^{j} defined above interpolate as follows:

$$
\begin{equation*}
P_{i}^{j}\left(x_{k}\right)=y_{k} \quad(0 \leqq i-j \leqq k \leqq i \leqq n) \tag{15}
\end{equation*}
$$

Proof We use induction on j. When $j=0$, the assertion in Equation (15) reads

$$
P_{i}^{0}\left(x_{k}\right)=y_{k} \quad(0 \leqq i \leqq k \leqq i \leqq n)
$$

In other words, $P_{i}^{0}\left(x_{i}\right)=y_{i}$, which is true by the definition of P_{i}^{0}.
Now assume, as an induction hypothesis, that for some $j \geqq 1$,

$$
P_{i}^{j-1}\left(x_{k}\right)=y_{k} \quad(0 \leqq i-j+1 \leqq k \leqq i \leqq n)
$$

To prove the next case in Equation (15), we begin by verifying the two extreme cases for k, namely, $k=i-j$ and $k=i$. We have, by Equation (14),

$$
\begin{aligned}
P_{i}^{j}\left(x_{i-j}\right) & =\left(\frac{x_{i}-x_{i-j}}{x_{i}-x_{i-j}}\right) P_{i-1}^{j-1}\left(x_{i-j}\right) \\
& =P_{i-1}^{j-1}\left(x_{i-j}\right)=y_{i-j}
\end{aligned}
$$

The last equality is justified by the induction hypothesis. It is necessary to observe that $0 \leqq i-1-j+1 \leqq i-j \leqq i-1 \leqq n$. In the same way, we compute

$$
\begin{aligned}
P_{i}^{j}\left(x_{i}\right) & =\left(\frac{x_{i}-x_{i-j}}{x_{i}-x_{i-j}}\right) P_{i}^{j-1}\left(x_{i}\right) \\
& =P_{i}^{j-1}\left(x_{i}\right)=y_{i}
\end{aligned}
$$

Here, in using the induction hypothesis, observe that $0 \leqq i-j+1 \leqq i \leqq i \leqq n$.
Now let $i-j<k<i$. Then

$$
P_{i}^{j}\left(x_{k}\right)=\left(\frac{x_{k}-x_{i-j}}{x_{i}-x_{i-j}}\right) P_{i}^{j-1}\left(x_{k}\right)+\left(\frac{x_{i}-x_{k}}{x_{i}-x_{i-j}}\right) P_{i-1}^{j-1}\left(x_{k}\right)
$$

In this equation, $P_{i}^{j-1}\left(x_{k}\right)=y_{k}$ by the induction hypothesis, because $0 \leqq i-j+1 \leqq k \leqq i \leqq n$. Likewise, $P_{i-1}^{j-1}\left(x_{k}\right)=y_{k}$ because $0 \leqq i-1-j+1 \leqq k \leqq i-1 \leqq n$. Thus, we have

$$
P_{i}^{j}\left(x_{k}\right)=\left(\frac{x_{k}-x_{i-j}}{x_{i}-x_{i-j}}\right) y_{k}+\left(\frac{x_{i}-x_{k}}{x_{i}-x_{i-j}}\right) y_{k}=y_{k}
$$

An algorithm follows in pseudocode to evaluate $P_{0}^{n}(t)$ when a table of values is given:

```
integer \(i, j, n ; \quad\) real array \(\left(x_{i}\right)_{0: n},\left(y_{i}\right)_{0: n},\left(S_{i j}\right)_{0: n \times 0: n}\)
for \(i=0\) to \(n\)
    \(S_{i 0} \leftarrow y_{i}\)
end for
for \(j=1\) to \(n\)
    for \(i=j\) to \(n\)
        \(S_{i j} \leftarrow\left[\left(t-x_{i-j}\right) S_{i, j-1}+\left(x_{i}-t\right) S_{i-1, j-1}\right] /\left(x_{i}-x_{i-j}\right)\)
    end for
end for
return \(S_{0 n}\)
```

We begin the algorithm by finding the node nearest the point t at which the evaluation is to be made. In general, interpolation is more accurate when this is done.

Interpolation of Bivariate Functions

The methods we have discussed for interpolating functions of one variable by polynomials extend to some cases of functions of two or more variables. An important case occurs when a function $(x, y) \mapsto f(x, y)$ is to be approximated on a rectangle. This leads to what is known as tensor-product interpolation. Suppose the rectangle is the Cartesian product of two intervals: $[a, b] \times[\alpha, \beta]$. That is, the variables x and y run over the intervals $[a, b]$, and $[\alpha, \beta]$, respectively. Select n nodes x_{i} in $[a, b]$, and define the Lagrangian polynomials

$$
\ell_{i}(x)=\prod_{\substack{j \neq i \\ j=1}}^{n} \frac{x-x_{j}}{x_{i}-x_{j}} \quad(1 \leqq i \leqq n)
$$

Similarly, we select m nodes y_{i} in $[\alpha, \beta]$ and define

$$
\bar{\ell}_{i}(y)=\prod_{\substack{j \neq i \\ j=1}}^{m} \frac{y-y_{j}}{y_{i}-y_{j}} \quad(1 \leqq i \leqq m)
$$

Then the function

$$
P(x, y)=\sum_{i=1}^{n} \sum_{j=1}^{m} f\left(x_{i}, y_{j}\right) \ell_{i}(x) \overline{\ell_{j}}(y)
$$

is a polynomial in two variables that interpolates f at the grid points $\left(x_{i}, y_{j}\right)$. There are $n m$ such points of interpolation. The proof of the interpolation property is quite simple because
$\ell_{i}\left(x_{q}\right)=\delta_{i q}$ and $\bar{\ell}_{j}\left(y_{p}\right)=\delta_{j p}$. Consequently,

$$
\begin{aligned}
P\left(x_{q}, y_{p}\right) & =\sum_{i=1}^{n} \sum_{j=1}^{m} f\left(x_{i}, y_{j}\right) \ell_{i}\left(x_{q}\right) \overline{\ell_{j}}\left(y_{p}\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{m} f\left(x_{i}, y_{j}\right) \delta_{i q} \delta_{j p}=f\left(x_{q}, y_{p}\right)
\end{aligned}
$$

The same procedure can be used with spline interpolants (or indeed any other type of function).

Summary

(1) The Lagrange form of the interpolation polynomial is

$$
p_{n}(x)=\sum_{i=0}^{n} \ell_{i}(x) f\left(x_{i}\right)
$$

with cardinal polynomials

$$
\ell_{i}(x)=\prod_{\substack{j \neq i \\ j=0}}^{n}\left(\frac{x-x_{j}}{x_{i}-x_{j}}\right) \quad(0 \leqq i \leqq n)
$$

that obey the Kronecker delta equation

$$
\ell_{i}\left(x_{j}\right)=\delta_{i j}= \begin{cases}0 & \text { if } i \neq j \\ 1 & \text { if } i=j\end{cases}
$$

(2) The Newton form of the interpolation polynomial is

$$
p_{n}(x)=\sum_{i=0}^{n} a_{i} \prod_{j=0}^{i-1}\left(x-x_{j}\right)
$$

with divided differences

$$
a_{i}=f\left[x_{0}, x_{1}, \ldots, x_{i}\right]=\frac{f\left[x_{1}, x_{2}, \ldots, x_{i}\right]-f\left[x_{0}, x_{1}, \ldots, x_{i-1}\right]}{x_{i}-x_{0}}
$$

These are two different forms of the unique polynomial p of degree n that interpolates a table of $n+1$ pairs of points $\left(x_{i}, f\left(x_{i}\right)\right)$ for $0 \leqq i \leqq n$.
(3) We can illustrate this with a small table for $n=2$:

x	x_{0}	x_{1}	x_{2}
$f(x)$	$f\left(x_{0}\right)$	$f\left(x_{1}\right)$	$f\left(x_{2}\right)$

The Lagrange interpolating polynomial is

$$
\begin{aligned}
p_{2}(x)= & \frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)} f\left(x_{0}\right)+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)} f\left(x_{1}\right) \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)} f\left(x_{2}\right)
\end{aligned}
$$

Clearly, $p_{2}\left(x_{0}\right)=f\left(x_{0}\right), p_{2}\left(x_{1}\right)=f\left(x_{1}\right)$, and $p_{2}\left(x_{2}\right)=f\left(x_{2}\right)$. Next, we form the divideddifference table:

$$
\begin{array}{l|c|c|l}
x_{0} & f\left(x_{0}\right) & & \\
x_{1} & f\left(x_{1}\right) & f\left[x_{0}, x_{1}\right] & \\
& & f\left[x_{0}, x_{1}, x_{2}\right] \\
x_{2} & f\left(x_{2}\right) & &
\end{array}
$$

Using the divided-difference entries from the top diagonal, we have

$$
p_{n}(x)=f\left(x_{0}\right)+f\left[x_{0}, x_{1}\right]\left(x-x_{0}\right)+f\left[x_{0}, x_{1}, x_{2}\right]\left(x-x_{0}\right)\left(x-x_{1}\right)
$$

Again, it can be easily shown that $p_{2}\left(x_{0}\right)=f\left(x_{0}\right), p_{2}\left(x_{1}\right)=f\left(x_{1}\right)$, and $p_{2}(x)=f\left(x_{2}\right)$.
(4) We can use inverse polynomial interpolation to find an approximate value of a root r of the equation $f(x)=0$ from a table of values $\left(x_{i}, y_{i}\right)$ for $1 \leqq i \leqq n$. Here we are assuming that the table values are in the vicinity of this zero of the function f. Flipping the table values, we use the reversed table values $\left(y_{i}, x_{i}\right)$ to determine the interpolating polynomial called $p_{n}(y)$. Now evaluating it at 0 , we find a value that approximates the desired zero, namely, $r \approx p_{n}(0)$ and $f\left(p_{n}(0)\right) \approx f(r)=0$.
(5) Other advanced polynomial interpolation methods discussed are Neville's algorithm and bivariate function interpolation.

Problems 4.1

${ }^{a}$ 1. Use the Lagrange interpolation process to obtain a polynomial of least degree that assumes these values:

x	0	2	3	4
y	7	11	28	63

2. (Continuation) Rearrange the points in the table of the preceding problem and find the Newton form of the interpolating polynomial. Show that the polynomials obtained are identical, although their forms may differ.
${ }^{a}$ 3. For the four interpolation nodes $-1,1,3,4$, what are the ℓ_{i} Functions (2) required in the Lagrange interpolation procedure? Draw the graphs of these four functions to show their essential properties.
3. Verify that the polynomials

$$
p(x)=5 x^{3}-27 x^{2}+45 x-21, \quad q(x)=x^{4}-5 x^{3}+8 x^{2}-5 x+3
$$

interpolate the data

x	1	2	3	4
y	2	1	6	47

and explain why this does not violate the uniqueness part of the theorem on existence of polynomial interpolation.
5. Verify that the polynomials

$$
p(x)=3+2(x-1)+4(x-1)(x+2), \quad q(x)=4 x^{2}+6 x-7
$$

are both interpolating polynomials for the following table, and explain why this does not violate the uniqueness part of the existence theorem for polynomial interpolation.

x	1	-2	0
y	3	-3	-7

6. Find the polynomial p of least degree that takes these values: $p(0)=2, p(2)=4$, $p(3)=-4, p(5)=82$. Use divided differences to get the correct polynomial. It is not necessary to write the polynomial in the standard form $a_{0}+a_{1} x+a_{2} x^{2}+\cdots$.
7. Complete the following divided-difference tables, and use them to obtain polynomials of degree 3 that interpolate the function values indicated:

${ }^{a}$ a. $\quad x$	f []	$f[$,	$f[,$,	$f[,,$,
-1	2			
1	-4		2	
3	6	2		
5	10			

b.

x	$f[]$	$f[]$,	$f[,]$,	$f[,,]$,
-1	2			
1	-4			
3	46			
4	99.5	53.5		

Write the final polynomials in a form most efficient for computing.
${ }^{a}$ 8. Find an interpolating polynomial for this table:

x	1	2	2.5	3	4
y	-1	$-\frac{1}{3}$	$\frac{3}{32}$	$\frac{4}{3}$	25

9. Given the data

x	0	1	2	4	6
$f(x)$	1	9	23	93	259

do the following.
${ }^{a}$ a. Construct the divided-difference table.
${ }^{a}$ b. Using Newton's interpolation polynomial, find an approximation to $f(4.2)$. Hint: Use polynomials starting with 9 and involving factors $(x-1)$.
10. a. Construct Newton's interpolation polynomial for the data shown.

x	0	2	3	4
y	7	11	28	63

b. Without simplifying it, write the polynomial obtained in nested form for easy evaluation.
11. From census data, the approximate population of the United States was 150.7 million in 1950, 179.3 million in 1960, 203.3 million in 1970, 226.5 million in 1980, and 249.6 million in 1990. Using Newton's interpolation polynomial for these data, find an approximate value for the population in 2000. Then use the polynomial to estimate the population in 1920 based on these data. What conclusion should be drawn?
${ }^{a}$ 12. The polynomial $p(x)=x^{4}-x^{3}+x^{2}-x+1$ has the following values:

x	-2	-1	0	1	2	3
$p(x)$	31	5	1	1	11	61

Find a polynomial q that takes these values:

x	-2	-1	0	1	2	3
$q(x)$	31	5	1	1	11	30

Hint: This can be done with little work.
13. Use the divided-difference method to obtain a polynomial of least degree that fits the values shown.
${ }^{a}$ a.

x	0	1	2	-1	3
y	-1	-1	-1	-7	5

b.

x	1	3	-2	4	5
y	2	6	-1	-4	2

${ }^{a} \mathbf{1 4}$. Find the interpolating polynomial for these data:

x	1.0	2.0	2.5	3.0	4.0
$f(x)$	-1.5	-0.5	0.0	0.5	1.5

15. It is suspected that the table

x	-2	-1	0	1	2	3
y	1	4	11	16	13	-4

comes from a cubic polynomial. How can this be tested? Explain.
${ }^{a}$ 16. There exists a unique polynomial $p(x)$ of degree 2 or less such that $p(0)=0, p(1)=1$, and $p^{\prime}(\alpha)=2$ for any value of α between 0 and 1 (inclusive) except one value of α, say, α_{0}. Determine α_{0}, and give this polynomial for $\alpha \neq \alpha_{0}$.
17. Determine by two methods the polynomial of degree 2 or less whose graph passes through the points $(0,1.1),(1,2)$, and $(2,4.2)$. Verify that they are the same.
${ }^{a}$ 18. Develop the divided-difference table from the given data. Write down the interpolating polynomial, and rearrange it for fast computation without simplifying.

x	0	1	3	2	5
$f(x)$	2	1	5	6	-183

Checkpoint: $f[1,3,2,5]=-7$.
${ }^{a}$ 19. Let $f(x)=x^{3}+2 x^{2}+x+1$. Find the polynomial of degree 4 that interpolates the values of f at $x=-2,-1,0,1,2$. Find the polynomial of degree 2 that interpolates the values of f at $x=-1,0,1$.
20. Without using a divided-difference table, derive and simplify the polynomial of least degree that assumes these values:

x	-2	-1	0	1	2
y	2	14	4	2	2

21. (Continuation) Find a polynomial that takes the values shown in the preceding problem and has at $x=3$ the value 10. Hint: Add a suitable polynomial to the $p(x)$ of the previous problem.
${ }^{a} \mathbf{2 2}$. Find a polynomial of least degree that takes these values:

x	1.73	1.82	2.61	5.22	8.26
y	0	0	7.8	0	0

Hint: Rearrange the table so that the nonzero value of y is the last entry, or think of some better way.
23. Form a divided-difference table for the following and explain what happened.

x	1	2	3	1
y	3	5	5	7

24. Simple polynomial interpolation in two dimensions is not always possible. For example, suppose that the following data are to be represented by a polynomial of first degree in x and $y, p(t)=a+b x+c y$, where $t=(x, y)$:

t	$(1,1)$	$(3,2)$	$(5,3)$
$f(t)$	3	2	6

Show that it is not possible.
${ }^{a}$ 25. Consider a function $f(x)$ such that $f(2)=1.5713, f(3)=1.5719, f(5)=1.5738$, and $f(6)=1.5751$. Estimate $f(4)$ using a second-degree interpolating polynomial and a third-degree polynomial. Round the final results off to four decimal places. Is there any advantage here in using a third-degree polynomial?
26. Use inverse interpolation to find an approximate value of x such that $f(x)=0$ given the following table of values for f. Look into what happens and draw a conclusion.

x	-2	-1	1	2	3
$f(x)$	-31	5	1	11	61

${ }^{a}$ 27. Find a polynomial $p(x)$ of degree at most 3 such that $p(0)=1, p(1)=0, p^{\prime}(0)=0$, and $p^{\prime}(-1)=-1$.
${ }^{a}$ 28. From a table of logarithms, we obtain the following values of $\log x$ at the indicated tabular points:

x	1	1.5	2	3	3.5	4
$\log x$	0	0.17609	0.30103	0.47712	0.54407	0.60206

Form a divided-difference table based on these values. Interpolate for $\log 2.4$ and $\log 1.2$ using third-degree interpolation polynomials in Newton form.
29. Show that the divided differences are linear maps; that is,

$$
(\alpha f+\beta g)\left[x_{0}, x_{1}, \ldots, x_{n}\right]=\alpha f\left[x_{0}, x_{1}, \ldots, x_{n}\right]+\beta g\left[x_{0}, x_{1}, \ldots, x_{n}\right]
$$

Hint: Use induction.
30. Show that another form for the polynomial p_{n} of degree at most n that takes values $y_{0}, y_{1}, \ldots, y_{n}$ at abscissas $x_{0}, x_{1}, \ldots, x_{n}$ is

$$
\sum_{i=0}^{n} f\left[x_{n}, x_{n-1}, \ldots, x_{n-i}\right] \prod_{j=0}^{i-1}\left(x-x_{n-j}\right)
$$

31. Use the uniqueness of the interpolating polynomial to verify that

$$
\sum_{i=0}^{n} f\left(x_{i}\right) \ell_{i}(x)=\sum_{i=0}^{n} f\left[x_{0}, x_{1}, \ldots, x_{i}\right] \prod_{j=0}^{i-1}\left(x-x_{j}\right)
$$

32. (Continuation) Show that the following explicit formula is valid for divided differences:

$$
f\left[x_{0}, x_{1}, \ldots, x_{n}\right]=\sum_{i=0}^{n} f\left(x_{i}\right) \prod_{\substack{j \neq i \\ j=0}}^{n}\left(x_{i}-x_{j}\right)^{-1}
$$

Hint: If two polynomials are equal, the coefficients of x^{n} in each are equal.
33. Verify directly that

$$
\sum_{i=0}^{n} \ell_{i}(x)=1
$$

for the case $n=1$. Then establish the result for arbitrary values of n.
34. Write the Lagrange form (1) of the interpolating polynomial of degree at most 2 that interpolates $f(x)$ at x_{0}, x_{1}, and x_{2}, where $x_{0}<x_{1}<x_{2}$.
35. (Continuation) Write the Newton form of the interpolating polynomial $p_{2}(x)$, and show that it is equivalent to the Lagrange form.
36. (Continuation) Show directly that

$$
p_{2}^{\prime \prime}(x)=2 f\left[x_{0}, x_{1}, x_{2}\right]
$$

37. (Continuation) Show directly for uniform spacing $h=x_{1}-x_{0}=x_{2}-x_{1}$ that

$$
f\left[x_{0}, x_{1}\right]=\frac{\Delta f_{0}}{h} \quad \text { and } \quad f\left[x_{0}, x_{1}, x_{2}\right]=\frac{\Delta^{2} f_{0}}{2 h^{2}}
$$

where $\Delta f_{i}=f_{i+1}-f_{i}, \Delta^{2} f_{i}=\Delta f_{i+1}-\Delta f_{i}$, and $f_{i}=f\left(x_{i}\right)$.
38. (Continuation) Establish Newton's forward-difference form of the interpolating polynomial with uniform spacing

$$
p_{2}(x)=f_{0}+\binom{s}{1} \Delta f_{0}+\binom{s}{2} \Delta^{2} f_{0}
$$

where $x=x_{0}+s h$. Here, $\binom{s}{m}$ is the binomial coefficient $[s!] /[(s-m)!m!]$, and $s!/(s-m)!=s(s-1)(s-2) \cdots(s-m+1)$ because s can be any real number and $m!$ has the usual definition because m is an integer.
${ }^{a}$ 39. (Continuation) From the following table of values of $\ln x$, interpolate to obtain $\ln 2.352$ and $\ln 2.387$ using the Newton forward-difference form of the interpolating polynomial:

x	$f(x)$	Δf	$\Delta^{2} f$
2.35	0.85442		
2.36	0.85866	0.00424	
2.37	0.86289	0.00423	-0.00001
2.38	0.86710	0.00421	-0.00002
2.39	0.87129	0.00419	-0.00002

Using the correctly rounded values $\ln 2.352 \approx 0.85527$ and $\ln 2.387 \approx 0.87004$, show that the forward-difference formula is more accurate near the top of the table than it is near the bottom.
${ }^{a}$ 40. Count the number of multiplications, divisions, and additions/subtractions in the generation of the divided-difference table that has $n+1$ points.
41. Verify directly that for any three distinct points x_{0}, x_{1}, and x_{2},

$$
f\left[x_{0}, x_{1}, x_{2}\right]=f\left[x_{2}, x_{0}, x_{1}\right]=f\left[x_{1}, x_{2}, x_{0}\right]
$$

Compare this argument to the one in the text.
${ }^{a}$ 42. Let p be a polynomial of degree n. What is $p\left[x_{0}, x_{1}, \ldots, x_{n+1}\right]$?
43. Show that if f is continuously differentiable on the interval $\left[x_{0}, x_{1}\right]$, then $f\left[x_{0}, x_{1}\right]=$ $f^{\prime}(c)$ for some c in $\left(x_{0}, x_{1}\right)$.
44. If f is a polynomial of degree n, show that in a divided-difference table for f, the nth column has a single constant value-a column containing entries $f\left[x_{i}, x_{i+1}, \ldots, x_{i+n}\right]$.
${ }^{a}$ 45. Determine whether the following assertion is true or false. If $x_{0}, x_{1}, \ldots, x_{n}$ are distinct, then for arbitrary real values $y_{0}, y_{1}, \ldots, y_{n}$, there is a unique polynomial p_{n+1} of degree $\leqq n+1$ such that $p_{n+1}\left(x_{i}\right)=y_{i}$ for all $i=0,1, \ldots, n$.
46. Show that if a function g interpolates the function f at $x_{0}, x_{1}, \ldots, x_{n-1}$ and h interpolates f at $x_{1}, x_{2}, \ldots, x_{n}$, then

$$
g(x)+\frac{x_{0}-x}{x_{n}-x_{0}}[g(x)-h(x)]
$$

interpolates f at $x_{0}, x_{1}, \ldots, x_{n}$.
47. (Vandermonde determinant) Using $f_{i}=f\left(x_{i}\right)$, show the following:
a. $f\left[x_{0}, x_{1}\right]=\frac{\left|\begin{array}{ll}1 & f_{0} \\ 1 & f_{1}\end{array}\right|}{\left|\begin{array}{ll}1 & x_{0} \\ 1 & x_{1}\end{array}\right|}$
b. $f\left[x_{0}, x_{1}, x_{2}\right]=\frac{\left|\begin{array}{lll}1 & x_{0} & f_{0} \\ 1 & x_{1} & f_{1} \\ 1 & x_{2} & f_{2}\end{array}\right|}{\left|\begin{array}{lll}1 & x_{0} & x_{0}^{2} \\ 1 & x_{1} & x_{1}^{2} \\ 1 & x_{2} & x_{2}^{2}\end{array}\right|}$

Computer Problems 4.1

${ }^{a}$ 1. Test the procedure given in the text for determining the Newton form of the interpolating polynomial. For example, consider this table:

x	1	2	3	-4	5
y	2	48	272	1182	2262

Find the interpolating polynomial and verify that $p(-1)=12$.
2. Find the polynomial of degree 10 that interpolates the function $\arctan x$ at 11 equally spaced points in the interval $[1,6]$. Print the coefficients in the Newton form of the polynomial. Compute and print the difference between the polynomial and the function at 33 equally spaced points in the interval $[0,8]$. What conclusion can be drawn?
3. Write a simple program using procedure Coef that interpolates e^{x} by a polynomial of degree 10 on $[0,2]$ and then compares the polynomial to exp at 100 points.
4. Use as input data to procedure Coef the annual rainfall in your town for each of the last 5 years. Using function Eval, predict the rainfall for this year. Is the answer reasonable?
5. A table of values of a function f is given at the points $x_{i}=i / 10$ for $0 \leqq i \leqq 100$. In order to obtain a graph of f with the aid of an automatic plotter, the values of f are required at the points $z_{i}=i / 20$ for $0 \leqq i \leqq 200$. Write a procedure to do this, using a cubic interpolating polynomial with nodes x_{i}, x_{i+1}, x_{i+2}, and x_{i+3} to compute f at $\frac{1}{2}\left(x_{i+1}+x_{i+2}\right)$. For z_{1} and z_{199}, use the cubic polynomial associated with z_{3} and z_{197}, respectively. Compare this routine to Coef for a given function.
6. Write routines analogous to Coef and Eval using the Lagrange form of the interpolation polynomial. Test on the example given in this section at 20 points with $h / 2$. Does the Lagrange form have any advantage over the Newton form?
7. (Continuation) Design and carry out a numerical experiment to compare the accuracy of the Newton and Lagrange forms of the interpolation polynomials at values throughout the interval $\left[x_{0}, x_{n}\right]$.
8. Rewrite and test routines Coef and Eval so that the array $\left(a_{i}\right)$ is not used. Hint: When the elements in the array $\left(y_{i}\right)$ are no longer needed, store the divided differences in their places.
9. Write a procedure for carrying out inverse interpolation to solve equations of the form $f(x)=0$. Test it on the introductory example at the beginning of this chapter.
10. For Example 8, compare the results from your code with that in the text. Redo using linear interpolation based on the ten equidistant points. How do the errors compare at intermediate points? Plot curves to visualize the difference between linear interpolation and a higher-degree polynomial interpolation.
11. Use mathematical software such as Matlab, Maple, or Mathematica to find an interpolation polynomial for the points $(0,0),(1,1),(2,2.001),(3,3),(4,4),(5,5)$. Evaluate the polynomial at the point $x=14$ or $x=20$ to show that slight roundoff errors in the data can lead to suspicious results in extrapolation.
12. Use symbolic mathematical software such as Matlab, Maple, or Mathematica to generate the interpolation polynomial for the data points in Example 3. Plot the polynomial and the data points.
13. (Continuation.) Repeat these instructions using Example 7.
14. Carry out the details in Example 8 by writing a computer program that plots the data points and the curve for the interpolation polynomial.
15. (Continuation.) Repeat the instructions for Problem 14 on Example 9.
16. Using mathematical software, carry out the details and verify the results in the introductory example to this chapter.
17. (Padé interpolation) Find a rational function of the form

$$
g(x)=\frac{a+b x}{1+c x}
$$

that interpolates the function $f(x)=\arctan (x)$ at the points $x_{0}=1, x_{1}=2$, and $x_{2}=3$. On the same axes, plot the graphs of f and g, using dashed and dotted lines, respectively.

4.2 Errors in Polynomial Interpolation

When a function f is approximated on an interval $[a, b]$ by means of an interpolating polynomial p, the discrepancy between f and p will (theoretically) be zero at each node of interpolation. A natural expectation is that the function f will be well approximated at all intermediate points and that as the number of nodes increases, this agreement will become better and better.

In the history of numerical mathematics, a severe shock occurred when it was realized that this expectation was ill-founded. Of course, if the function being approximated is not required to be continuous, then there may be no agreement at all between $p(x)$ and $f(x)$ except at the nodes.

EXAMPLE 1 Consider these five data points: $(0,8),(1,12),(3,2),(4,6),(8,0)$. Construct and plot the interpolation polynomial using the two outermost points. Repeat this process by adding one additional point at a time until all the points are included. What conclusions can you draw?

FIGURE 4.6 Interpolant polynomials over data points

Solution The first interpolation polynomial is the line between the outermost points $(0,8)$ and $(8,0)$. Then we added the points $(3,2),(4,5)$, and $(1,12)$ in that order and plotted a curve for each additional point. All of these polynomials are shown in Figure 4.6. We were hoping for a smooth curve going through these points without wide fluctuations, but this did not happen. (Why?) It may seem counterintuitive, but as we added more points, the situation became worse instead of better! The reason for this comes from the nature of high-degree polynomials. A polynomial of degree n has n zeros. If all of these zero points are real, then the curve crosses the x-axis n times. The resulting curve must make many turns for this to happen, resulting in wild oscillations. In Chapter 9, we discuss fitting the data points with spline curves.

Dirichlet Function

As a pathological example, consider the so-called Dirichlet function f, defined to be 1 at each irrational point and 0 at each rational point. If we choose nodes that are rational numbers, then $p(x) \equiv 0$ and $f(x)-p(x)=0$ for all rational values of x, but $f(x)-p(x)=1$ for all irrational values of x.

However, if the function f is well-behaved, can we not assume that the differences $|f(x)-p(x)|$ will be small when the number of interpolating nodes is large? The answer is still no, even for functions that possess continuous derivatives of all orders on the interval!

Runge Function

A specific example of this remarkable phenomenon is provided by the Runge function:

$$
\begin{equation*}
f(x)=\left(1+x^{2}\right)^{-1} \tag{1}
\end{equation*}
$$

on the interval $[-5,5]$. Let p_{n} be the polynomial that interpolates this function at $n+1$ equally spaced points on the interval $[-5,5]$, including the endpoints. Then

$$
\lim _{n \rightarrow \infty} \max _{-5 \leqq x \leqq 5}\left|f(x)-p_{n}(x)\right|=\infty
$$

Thus, the effect of requiring the agreement of f and p_{n} at more and more points is to increase the error at nonnodal points, and the error actually increases beyond all bounds!

The moral of this example, then, is that polynomial interpolation of high degree with many nodes is a risky operation; the resulting polynomials may be very unsatisfactory as representations of functions unless the set of nodes is chosen with great care.

The reader can easily observe the phenomenon just described by using the pseudocodes already developed in this chapter. See Computer Problem 4.2.1 for a suggested numerical experiment. In a more advanced study of this topic, it would be shown that the divergence of the polynomials can often be ascribed to the fact that the nodes are equally spaced. Again, contrary to intuition, equally distributed nodes are usually a very poor choice in interpolation. A much better choice for $n+1$ nodes in $[-1,1]$ is the set of Chebyshev nodes:

$$
x_{i}=\cos \left[\left(\frac{2 i+1}{2 n+2}\right) \pi\right] \quad(0 \leqq i \leqq n)
$$

The corresponding set of nodes on an arbitrary interval $[a, b]$ would be derived from a linear mapping to obtain

$$
x_{i}=\frac{1}{2}(a+b)+\frac{1}{2}(b-a) \cos \left[\left(\frac{2 i+1}{2 n+2}\right) \pi\right] \quad(0 \leqq i \leqq n)
$$

Notice that these nodes are numbered from right to left. Since the theory does not depend on any particular ordering of the nodes, this is not troublesome.

A simple graph illustrates this phenomenon best. Again, consider Equation (1) on the interval $[-5,5]$. First, we select nine equally spaced nodes and use routines Coef and Eval with an automatic plotter to graph p_{8}. As shown in Figure 4.7, the resulting curve assumes negative values, which, of course, $f(x)$ does not have! Adding more equally spaced nodesand thereby obtaining a higher-degree polynomial-only makes matters worse with wilder oscillations. In Figure 4.8, nine Chebyshev nodes are used, and the resulting polynomial curve is smoother. However, cubic splines (discussed in Chapter 9) produce an even better curve fit.

FIGURE 4.7
Polynomial interpolant with nine equally spaced nodes

FIGURE 4.8 Polynomial interpolant with nine Chebyshev nodes

FIGURE 4.9

The Chebyshev nodes are obtained by taking equally-spaced points on a semicircle and projecting them down onto the horizontal axis, as in Figure 4.9.

Theorems on Interpolation Errors

It is possible to assess the errors of interpolation by means of a formula that involves the $(n+1)$ st derivative of the function being interpolated. Here is the formal statement:

THEOREM 1

INTERPOLATION ERRORS I

If p is the polynomial of degree at most n that interpolates f at the $n+1$ distinct nodes $x_{0}, x_{1}, \ldots, x_{n}$ belonging to an interval $[a, b]$ and if $f^{(n+1)}$ is continuous, then for each x in $[a, b]$, there is a ξ in (a, b) for which

$$
\begin{equation*}
f(x)-p(x)=\frac{1}{(n+1)!} f^{(n+1)}(\xi) \prod_{i=0}^{n}\left(x-x_{i}\right) \tag{2}
\end{equation*}
$$

Proof Observe first that Equation (2) is obviously valid if x is one of the nodes x_{i} because then both sides of the equation reduce to zero. If x is not a node, let it be fixed in the remainder of the discussion, and define

$$
\begin{align*}
w(t) & =\prod_{i=0}^{n}\left(t-x_{i}\right) & & (\text { polynomial in the variable } t) \\
c & =\frac{f(x)-p(x)}{w(x)} & & \text { (constant) } \tag{3}\\
\varphi(t) & =f(t)-p(t)-c w(t) & & \text { (function in the variable } t)
\end{align*}
$$

Observe that c is well defined because $w(x) \neq 0$ (x is not a node). Note also that φ takes the value 0 at the $n+2$ points $x_{0}, x_{1}, \ldots, x_{n}$, and x. Now invoke Rolle's Theorem,* which states that between any two roots of φ, there must occur a root of φ^{\prime}. Thus, φ^{\prime} has at least $n+1$ roots. By similar reasoning, $\varphi^{\prime \prime}$ has at least n roots, $\varphi^{\prime \prime \prime}$ has at least $n-1$ roots, and so on. Finally, it can be inferred that $\varphi^{(n+1)}$ must have at least one root. Let ξ be a root of

[^4]$\varphi^{(n+1)}$. All the roots being counted in this argument are in (a, b). Thus,
$$
0=\varphi^{(n+1)}(\xi)=f^{(n+1)}(\xi)-p^{(n+1)}(\xi)-c w^{(n+1)}(\xi)
$$

In this equation, $p^{(n+1)}(\xi)=0$ because p is a polynomial of degree $\leqq n$. Also, $w^{(n+1)}(\xi)=$ $(n+1)$! because $w(t)=t^{n+1}+$ (lower-order terms in $\left.t\right)$. Thus, we have

$$
0=f^{(n+1)}(\xi)-c(n+1)!=f^{(n+1)}(\xi)-\frac{(n+1)!}{w(x)}[f(x)-p(x)]
$$

This equation is a rearrangement of Equation (2).

A special case that often arises is the one in which the interpolation nodes are equally spaced.

LEMMA $1 \quad$ UPPER BOUND LEMMA

Suppose that $x_{i}=a+i h$ for $i=0,1, \ldots, n$ and that $h=(b-a) / n$. Then for any $x \in[a, b]$

$$
\begin{equation*}
\prod_{i=0}^{n}\left|x-x_{i}\right| \leqq \frac{1}{4} h^{n+1} n! \tag{4}
\end{equation*}
$$

Proof To establish this inequality, fix x and select j so that $x_{j} \leqq x \leqq x_{j+1}$. It is an exercise in calculus (Problem 4.2.2) to show that

$$
\begin{equation*}
\left|x-x_{j}\right|\left|x-x_{j+1}\right| \leqq \frac{h^{2}}{4} \tag{5}
\end{equation*}
$$

Using Equation (5), we have

$$
\prod_{i=0}^{n}\left|x-x_{i}\right| \leqq \frac{h^{2}}{4} \prod_{i=0}^{j-1}\left(x-x_{i}\right) \prod_{i=j+2}^{n}\left(x_{i}-x\right)
$$

The sketch in Figure 4.10, showing a typical case of equally spaced nodes, may be helpful. Since $x_{j} \leqq x \leqq x_{j+1}$, we have further

$$
\prod_{i=0}^{n}\left|x-x_{i}\right| \leqq \frac{h^{2}}{4} \prod_{i=0}^{j-1}\left(x_{j+1}-x_{i}\right) \prod_{i=j+2}^{n}\left(x_{i}-x_{j}\right)
$$

FIGURE 4.10 of x in equally spaced nodes

Now use the fact that $x_{i}=a+i h$. Then we have $x_{j+1}-x_{i}=(j-i+1) h$ and $x_{i}-x_{j}=$ $(i-j) h$. Therefore,

$$
\begin{aligned}
\prod_{i=0}^{n}\left|x-x_{i}\right| & \leqq \frac{h^{2}}{4} h^{j} h^{n-(j+2)+1} \prod_{i=0}^{j-1}(j-i+1) \prod_{i=j+2}^{n}(i-j) \\
& \leqq \frac{1}{4} h^{n+1}(j+1)!(n-j)!\leqq \frac{1}{4} h^{n+1} n!
\end{aligned}
$$

In the last step, we use the fact that if $0 \leqq j \leqq n-1$, then $(j+1)!(n-j)!\leqq n$!. This, too, is left as an exercise (Problem 4.2.3). Hence, Inequality (4) is established.

We can now find a bound on the interpolation error.

- THEOREM 2

INTERPOLATION ERRORS II

Let f be a function such that $f^{(n+1)}$ is continuous on $[a, b]$ and satisfies $\left|f^{(n+1)}(x)\right| \leqq M$. Let p be the polynomial of degree $\leqq n$ that interpolates f at $n+1$ equally spaced nodes in $[a, b]$, including the endpoints. Then on $[a, b]$,

$$
\begin{equation*}
|f(x)-p(x)| \leqq \frac{1}{4(n+1)} M h^{n+1} \tag{6}
\end{equation*}
$$

where $h=(b-a) / n$ is the spacing between nodes.

Proof Use Theorem 1 on interpolation errors and Inequality (4) in Lemma 1.

This theorem gives loose upper bounds on the interpolation error for different values of n. By other means, one can find tighter upper bounds for small values of n. (Cf. Problem 4.2.5.) If the nodes are not uniformly spaced then a better bound can be found by use of the Chebyshev nodes.

EXAMPLE 2 Assess the error if $\sin x$ is replaced by an interpolation polynomial that has ten equally spaced nodes in $[0,1.6875]$. (See the related Example 8 in Section 4.1.)

Solution We use Theorem 2 on interpolation errors, taking $f(x)=\sin x, n=9, a=0$, and $b=1.6875$. Since $f^{(10)}(x)=-\sin x,\left|f^{(10)}(x)\right| \leqq 1$. Hence, in Equation (6), we can let $M=1$. The result is

$$
|\sin x-p(x)| \leqq 1.34 \times 10^{-9}
$$

Thus, $p(x)$ represents $\sin x$ on this interval with an error of at most two units in the ninth decimal place. Therefore, the interpolation polynomial that has ten equally spaced nodes on the interval $[0,1.6875]$ approximates $\sin x$ to at least eight decimal digits of accuracy. In fact, a careful check on a computer would reveal that the polynomial is accurate to even more decimal places. (Why?)

The error expression in polynomial interpolation can also be given in terms of divided differences:

THEOREM 3

INTERPOLATION ERRORS III

If p is the polynomial of degree n that interpolates the function f at nodes $x_{0}, x_{1}, \ldots, x_{n}$, then for any x that is not a node,

$$
f(x)-p(x)=f\left[x_{0}, x_{1}, \ldots, x_{n}, x\right] \prod_{i=0}^{n}\left(x-x_{i}\right)
$$

Proof Let t be any point, other than a node, where $f(t)$ is defined. Let q be the polynomial of degree $\leqq n+1$ that interpolates f at $x_{0}, x_{1}, \ldots, x_{n}, t$. By the Newton form of the interpolation formula [Equation (8) in Section 4.1], we have

$$
q(x)=p(x)+f\left[x_{0}, x_{1}, \ldots, x_{n}, t\right] \prod_{i=0}^{n}\left(x-x_{i}\right)
$$

Since $q(t)=f(t)$, this yields at once

$$
f(t)=p(t)+f\left[x_{0}, x_{1}, \ldots, x_{n}, t\right] \prod_{i=0}^{n}\left(t-x_{i}\right)
$$

The following theorem shows that there is a relationship between divided differences and derivatives.

THEOREM 4

DIVIDED DIFFERENCES AND DERIVATIVES

If $f^{(n)}$ is continuous on $[a, b]$ and if $x_{0}, x_{1}, \ldots, x_{n}$ are any $n+1$ distinct points in $[a, b]$, then for some ξ in (a, b),

$$
f\left[x_{0}, x_{1}, \ldots, x_{n}\right]=\frac{1}{n!} f^{(n)}(\xi)
$$

Proof Let p be the polynomial of degree $\leqq n-1$ that interpolates f at $x_{0}, x_{1}, \ldots, x_{n-1}$. By Theorem 1 on interpolation errors, there is a point ξ such that

$$
f\left(x_{n}\right)-p\left(x_{n}\right)=\frac{1}{n!} f^{(n)}(\xi) \prod_{i=0}^{n-1}\left(x_{n}-x_{i}\right)
$$

By Theorem 3 on interpolation errors, we obtain

$$
f\left(x_{n}\right)-p\left(x_{n}\right)=f\left[x_{0}, x_{1}, \ldots, x_{n-1}, x_{n}\right] \prod_{i=0}^{n-1}\left(x_{n}-x_{i}\right)
$$

As an immediate consequence of this theorem, we observe that all high-order divided differences are zero for a polynomial.

COROLLARY 1

DIVIDED DIFFERENGES COROLLARY

If f is a polynomial of degree n, then all of the divided differences $f\left[x_{0}, x_{1}, \ldots, x_{i}\right]$ are zero for $i \geqq n+1$.

EXAMPLE 3 Is there a cubic polynomial that takes these values?

x	1	-2	0	3	-1	7
y	-2	-56	-2	4	-16	376

Solution If such a polynomial exists, its fourth-order divided differences $f[,,$, , would all be zero. We form a divided-difference table to check this possibility:

x	$f[]$	$f[]$,	$f[,]$,	$f[,,]$,	$f[,,,]$,
1	-2	18			
-2	-56				
0	-2	27	-5	2	0
3	4	2	-3	2	0
-1	-16	5	11	2	
7	376	49			

The data can be represented by a cubic polynomial because the fourth-order divided differences $f[$, , , ,] are zero. From the Newton form of the interpolation formula, this polynomial is

$$
p_{3}(x)=-2+18(x-1)-9(x-1)(x+2)+2(x-1)(x+2) x
$$

Summary

(1) The Runge function $f(x)=1 /\left(1+x^{2}\right)$ on the interval $[-5,5]$ shows that high-degree polynomial interpolation and uniform spacing of nodes may not be satisfactory. The Chebyshev nodes for the interval $[a, b]$ are given by

$$
x_{i}=\frac{1}{2}(a+b)+\frac{1}{2}(b-a) \cos \left[\left(\frac{2 i+1}{2 n+2}\right) \pi\right]
$$

(2) There is a relationship between differences and derivatives:

$$
f\left[x_{0}, x_{1}, \ldots, x_{n}\right]=\frac{1}{n!} f^{(n)}(\xi)
$$

(3) Expressions for errors in polynomial interpolation are

$$
\begin{aligned}
& f(x)-p(x)=\frac{1}{(n+1)!} f^{(n+1)}(\xi) \prod_{i=0}^{n}\left(x-x_{i}\right) \\
& f(x)-p(x)=f\left[x_{0}, x_{1}, \ldots, x_{n}, x\right] \prod_{i=0}^{n}\left(x-x_{i}\right)
\end{aligned}
$$

(4) For $n+1$ equally spaced nodes, an upper bound on the error is given by

$$
|f(x)-p(x)| \leqq \frac{M}{4(n+1)}\left(\frac{b-a}{n}\right)^{n+1}
$$

Here M is an upper bound on $\left|f^{(n+1)}(x)\right|$ when $a \leqq x \leqq b$.
(5) If f is a polynomial of degree n, then all of the divided differences $f\left[x_{0}, x_{1}, \ldots, x_{i}\right]$ are zero for $i \geqq n+1$.

Problems 4.2

${ }^{a}$ 1. Use a divided-difference table to show that the following data can be represented by a polynomial of degree 3 :

x	-2	-1	0	1	2	3
y	1	4	11	16	13	-4

2. Fill in a detail in the proof of Inequality (4) by proving Inequality (5).
3. (Continuation) Fill in another detail in the proof of Inequality (4) by showing that $(j+1)!(n-j)!\leqq n!$ if $0 \leqq j \leqq n-1$. Induction and a symmetry argument can be used.
4. For nonuniformly distributed nodes $a=x_{0}<x_{1}<\cdots<x_{n}=b$, where $h=$ $\max _{1 \leqq i \leqq n}\left\{\left(x_{i}-x_{i-1}\right)\right\}$, show that Inequality (4) is true.
5. Using Theorem 1 , show directly that the maximum interpolation error is bounded by the following expressions and compare them to the bounds given by Theorem 2:
a. $\frac{1}{8} h^{2} M$ for linear interpolation, where $h=x_{1}-x_{0}$ and $M=\max _{x_{0} \leqq x \leqq x_{1}}\left|f^{\prime \prime}(x)\right|$.
b. $\frac{1}{9 \sqrt{3}} h^{3} M$ for quadratic interpolation, where $h=x_{1}-x_{0}=x_{2}-x_{1}$ and $M=$ $\max _{x_{0} \leqq x \leqq x_{2}}\left|f^{\prime \prime}(x)\right|$.
c. $\frac{3}{128} h^{4} M$ for cubic interpolation, where $h=x_{1}-x_{0}=x_{2}-x_{1}=x_{3}=x_{2}$ and $M=\max _{x_{0} \leqq x \leqq x_{3}}\left|f^{\prime \prime}(x)\right|$.
${ }^{a} 6$. How accurately can we determine $\sin x$ by linear interpolation, given a table of $\sin x$ to ten decimal places, for x in $[0,2]$ with $h=0.01$?
${ }^{a}$ 7. (Continuation) Given the data

x	$\sin x$	$\cos x$
0.70	0.6442176872	0.7648421873
0.71	0.6518337710	0.7583618760

find approximate values of $\sin 0.705$ and $\cos 0.702$ by linear interpolation. What is the error?
${ }^{a}$ 8. Linear interpolation in a table of function values means the following: If $y_{0}=f\left(x_{0}\right)$ and $y_{1}=f\left(x_{1}\right)$ are tabulated values, and if $x_{0}<x<x_{1}$, then an interpolated value of $f(x)$ is $y_{0}+\left[\left(y_{1}-y_{0}\right) /\left(x_{1}-x_{0}\right)\right]\left(x-x_{0}\right)$, as explained at the beginning of Section 4.1. A table of values of $\cos x$ is required so that the linear interpolation will yield five-decimal-place accuracy for any value of x in $[0, \pi]$. Assume that the tabular values are equally spaced, and determine the minimum number of entries needed in this table.
${ }^{a} 9$. An interpolating polynomial of degree 20 is to be used to approximate e^{-x} on the interval [0, 2]. How accurate will it be? (Use 21 uniform nodes, including the endpoints of the interval. Compare results, using Theorems 1 and 2.)
${ }^{a}$ 10. Let the function $f(x)=\ln x$ be approximated by an interpolation polynomial of degree 9 with ten nodes uniformly distributed in the interval [1,2]. What bound can be placed on the error?
11. In the first theorem on interpolation errors, show that if $x_{0}<x_{1}<\cdots<x_{n}$ and $x_{0}<x<x_{n}$, then $x_{0}<\xi<x_{n}$.
12. (Continuation) In the same theorem, considering ξ as a function of x, show that $f^{(n)}[\xi(x)]$ is a continuous function of x. Note: $\xi(x)$ need not be a continuous function of x.
${ }^{a}$ 13. Suppose $\cos x$ is to be approximated by an interpolating polynomial of degree n, using $n+1$ equally spaced nodes in the interval $[0,1]$. How accurate is the approximation? (Express your answer in terms of n.) How accurate is the approximation when $n=9$? For what values of n is the error less than 10^{-7} ?
${ }^{a}$ 14. In interpolating with $n+1$ equally spaced nodes on an interval, we could use $x_{i}=$ $a+(2 i+1) h / 2$, where $0 \leqq i \leqq n-1$ and $h=(b-a) / n$. What bound can be given now for $\prod_{i=0}^{n}\left|x-x_{i}\right|$ when $a \leqq x \leqq b$? Note: We are not requiring the endpoints to be nodes.
15. Using Equation (3), show that

$$
w^{\prime}(t)=\sum_{i=0}^{n} \prod_{\substack{j \neq i \\ j=0}}^{n}\left(t-x_{j}\right) \quad w^{\prime}\left(x_{i}\right)=\prod_{\substack{j \neq i \\ j=0}}^{n}\left(x_{i}-x_{j}\right)
$$

${ }^{a}$ 16. Does every polynomial p of degree at most n obey the following equation? Explain why or why not.

$$
p(x)=\sum_{i=0}^{n} p\left[x_{0}, x_{1}, \ldots, x_{i}\right] \prod_{j=0}^{i-1}\left(x-x_{j}\right)
$$

Hint: Use the uniqueness of the interpolating polynomial.
17. Find a polynomial p that takes these values: $p(1)=3, p(2)=1, p(0)=-5$. You may use any method you wish. You may leave the polynomial in any convenient form, not necessarily in the standard form, $\sum_{k=1}^{n} c_{k} x^{k}$. Next, find a new polynomial q that takes those same three values and $q(3)=7$.
18. For the case $n=2$, establish Theorem 4 and Corollory 1 directly.

Computer Problems 4.2

1. Using 21 equally spaced nodes on the interval $[-5,5]$, find the interpolating polynomial p of degree 20 for the function $f(x)=\left(x^{2}+1\right)^{-1}$. Print the values of $f(x)$ and $p(x)$ at 41 equally spaced points, including the nodes. Observe the large discrepancy between $f(x)$ and $p(x)$.
2. (Continuation) Perform the experiment in the preceding computer problem, using Chebyshev nodes $x_{i}=5 \cos (i \pi / 20)$, where $0 \leqq i \leqq 20$, and nodes $x_{i}=5 \cos [(2 i+$ $1) \pi / 42$], where $0 \leqq i \leqq 20$. Record your conclusions.
3. Using procedures corresponding to the pseudocode in the text, find a polynomial of degree 13 that interpolates $f(x)=\arctan x$ on the interval $[-1,1]$. Test numerically by taking 100 points to determine how accurate the polynomial approximation is.
4. (Continuation) Write a function for $\arctan x$ that uses the polynomial of the preceding computer problem. If x is not in the interval $[-1,1]$, use the formula $1 / \tan \theta=\cot \theta=$ $\tan (\pi / 2-\theta)$.
5. Approximate $\arcsin x$ on the interval $[-1 / \sqrt{2}, 1 / \sqrt{2}]$ by an interpolating polynomial of degree 15. Determine how accurate the approximation is by numerical tests. Use equally spaced nodes.
6. (Continuation) Write a function for $\arcsin x$, using the polynomial of the previous computer problem. Use $\sin (\pi / 2-\theta)=\cos \theta=\sqrt{1-\sin ^{2} \theta}$ if x is in the interval $|x|>1 / \sqrt{2}$.
7. Let $f(x)=\max \{0,1-x\}$. Sketch the function f. Then find interpolating polynomials p of degrees $2,4,8,16$, and 32 to f on the interval $[-4,4]$, using equally spaced nodes. Print out the discrepancy $f(x)-p(x)$ at 128 equally spaced points. Then redo the problem using Chebyshev nodes.
8. Using Coef and Eval and an automatic plotter, fit a polynomial through the following data:

x	0.0	0.60	1.50	1.70	1.90	2.1	2.30	2.60	2.8	3.00
y	-0.8	-0.34	0.59	0.59	0.23	0.1	0.28	1.03	1.5	1.44

Does the resulting curve look like a good fit? Explain.
9. Find the polynomial p of degree $\leqq 10$ that interpolates $|x|$ on $[-1,1]$ at 11 equally spaced points. Print the difference $|x|-p(x)$ at 41 equally spaced points. Then do the same with Chebyshev nodes. Compare.
10. Why are the Chebyshev nodes generally better than equally spaced nodes in polynomial interpolation? The answer lies in the term $\prod_{i=0}^{n}\left(x-x_{i}\right)$ that occurs in the error formula. If $x_{i}=\cos [(2 i+1) \pi /(2 n+2)]$, then

$$
\left|\prod_{i=0}^{n}\left(x-x_{i}\right)\right| \leqq 2^{-n}
$$

for all x in $[-1,1]$. Carry out a numerical experiment to test the given inequality for $n=3,7,15$.
11. (Student research project) Explore the topic of interpolation of multivariate scattered data, such as arise in geophysics and other areas.
12. Use mathematical software such as found in Matlab, Maple, or Mathematica to reproduce Figures 4.7 and 4.8.
13. Use symbolic mathematical software such as Maple or Mathematica to generate the interpolation polynomial for the data points in Example 2. Plot the polynomial and the data points.
14. Use graphical software to plot four or five points that happen to generate an interpolating polynomial that exhibits a great deal of oscillations. This piece of software should let you use your computer mouse to click on three or four points that visually appear to be part of a smooth curve. Next it uses Newton's interpolating polynomial to sketch the curve through these points. Then add another point that is somewhat remote from the curve and refit all the points. Repeat, adding other points. After a few points have been added in this way, you should have evidence that polynomials can oscillate wildly.

4.3 Estimating Derivatives and Richardson Extrapolation

A numerical experiment outlined in Chapter 1 (at the end of Section 1.1, p. 10) showed that determining the derivative of a function f at a point x is not a trivial numerical problem. Specifically, if $f(x)$ can be computed with only n digits of precision, it is difficult to calculate $f^{\prime}(x)$ numerically with n digits of precision. This difficulty can be traced to the subtraction between quantities that are nearly equal. In this section, several alternatives are offered for the numerical computation of $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.

First-Derivative Formulas via Taylor Series

First, consider again the obvious method based on the definition of $f^{\prime}(x)$. It consists of selecting one or more small values of h and writing

$$
\begin{equation*}
f^{\prime}(x) \approx \frac{1}{h}[f(x+h)-f(x)] \tag{1}
\end{equation*}
$$

What error is involved in this formula? To find out, use Taylor's Theorem from Section 1.2:

$$
f(x+h)=f(x)+h f^{\prime}(x)+\frac{1}{2} h^{2} f^{\prime \prime}(\xi)
$$

Rearranging this equation gives

$$
\begin{equation*}
f^{\prime}(x)=\frac{1}{h}[f(x+h)-f(x)]-\frac{1}{2} h f^{\prime \prime}(\xi) \tag{2}
\end{equation*}
$$

Hence, we see that approximation (1) has error term $-\frac{1}{2} h f^{\prime \prime}(\xi)=\mathcal{O}(h)$, where ξ is in the interval having endpoints x and $x+h$.

Equation (2) shows that in general, as $h \rightarrow 0$, the difference between $f^{\prime}(x)$ and the estimate $h^{-1}[f(x+h)-f(x)]$ approaches zero at the same rate that h does-that is, $\mathcal{O}(h)$. Of course, if $f^{\prime \prime}(x)=0$, then the error term will be $\frac{1}{6} h^{2} f^{\prime \prime \prime}(\gamma)$, which converges to zero somewhat faster at $\mathcal{O}\left(h^{2}\right)$. But usually, $f^{\prime \prime}(x)$ is not zero.

Equation (2) gives the truncation error for this numerical procedure, namely, $-\frac{1}{2} h f^{\prime \prime}(\xi)$. This error is present even if the calculations are performed with infinite precision; it is due to our imitating the mathematical limit process by means of an approximation formula. Additional (and worse) errors must be expected when calculations are performed on a computer with finite word length.

EXAMPLE 1 In Section 1.1, the program named First used the one-sided rule (1) to approximate the first derivative of the function $f(x)=\sin x$ at $x=0.5$. Explain what happens when a large number of iterations are performed, say $n=50$.

Solution There is a total loss of all significant digits! When we examine the computer output closely, we find that, in fact, a good approximation $f^{\prime}(0.5) \approx 0.87758$ was found, but it deteriorated as the process continued. This was caused by the subtraction of two nearly equal quantities $f(x+h)$ and $f(x)$, resulting in a loss of significant digits as well as a magnification of this effect from dividing by a small value of h. We need to stop the iterations sooner! When to stop an iterative process is a common question in numerical algorithms. In this case, one can monitor the iterations to determine when they settle down, namely, when two successive ones are within a prescribed tolerance. Alternatively, we can use the truncation error term. If we want six significant digits of accuracy in the results, we set

$$
\left|-\frac{1}{2} h f^{\prime \prime}(\xi)\right| \leqq \frac{1}{2} 4^{-n}<\frac{1}{2} 10^{-6}
$$

since $\left|f^{\prime \prime}(x)\right|<1$ and $h=1 / 4^{n}$. We find $n>6 / \log 4 \approx 9.97$. So we should stop after about ten steps in the process. (The least error of 3.1×10^{-9} was found at iteration 14.)

As we saw in Newton's method (Chapter 3) and will see in the Romberg method (Chapter 5), it is advantageous to have the convergence of numerical processes occur with higher powers of some quantity approaching zero. In the present situation, we want an approximation to $f^{\prime}(x)$ in which the error behaves like $\mathcal{O}\left(h^{2}\right)$. One such method is easily obtained with the aid of the following two Taylor series:

$$
\left\{\begin{array}{l}
f(x+h)=f(x)+h f^{\prime}(x)+\frac{1}{2!} h^{2} f^{\prime \prime}(x)+\frac{1}{3!} h^{3} f^{\prime \prime \prime}(x)+\frac{1}{4!} h^{4} f^{(4)}(x)+\cdots \tag{3}\\
f(x-h)=f(x)-h f^{\prime}(x)+\frac{1}{2!} h^{2} f^{\prime \prime}(x)-\frac{1}{3!} h^{3} f^{\prime \prime \prime}(x)+\frac{1}{4!} h^{4} f^{(4)}(x)-\cdots
\end{array}\right.
$$

By subtraction, we obtain

$$
f(x+h)-f(x-h)=2 h f^{\prime}(x)+\frac{2}{3!} h^{3} f^{\prime \prime \prime}(x)+\frac{2}{5!} h^{5} f^{(5)}(x)+\cdots
$$

This leads to a very important formula for approximating $f^{\prime}(x)$:

$$
\begin{equation*}
f^{\prime}(x)=\frac{1}{2 h}[f(x+h)-f(x-h)]-\frac{h^{2}}{3!} f^{\prime \prime \prime}(x)-\frac{h^{4}}{5!} f^{(5)}(x)-\cdots \tag{4}
\end{equation*}
$$

Expressed otherwise,

$$
\begin{equation*}
f^{\prime}(x) \approx \frac{1}{2 h}[f(x+h)-f(x-h)] \tag{5}
\end{equation*}
$$

with an error whose leading term is $-\frac{1}{6} h^{2} f^{\prime \prime \prime}(x)$, which makes it $\mathcal{O}\left(h^{2}\right)$.

By using Taylor's Theorem with its error term, we could have obtained the following two expressions:

$$
\begin{aligned}
& f(x+h)=f(x)+h f^{\prime}(x)+\frac{1}{2} h^{2} f^{\prime \prime}(x)+\frac{1}{6} h^{3} f^{\prime \prime \prime}\left(\xi_{1}\right) \\
& f(x-h)=f(x)-h f^{\prime}(x)+\frac{1}{2} h^{2} f^{\prime \prime}(x)-\frac{1}{6} h^{3} f^{\prime \prime \prime}\left(\xi_{2}\right)
\end{aligned}
$$

Then the subtraction would lead to

$$
f^{\prime}(x)=\frac{1}{2 h}[f(x+h)-f(x-h)]-\frac{1}{6} h^{2}\left[\frac{f^{\prime \prime \prime}\left(\xi_{1}\right)+f^{\prime \prime \prime}\left(\xi_{2}\right)}{2}\right]
$$

The error term here can be simplified by the following reasoning: The expression $\frac{1}{2}\left[f^{\prime \prime \prime}\left(\xi_{1}\right)+\right.$ $\left.f^{\prime \prime \prime}\left(\xi_{2}\right)\right]$ is the average of two values of $f^{\prime \prime \prime}$ on the interval $[x-h, x+h]$. It therefore lies between the least and greatest values of $f^{\prime \prime \prime}$ on this interval. If $f^{\prime \prime \prime}$ is continuous on this interval, then this average value is assumed at some point ξ. Hence, the formula with its error term can be written as

$$
f^{\prime}(x)=\frac{1}{2 h}[f(x+h)-f(x-h)]-\frac{1}{6} h^{2} f^{\prime \prime \prime}(\xi)
$$

This is based on the sole assumption that $f^{\prime \prime \prime}$ is continuous on $[x-h, x+h]$. This formula for numerical differentiation turns out to be very useful in the numerical solution of certain differential equations, as we shall see in Chapter 14 (on boundary value problems) and Chapter 15 (on partial differential equations).

EXAMPLE 2 Modify program First in Section 1.1 so that it uses the central difference formula (5) to approximate the first derivative of the function $f(x)=\sin x$ at $x=0.5$.

Solution Using the truncation error term for the central difference formula (5), we set

$$
\left|-\frac{1}{6} h^{2} f^{\prime \prime \prime}(\xi)\right| \leqq \frac{1}{6} 4^{-2 n}<\frac{1}{2} 10^{-6}
$$

or $n>(6-\log 3) / \log 16 \approx 4.59$. We obtain a good approximation after about five iterations with this higher-order formula. (The least error of 3.6×10^{-12} was at step 9.)

Richardson Extrapolation

Returning now to Equation (4), we write it in a simpler form:

$$
\begin{equation*}
f^{\prime}(x)=\frac{1}{2 h}[f(x+h)-f(x-h)]+a_{2} h^{2}+a_{4} h^{4}+a_{6} h^{6}+\cdots \tag{6}
\end{equation*}
$$

in which the constants a_{2}, a_{4}, \ldots depend on f and x. When such information is available about a numerical process, it is possible to use a powerful technique known as Richardson extrapolation to wring more accuracy out of the method. This procedure is now explained, using Equation (6) as our model.

Holding f and x fixed, we define a function of h by the formula

$$
\begin{equation*}
\varphi(h)=\frac{1}{2 h}[f(x+h)-f(x-h)] \tag{7}
\end{equation*}
$$

From Equation (6), we see that $\varphi(h)$ is an approximation to $f^{\prime}(x)$ with error of order $\mathcal{O}\left(h^{2}\right)$. Our objective is to compute $\lim _{h \rightarrow 0} \varphi(h)$ because this is the quantity $f^{\prime}(x)$ that we wanted
in the first place. If we select a function f and plot $\varphi(h)$ for $h=1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots$, then we get a graph (Computer Problem 4.3.5). Near zero, where we cannot actually calculate the value of φ from Equation (7), φ is approximately a quadratic function of h, since the higherorder terms from Equation (6) are negligible. Richardson extrapolation seeks to estimate the limiting value at 0 from some computed values of $\varphi(h)$ near 0 . Obviously, we can take any convenient sequence h_{n} that converges to zero, calculate $\varphi\left(h_{n}\right)$ from Equation (7), and use these as approximations to $f^{\prime}(x)$.

But something much more clever can be done. Suppose we compute $\varphi(h)$ for some h and then compute $\varphi(h / 2)$. By Equation (6), we have

$$
\begin{aligned}
\varphi(h) & =f^{\prime}(x)-a_{2} h^{2}-a_{4} h^{4}-a_{6} h^{6}-\cdots \\
\varphi\left(\frac{h}{2}\right) & =f^{\prime}(x)-a_{2}\left(\frac{h}{2}\right)^{2}-a_{4}\left(\frac{h}{2}\right)^{4}-a_{6}\left(\frac{h}{2}\right)^{6}-\cdots
\end{aligned}
$$

We can eliminate the dominant term in the error series by simple algebra. To do so, multiply the second equation by 4 and subtract it from the first equation. The result is

$$
\varphi(h)-4 \varphi\left(\frac{h}{2}\right)=-3 f^{\prime}(x)-\frac{3}{4} a_{4} h^{4}-\frac{15}{16} a_{6} h^{6}-\cdots
$$

We divide by -3 and rearrange this to get

$$
\varphi\left(\frac{h}{2}\right)+\frac{1}{3}\left[\varphi\left(\frac{h}{2}\right)-\varphi(h)\right]=f^{\prime}(x)+\frac{1}{4} a_{4} h^{4}+\frac{5}{16} a_{6} h^{6}+\cdots
$$

This is a marvelous discovery. Simply by adding $\frac{1}{3}[\varphi(h / 2)-\varphi(h)]$ to $\varphi(h / 2)$, we have apparently improved the precision to $\mathcal{O}\left(h^{4}\right)$ because the error series that accompanies this new combination begins with $\frac{1}{4} a_{4} h^{4}$. Since h will be small, this is a dramatic improvement.

We can repeat this process by letting

$$
\Phi(h)=\frac{4}{3} \varphi\left(\frac{h}{2}\right)-\frac{1}{3} \varphi(h)
$$

Then we have from the previous derivation that

$$
\begin{aligned}
\Phi(h) & =f^{\prime}(x)+b_{4} h^{4}+b_{6} h^{6}+\cdots \\
\Phi\left(\frac{h}{2}\right) & =f^{\prime}(x)+b_{4}\left(\frac{h}{2}\right)^{4}+b_{6}\left(\frac{h}{2}\right)^{6}+\cdots
\end{aligned}
$$

We can combine these equations to eliminate the first term in the error series

$$
\Phi(h)-16 \Phi\left(\frac{h}{2}\right)=-15 f^{\prime}(x)+\frac{3}{4} b_{6} h^{6}+\cdots
$$

Hence, we have

$$
\Phi\left(\frac{h}{2}\right)+\frac{1}{15}\left[\Phi\left(\frac{h}{2}\right)-\Phi(h)\right]=f^{\prime}(x)-\frac{1}{20} b_{6} h^{5}+\cdots
$$

This is yet another apparent improvement in the precision to $\mathcal{O}\left(h^{6}\right)$. And now, to top it off, note that the same procedure can be repeated over and over again to kill higher and higher terms in the error. This is Richardson extrapolation.

Essentially the same situation arises in the derivation of Romberg's algorithm in Chapter 5. Therefore, it is desirable to have a general discussion of the procedure here. We start with an equation that includes both situations. Let φ be a function such that

$$
\begin{equation*}
\varphi(h)=L-\sum_{k=1}^{\infty} a_{2 k} h^{2 k} \tag{8}
\end{equation*}
$$

where the coefficients $a_{2 k}$ are not known. Equation (8) is not interpreted as the definition of φ but rather as a property that φ possesses. It is assumed that $\varphi(h)$ can be computed for any $h>0$ and that our objective is to approximate L accurately using φ.

Select a convenient h, and compute the numbers

$$
\begin{equation*}
D(n, 0)=\varphi\left(\frac{h}{2^{n}}\right) \quad(n \geqq 0) \tag{9}
\end{equation*}
$$

Because of Equation (8), we have

$$
D(n, 0)=L+\sum_{k=1}^{\infty} A(k, 0)\left(\frac{h}{2^{n}}\right)^{2 k}
$$

where $A(k, 0)=-a_{2 k}$. These quantities $D(n, 0)$ give a crude estimate of the unknown number $L=\lim _{x \rightarrow 0} \varphi(x)$. More accurate estimates are obtained via Richardson extrapolation. The extrapolation formula is

$$
\begin{equation*}
D(n, m)=\frac{4^{m}}{4^{m}-1} D(n, m-1)-\frac{1}{4^{m}-1} D(n-1, m-1) \quad(1 \leqq m \leqq n) \tag{10}
\end{equation*}
$$

THEOREM 1

RICHARDSON EXTRAPOLATION THEOREM

The quantities $D(n, m)$ defined in the Richardson extrapolation process (10) obey the equation

$$
\begin{equation*}
D(n, m)=L+\sum_{k=m+1}^{\infty} A(k, m)\left(\frac{h}{2^{n}}\right)^{2 k} \quad(0 \leqq m \leqq n) \tag{11}
\end{equation*}
$$

Proof Equation (11) is true by hypothesis if $m=0$. For the purpose of an inductive proof, we assume that Equation (11) is valid for an arbitrary value of $m-1$, and we prove that Equation (11) is then valid for m. Now from Equations (10) and (11) for a fixed value m, we have

$$
\begin{aligned}
D(n, m)= & \frac{4^{m}}{4^{m}-1}\left[L+\sum_{k=m}^{\infty} A(k, m-1)\left(\frac{h}{2^{n}}\right)^{2 k}\right] \\
& -\frac{1}{4^{m}-1}\left[L+\sum_{k=m}^{\infty} A(k, m-1)\left(\frac{h}{2^{n-1}}\right)^{2 k}\right]
\end{aligned}
$$

After simplification, this becomes

$$
\begin{equation*}
D(n, m)=L+\sum_{k=m}^{\infty} A(k, m-1)\left(\frac{4^{m}-4^{k}}{4^{m}-1}\right)\left(\frac{h}{2^{n}}\right)^{2 k} \tag{12}
\end{equation*}
$$

Thus, we are led to define

$$
A(k, m)=A(k, m-1)\left(\frac{4^{m}-4^{k}}{4^{m}-1}\right)
$$

At the same time, we notice that $A(m, m)=0$. Hence, Equation (12) can be written as

$$
D(n, m)=L+\sum_{k=m+1}^{\infty} A(k, m)\left(\frac{h}{2^{n}}\right)^{2 k}
$$

Equation (11) is true for m, and the induction is complete.

The significance of Equation (11) is that the summation begins with the term $\left(h / 2^{n}\right)^{2 m+2}$. Since $h / 2^{n}$ is small, this indicates that the numbers $D(n, m)$ are approaching L very rapidly, namely,

$$
D(n, m)=L+\mathcal{O}\left(\frac{h^{2(m+1)}}{2^{2 n(m+1)}}\right)
$$

In practice, one can arrange the quantities in a two-dimensional triangular array as follows:

$$
\begin{array}{ccccc}
D(0,0) & & & & \\
D(1,0) & D(1,1) & & & \\
D(2,0) & D(2,1) & D(2,2) & & \tag{13}\\
\vdots & \vdots & \vdots & \ddots & \\
D(N, 0) & D(N, 1) & D(N, 2) & \cdots & D(N, N)
\end{array}
$$

The main tasks to generate such an array are as follows:

ALGORITHM 2 Richardson Extrapolation

1. Write a function for φ.
2. Decide on suitable values for N and h.
3. For $i=0,1, \ldots, N$, compute $D(i, 0)=\varphi\left(h / 2^{i}\right)$.
4. For $0 \leqq i \leqq j \leqq N$, compute

$$
D(i, j)=D(i, j-1)+\left(4^{j}-1\right)^{-1}[D(i, j-1)-D(i-1, j-1)]
$$

Notice that in this algorithm, the computation of $D(i, j)$ follows Equation (10) but has been rearranged slightly to improve its numerical properties.

EXAMPLE 3 Write a procedure to compute the derivative of a function at a point by using Equation (5) and Richardson extrapolation.

Solution The input to the procedure will be a function f, a specific point x, a value of h, and a number n signifying how many rows in the array (13) are to be computed. The output will
be the array (13). Here is a suitable pseudocode:

```
procedure Derivative \(\left(f, x, n, h,\left(d_{i j}\right)\right)\)
integer \(i, j, n ; \quad\) real \(h, x ; \quad\) real array \(\left(d_{i j}\right)_{0: n \times 0: n}\)
external function \(f\)
for \(i=0\) to \(n\) do
    \(d_{i 0} \leftarrow[f(x+h)-f(x-h)] /(2 h)\)
    for \(j=1\) to \(i\) do
        \(d_{i, j} \leftarrow d_{i, j-1}+\left(d_{i, j-1}-d_{i-1, j-1}\right) /\left(4^{j}-1\right)\)
    end for
    \(h \leftarrow h / 2\)
end for
end procedure Derivative
```

To test the procedure, choose $f(x)=\sin x$, where $x_{0}=1.2309594154$ and $h=1$. Then $f^{\prime}(x)=\cos x$ and $f^{\prime}\left(x_{0}\right)=\frac{1}{3}$. A pseudocode is written as follows:

```
program Test Derivative
real array ( (dij}\mp@subsup{)}{0:n\times0:n}{\prime;}\mathrm{ external function }
integer }n\leftarrow10;\quad\mathrm{ real }h\leftarrow1;\quadx\leftarrow1.230959415
call Derivative(f, x,n,h,(dij))
output (d}\mp@subsup{d}{ij}{}
end program Test_Derivative
real function f(x)
real }
f\leftarrow\operatorname{sin}(x)
end function f
```

We invite the reader to program the pseudocode and execute it on a computer. The computer output is the triangular array ($d_{i j}$) with indices $0 \leqq j \leqq i \leqq 10$. The most accurate value is $\left(d_{4,1}\right)=0.3333333433$. The values $d_{i 0}$, which are obtained solely by Equations (7) and (9) without any extrapolation, are not as accurate, having no more than four correct digits.

Mathematical software is now available with algebraic manipulation capabilities. Using them, we could write a computer program to find derivatives symbolically for a rather large class of functions-probably all those you would encounter in a calculus course. For example, we could verify the numerical results above by first finding the derivative exactly and then evaluating the numerical answer $\cos (1.2309594154) \approx 0.3333333355$ since $\arccos \left(\frac{1}{3}\right) \approx 1.23095941543$. Of course, the procedures discussed in this section are for approximating derivatives that cannot be determined exactly.

First-Derivative Formulas via Interpolation Polynomials

An important general stratagem can be used to approximate derivatives (as well as integrals and other quantities). The function f is first approximated by a polynomial p so that
$f \approx p$. Then we simply proceed to the approximation $f^{\prime}(x) \approx p^{\prime}(x)$ as a consequence. Of course, this strategy should be used very cautiously because the behavior of the interpolating polynomial can be oscillatory.

In practice, the approximating polynomial p is often determined by interpolation at a few points. For example, suppose that p is the polynomial of degree at most 1 that interpolates f at two nodes, x_{0} and x_{1}. Then from Equation (8) in Section 4.1 with $n=1$, we have

$$
p_{1}(x)=f\left(x_{0}\right)+f\left[x_{0}, x_{1}\right]\left(x-x_{0}\right)
$$

Consequently,

$$
\begin{equation*}
f^{\prime}(x) \approx p_{1}^{\prime}(x)=f\left[x_{0}, x_{1}\right]=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}} \tag{14}
\end{equation*}
$$

If $x_{0}=x$ and $x_{1}=x+h$ (see Figure 4.11), this formula is one previously considered, namely, Equation (1):

$$
\begin{equation*}
f^{\prime}(x) \approx \frac{1}{h}[f(x+h)-f(x)] \tag{15}
\end{equation*}
$$

FIGURE 4.11
Forward difference: two nodes

If $x_{0}=x-h$ and $x_{1}=x+h$ (see Figure 4.12), the resulting formula is Equation (5):

$$
\begin{equation*}
f^{\prime}(x) \approx \frac{1}{2 h}[f(x+h)-f(x-h)] \tag{16}
\end{equation*}
$$

FIGURE 4.12
Central difference: two nodes

Now consider interpolation with three nodes, x_{0}, x_{1}, and x_{2}. The interpolating polynomial is obtained from Equation (8) in Section 4.1:

$$
p_{2}(x)=f\left(x_{0}\right)+f\left[x_{0}, x_{1}\right]\left(x-x_{0}\right)+f\left[x_{0}, x_{1}, x_{2}\right]\left(x-x_{0}\right)\left(x-x_{1}\right)
$$

and its derivative is

$$
\begin{equation*}
p_{2}^{\prime}(x)=f\left[x_{0}, x_{1}\right]+f\left[x_{0}, x_{1}, x_{2}\right]\left(2 x-x_{0}-x_{1}\right) \tag{17}
\end{equation*}
$$

Here the right-hand side consists of two terms. The first is the previous estimate in Equation (14), and the second is a refinement or correction term.

If Equation (17) is used to evaluate $f^{\prime}(x)$ when $x=\frac{1}{2}\left(x_{0}+x_{1}\right)$, as in Equation (16), then the correction term in Equation (17) is zero. Thus, the first term in this case must be more accurate than those in other cases because the correction term adds nothing. This is why Equation (16) is more accurate than (15).

An analysis of the errors in this general procedure goes as follows: Suppose that p_{n} is the polynomial of least degree that interpolates f at the nodes $x_{0}, x_{1}, \ldots, x_{n}$. Then according
to the first theorem on interpolating errors in Section 4.2,

$$
f(x)-p_{n}(x)=\frac{1}{(n+1)!} f^{(n+1)}(\xi) w(x)
$$

where ξ is dependent on x, and $w(x)=\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n}\right)$. Differentiating gives

$$
\begin{equation*}
f^{\prime}(x)-p_{n}^{\prime}(x)=\frac{1}{(n+1)!} w(x) \frac{d}{d x} f^{(n+1)}(\xi)+\frac{1}{(n+1)!} f^{(n+1)}(\xi) w^{\prime}(x) \tag{18}
\end{equation*}
$$

Here, we had to assume that $f^{(n+1)}(\xi)$ is differentiable as a function of x, a fact that is known if $f^{(n+2)}$ exists and is continuous.

The first observation to make about the error formula in Equation (18) is that $w(x)$ vanishes at each node, so if the evaluation is at a node x_{i}, the resulting equation is simpler:

$$
f^{\prime}\left(x_{i}\right)=p_{n}^{\prime}\left(x_{i}\right)+\frac{1}{(n+1)!} f^{(n+1)}(\xi) w^{\prime}\left(x_{i}\right)
$$

For example, taking just two points x_{0} and x_{1}, we obtain with $n=1$ and $i=0$,

$$
\begin{aligned}
f^{\prime}\left(x_{0}\right) & =f\left[x_{0}, x_{1}\right]+\left.\frac{1}{2} f^{\prime \prime}(\xi) \frac{d}{d x}\left[\left(x-x_{0}\right)\left(x-x_{1}\right)\right]\right|_{x=x_{0}} \\
& =f\left[x_{0}, x_{1}\right]+\frac{1}{2} f^{\prime \prime}(\xi)\left(x_{0}-x_{1}\right)
\end{aligned}
$$

This is Equation (2) in disguise when $x_{0}=x$ and $x_{1}=x+h$. Similar results follow with $n=1$ and $i=1$.

The second observation to make about Equation (18) is that it becomes simpler if x is chosen as a point where $w^{\prime}(x)=0$. For instance, if $n=1$, then w is a quadratic function that vanishes at the two nodes x_{0} and x_{1}. Because a parabola is symmetric about its axis, $w^{\prime}\left[\left(x_{0}+x_{1}\right) / 2\right]=0$. The resulting formula is

$$
f^{\prime}\left(\frac{x_{0}+x_{1}}{2}\right)=f\left[x_{0}, x_{1}\right]-\frac{1}{8}\left(x_{1}-x_{0}\right)^{2} \frac{d}{d x} f^{\prime \prime}(\xi)
$$

As a final example, consider four interpolation points: x_{0}, x_{1}, x_{2}, and x_{3}. The interpolating polynomial from Equation (8) in Section 4.1 with $n=3$ is

$$
\begin{aligned}
p_{3}(x)= & f\left(x_{0}\right)+f\left[x_{0}, x_{1}\right]\left(x-x_{0}\right)+f\left[x_{0}, x_{1}, x_{2}\right]\left(x-x_{0}\right)\left(x-x_{1}\right) \\
& +f\left[x_{0}, x_{1}, x_{2}, x_{3}\right]\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)
\end{aligned}
$$

Its derivative is

$$
\begin{aligned}
p_{3}^{\prime}(x)= & f\left[x_{0}, x_{1}\right]+f\left[x_{0}, x_{1}, x_{2}\right]\left(2 x-x_{0}-x_{1}\right) \\
& +f\left[x_{0}, x_{1}, x_{2}, x_{3}\right]\left(\left(x-x_{1}\right)\left(x-x_{2}\right)\right. \\
& \left.+\left(x-x_{0}\right)\left(x-x_{2}\right)+\left(x-x_{0}\right)\left(x-x_{1}\right)\right)
\end{aligned}
$$

A useful special case occurs if $x_{0}=x-h, x_{1}=x+h, x_{2}=x-2 h$, and $x_{3}=x+2 h$ (see Figure 4.13). The resulting formula is

$$
f^{\prime}(x) \approx-\frac{2}{3 h}[f(x+h)-f(x-h)]-\frac{1}{12 h}[f(x+2 h)-f(x-2 h)]
$$

FIGURE 4.13

Central difference: four nodes

This can be arranged in a form in which it probably should be computed with a principal term plus a correction or refining term:

$$
\begin{align*}
f^{\prime}(x) \approx & \frac{1}{2 h}[f(x+h)-f(x-h)] \\
& -\frac{1}{12 h}\{f(x+2 h)-2[f(x+h)-f(x-h)]-f(x-2 h)\} \tag{19}
\end{align*}
$$

The error term is $-\frac{1}{30} h^{4} f^{(v)}(\xi)=\mathcal{O}\left(h^{4}\right)$.

Second-Derivative Formulas via Taylor Series

In the numerical solution of differential equations, it is often necessary to approximate second derivatives. We shall derive the most important formula for accomplishing this. Simply add the two Taylor series (3) for $f(x+h)$ and $f(x-h)$. The result is

$$
f(x+h)+f(x-h)=2 f(x)+h^{2} f^{\prime \prime}(x)+2\left[\frac{1}{4!} h^{4} f^{(4)}(x)+\cdots\right]
$$

When this is rearranged, we get

$$
f^{\prime \prime}(x)=\frac{1}{h^{2}}[f(x+h)-2 f(x)+f(x-h)]+E
$$

where the error series is

$$
E=-2\left[\frac{1}{4!} h^{2} f^{(4)}(x)+\frac{1}{6!} h^{4} f^{(6)}(x)+\cdots\right]
$$

By carrying out the same process using Taylor's formula with a remainder, one can show that E is also given by

$$
E=-\frac{1}{12} h^{2} f^{(4)}(\xi)
$$

for some ξ in the interval $(x-h, x+h)$. Hence, we have the approximation

$$
\begin{equation*}
f^{\prime \prime}(x) \approx \frac{1}{h^{2}}[f(x+h)-2 f(x)+f(x-h)] \tag{20}
\end{equation*}
$$

with error $\mathcal{O}\left(h^{2}\right)$.
EXAMPLE 4 Repeat Example 2, using the central difference formula (20) to approximate the second derivative of the function $f(x)=\sin x$ at the given point $x=0.5$.

Solution Using the truncation error term, we set

$$
\left|-\frac{1}{12} h^{2} f^{(4)}(\xi)\right| \leqq \frac{1}{12} 4^{-2 n}<\frac{1}{2} 10^{-6}
$$

and we obtain $n>(6-\log 6) / \log 16 \approx 4.34$. Hence, the modified program First finds a good approximation of $f^{\prime \prime}(0.5) \approx-0.47942$ after about four iterations. (The least error of 3.1×10^{-9} was obtained at iteration 6 .)

Approximate derivative formulas of high order can be obtained by using unequally spaced points such as at Chebyshev nodes. Recently, software packages have been developed for automatic differentiation of functions that are expressible by a computer program. They produce true derivatives with only rounding errors and no discretization errors.

Noise in Computation

An interesting question is how noise in the evaluation of $f(x)$ affects the computation of derivatives when using the standard formulas.

The formulas for derivatives are derived with the expectation that evaluation of the function at any point is possible, with complete precision. Then the approximate derivative produced by the formula differs from the actual derivative by a quantity called the error term, which involves the spacing of the sample points and some higher derivative of the function.

If there are errors in the values of the function (noise), they can vitiate the whole process! Those errors could overwhelm the error inherent in the formulas. The inherent error arises from the fact that in deriving the formulas a Taylor series was truncated after only a few terms. It is called the truncation error. It is present even if the evaluation of the function at the required sample points is absolutely correct.

For example, consider the formula

$$
f^{\prime}(x)=\frac{f(x+h)-f(x-h)}{2 h}-\frac{h^{2}}{6} f^{\prime \prime \prime}(\xi)
$$

The term with h^{2} is the error term. The point ξ is a nearby point (unknown). If $f(x+h)$ and $f(x-h)$ are in error by at most d, then one can see that the formula will produce a value for $f^{\prime}(x)$ that is in error by d / h, which is large when h is small. Noise completely spoils the process if d is large.

For a specific numerical case, suppose that $h=10^{-2}$ and $\left|f^{\prime \prime \prime}(s)\right| \leqq 6$. Then the truncation error, E, satisfies $|E| \leqq 10^{-4}$. The derivative computed from the formula with complete precision is within 10^{-4} of the actual derivative. Suppose, however, that there is noise in the evaluation of $f(x \pm h)$ of magnitude $d=h$. The correct value of $[f(x+h)-f(x-h)] /(2 h)$ may differ from the noisy value by $(2 d) /(2 h)=1$.

Summary

(1) We have derived formulas for approximating first and second derivatives. For $f^{\prime}(x)$, a one-sided formula is

$$
f^{\prime}(x) \approx \frac{1}{h}[f(x+h)-f(x)]
$$

with error term $-\frac{1}{2} h f^{\prime \prime}(\xi)$. A central difference formula is

$$
f^{\prime}(x) \approx \frac{1}{2 h}[f(x+h)-f(x-h)]
$$

with error $-\frac{1}{6} h^{2} f^{\prime \prime \prime}(\xi)=\mathcal{O}\left(h^{2}\right)$. A central difference formula with a correction term is

$$
\begin{aligned}
f^{\prime}(x) \approx & \frac{1}{2 h}[f(x+h)-f(x-h)] \\
& -\frac{1}{12 h}[f(x+2 h)-2 f(x+h)+2 f(x-h)-f(x-2 h)]
\end{aligned}
$$

with error term $-\frac{1}{30} h^{4} f^{(v)}(\xi)=\mathcal{O}\left(h^{4}\right)$.
(2) For $f^{\prime \prime}(x)$, a central difference formula is

$$
f^{\prime \prime}(x) \approx \frac{1}{h^{2}}[f(x+h)-2 f(x)+f(x-h)]
$$

with error term $-\frac{1}{12} h^{2} f^{(4)}(\xi)$
(3) If $\varphi(h)$ is one of these formulas with error series $a_{2} h^{2}+a_{4} h^{4}+a_{6} h^{6}+\cdots$, then we can apply Richardson extrapolation as follows

$$
\left\{\begin{array}{l}
D(n, 0)=\varphi\left(h / 2^{n}\right) \\
D(n, m)=D(n, m-1)+[D(n, m-1)-D(n-1, m-1)] /\left(4^{m}-1\right)
\end{array}\right.
$$

with error terms

$$
D(n, m)=L+\mathcal{O}\left(\frac{h^{2(m+1)}}{2^{2 n(m+1)}}\right)
$$

Additional References for Chapter 4

For additional study, see Gautschi [1990], Goldstine [1977], Griewark [2000], Groetsch [1998], Rivlin [1990], and Whittaker and Robinson [1944].

Problems 4.3

${ }^{a}$ 1. Determine the error term for the formula

$$
f^{\prime}(x) \approx \frac{1}{4 h}[f(x+3 h)-f(x-h)]
$$

${ }^{a}$ 2. Using Taylor series, establish the error term for the formula

$$
f^{\prime}(0) \approx \frac{1}{2 h}[f(2 h)-f(0)]
$$

3. Derive the approximation formula

$$
f^{\prime}(x) \approx \frac{1}{2 h}[4 f(x+h)-3 f(x)-f(x+2 h)]
$$

and show that its error term is of the form $\frac{1}{3} h^{2} f^{\prime \prime \prime}(\xi)$.
${ }^{a}$ 4. Can you find an approximation formula for $f^{\prime}(x)$ that has error term $\mathcal{O}\left(h^{3}\right)$ and involves only two evaluations of the function f ? Prove or disprove.
5. Averaging the forward-difference formula $f^{\prime}(x) \approx[f(x+h)-f(x)] / h$ and the backward-difference formula $f^{\prime}(x) \approx[f(x)-f(x-h)] / h$, each with error term
$\mathcal{O}(h)$, results in the central-difference formula $f^{\prime}(x) \approx[f(x+h)-f(x-h)] /(2 h)$ with error $\mathcal{O}\left(h^{2}\right)$. Show why. Hint: Determine at least the first term in the error series for each formula.
${ }^{a}$ 6. Criticize the following analysis. By Taylor's formula, we have

$$
\begin{aligned}
& f(x+h)-f(x)=h f^{\prime}(x)+\frac{h^{2}}{2} f^{\prime \prime}(x)+\frac{h^{3}}{6} f^{\prime \prime \prime}(\xi) \\
& f(x-h)-f(x)=-h f^{\prime}(x)+\frac{h^{2}}{2} f^{\prime \prime}(x)-\frac{h^{3}}{6} f^{\prime \prime \prime}(\xi)
\end{aligned}
$$

So by adding, we obtain an exact expression for $f^{\prime \prime}(x)$:

$$
f(x+h)+f(x-h)-2 f(x)=h^{2} f^{\prime \prime}(x)
$$

7. Criticize the following analysis. By Taylor's formula, we have

$$
\begin{aligned}
& f(x+h)-f(x)=h f^{\prime}(x)+\frac{h^{2}}{2} f^{\prime \prime}(x)+\frac{h^{3}}{6} f^{\prime \prime \prime}\left(\xi_{1}\right) \\
& f(x-h)-f(x)=-h f^{\prime}(x)+\frac{h^{2}}{2} f^{\prime \prime}(x)-\frac{h^{3}}{6} f^{\prime \prime \prime}\left(\xi_{2}\right)
\end{aligned}
$$

Therefore,

$$
\frac{1}{h^{2}}[f(x+h)-2 f(x)+f(x-h)]=f^{\prime \prime}(x)+\frac{h}{6}\left[f^{\prime \prime \prime}\left(\xi_{1}\right)-f^{\prime \prime \prime}\left(\xi_{2}\right)\right]
$$

The error in the approximation formula for $f^{\prime \prime}$ is thus $\mathcal{O}(h)$.
8. Derive the two formulas
${ }^{a}$ a. $f^{\prime}(x) \approx \frac{1}{4 h}[f(x+2 h)-f(x-2 h)]$
b. $f^{\prime \prime}(x) \approx \frac{1}{4 h^{2}}[f(x+2 h)-2 f(x)+f(x-2 h)]$
and establish formulas for the errors in using them.
9. Derive the following rules for estimating derivatives:
${ }^{a}$ a. $f^{\prime \prime \prime}(x) \approx \frac{1}{2 h^{3}}[f(x+2 h)-2 f(x+h)+2 f(x-h)-f(x-2 h)]$
${ }^{a}$ b. $f^{(4)}(x) \approx \frac{1}{h^{4}}[f(x+2 h)-4 f(x+h)+6 f(x)-4 f(x-h)+f(x-2 h)]$
and their error terms. Which is more accurate? Hint: Consider the Taylor series for $D(h) \equiv f(x+h)-f(x-h)$ and $S(h) \equiv f(x+h)+f(x-h)$.
10. Establish the formula

$$
f^{\prime \prime}(x) \approx \frac{2}{h^{2}}\left[\frac{f\left(x_{0}\right)}{(1+\alpha)}-\frac{f\left(x_{1}\right)}{\alpha}+\frac{f\left(x_{2}\right)}{\alpha(\alpha+1)}\right]
$$

in the following two ways, using the unevenly spaced points $x_{0}<x_{1}<x_{2}$, where $x_{1}-x_{0}=h$ and $x_{2}-x_{1}=\alpha h$. Notice that this formula reduces to the standard central-difference formula (20) when $\alpha=1$.
a. Approximate $f(x)$ by the Newton form of the interpolating polynomial of degree 2 .
b. Calculate the undetermined coefficients A, B, and C in the expression $f^{\prime \prime}(x) \approx$ $A f\left(x_{0}\right)+B f\left(x_{1}\right)+C f\left(x_{2}\right)$ by making it exact for the three polynomials $1, x-x_{1}$, and $\left(x-x_{1}\right)^{2}$ and thus exact for all polynomials of degree $\leqq 2$.
${ }^{a}$ 11. (Continuation) Using Taylor series, show that

$$
f^{\prime}\left(x_{1}\right)=\frac{f\left(x_{2}\right)-f\left(x_{0}\right)}{x_{2}-x_{0}}+(\alpha-1) \frac{h}{2} f^{\prime \prime}\left(x_{1}\right)+\mathcal{O}\left(h^{2}\right)
$$

Establish that the error for approximating $f^{\prime}\left(x_{1}\right)$ by $\left[f\left(x_{2}\right)-f\left(x_{0}\right)\right] /\left(x_{2}-x_{0}\right)$ is $\mathcal{O}\left(h^{2}\right)$ when x_{1} is midway between x_{0} and x_{2} but only $\mathcal{O}(h)$ otherwise.
${ }^{a}$ 12. A certain calculation requires an approximation formula for $f^{\prime}(x)+f^{\prime \prime}(x)$. How well does the expression

$$
\left(\frac{2+h}{2 h^{2}}\right) f(x+h)-\left(\frac{2}{h^{2}}\right) f(x)+\left(\frac{2-h}{2 h^{2}}\right) f(x-h)
$$

serve? Derive this approximation and its error term.
${ }^{a} \mathbf{1 3}$. The values of a function f are given at three points x_{0}, x_{1}, and x_{2}. If a quadratic interpolating polynomial is used to estimate $f^{\prime}(x)$ at $x=\frac{1}{2}\left(x_{0}+x_{1}\right)$, what formula will result?
14. Consider Equation (19).
a. Fill in the details in its derivation.
b. Using Taylor series, derive its error term.
15. Show how Richardson extrapolation would work on Formula (20).
${ }^{a}$ 16. If $\varphi(h)=L-c_{1} h-c_{2} h^{2}-c_{3} h^{3}-\cdots$, then what combination of $\varphi(h)$ and $\varphi(h / 2)$ should give an accurate estimate of L ?
17. (Continuation) State and prove a theorem analogous to the theorem on Richardson extrapolation for the situation of the preceding problem.
18. If $\varphi(h)=L-c_{1} h^{1 / 2}-c_{2} h^{2 / 2}-c_{3} h^{3 / 2}-\cdots$, then what combination of $\varphi(h)$ and $\varphi(h / 2)$ should give an accurate estimate of L ?
19. Show that Richardson extrapolation can be carried out for any two values of h. Thus, if $\varphi(h)=L-\mathcal{O}\left(h^{p}\right)$, then from $\varphi\left(h_{1}\right)$ and $\varphi\left(h_{2}\right)$, a more accurate estimate of L is given by

$$
\varphi\left(h_{2}\right)+\frac{h_{2}^{p}}{h_{1}^{p}-h_{2}^{p}}\left[\varphi\left(h_{2}\right)-\varphi\left(h_{1}\right)\right]
$$

${ }^{a}$ 20. Consider a function φ such that $\lim _{h \rightarrow 0} \varphi(h)=L$ and $L-\varphi(h) \approx c e^{-1 / h}$ for some constant c. By combining $\varphi(h), \varphi(h / 2)$, and $\varphi(h / 3)$, find an accurate estimate of L.
21. Consider the approximate formula

$$
f^{\prime}(x) \approx \frac{3}{2 h^{3}} \int_{-h}^{h} t f(x+t) d t
$$

Determine its error term. Does the function f have to be differentiable for the formula to be meaningful? Hint: This is a novel method of doing numerical differentiation. The interested reader can read more about Lanczos' generalized derivative in Groetsch [1998].
22. Derive the error terms for $D(3,0), D(3,1), D(3,2)$ and $D(3,3)$.
23. Differentiation and integration are mutual inverse processes. Differentiation is an inherently sensitive problem in which small changes in the data can cause large changes in the results. Integration is a smoothing process and is inherently stable. Display two functions that have very different derivatives but equal definite integrals and vice versa.
24. Establish the error terms for these rules:
a. $f^{\prime \prime \prime}(x) \approx \frac{1}{2 h^{3}}[3 f(x+h)-10 f(x)+12 f(x-h)-6 f(x-2 h)+f(x-3 h)]$
b. $f^{\prime}(x)+\frac{h}{2} f^{\prime \prime} \approx \frac{1}{h}[f(x+h)-f(x)]$
c. $f^{(i v)}(x) \approx \frac{1}{h^{4}}\left[\frac{4}{3} f(x+3 h)-6 f(x+2 h)+12 f(x+h)\right]$ if $f(x)=f^{\prime}(x)=0$.

Computer Problems 4.3

1. Test procedure Derivative on the following functions at the points indicated in a single computer run. Interpret the results.
a. $f(x)=\cos x$ at $x=0$
b. $f(x)=\arctan x$ at $x=1$
c. $f(x)=|x|$ at $x=0$
2. (Continuation) Write and test a procedure similar to Derivative that computes $f^{\prime \prime}(x)$ with repeated Richardson extrapolation.
${ }^{a}$ 3. Find $f^{\prime}(0.25)$ as accurately as possible, using only the function corresponding to the pseudocode below and a method for numerical differentiation:
```
real function f(x)
integer }i\mathrm{ ; real }a,b,c,
a\leftarrow1;b\leftarrow\operatorname{cos}(x)
for i=1 to 5 do
    c}\leftarrow
    b\leftarrow\sqrt{}{ab}
    a\leftarrow(a+c)/2
end for
f\leftarrow2 arctan(1)/a
end function f
```

4. Carry out a numerical experiment to compare the accuracy of Formulas (5) and (19) on a function f whose derivative can be computed precisely. Take a sequence of values for h, such as 4^{-n} with $0 \leqq n \leqq 12$.
5. Using the discussion of the geometric interpretation of Richardson extrapolation, produce a graph to show that $\varphi(h)$ looks like a quadratic curve in h.
6. Use symbolic mathematical software such as Maple or Mathematica to establish the first term in the error series for Equation (19).
7. Use mathematical software such as found in Matlab, Maple, or Mathematica to redo Example 1.

5

Numerical Integration

In electrical field theory, it is proved that the magnetic field induced by a current flowing in a circular loop of wire has intensity

$$
H(x)=\frac{4 / r}{r^{2}-x^{2}} \int_{0}^{\pi / 2}\left[1-\left(\frac{x}{r}\right)^{2} \sin ^{2} \theta\right]^{1 / 2} d \theta
$$

where I is the current, r is the radius of the loop, and x is the distance from the center to the point where the magnetic intensity is being computed $(0 \leqq x \leqq r)$. If I, r, and x are given, we have a formidable integral to evaluate. It is an elliptic integral and not expressible in terms of familiar functions. But H can be computed precisely by the methods of this chapter. For example, if $I=15.3, r=120$, and $x=84$, we find $H=1.355661135$ accurate to nine decimals.

5.1 Lower and Upper Sums

Elementary calculus focuses largely on two important processes of mathematics: differentiation and integration. In Section 1.1, numerical differentiation was considered briefly; it was taken up again in Section 4.3. In this chapter, the process of integration is examined from the standpoint of numerical mathematics.

Definite and Indefinite Integrals

It is customary to distinguish two types of integrals: the definite and the indefinite integral. The indefinite integral of a function is another function or a class of functions, whereas the definite integral of a function over a fixed interval is a number. For example,

$$
\begin{aligned}
\text { Indefinite integral: } & \int x^{2} d x=\frac{1}{3} x^{3}+C \\
\text { Definite integral: } & \int_{0}^{2} x^{2} d x=\frac{8}{3}
\end{aligned}
$$

Actually, a function has not just one but many indefinite integrals. These differ from each other by constants. Thus, in the preceding example, any constant value may be assigned
to C, and the result is still an indefinite integral. In elementary calculus, the concept of an indefinite integral is identical with the concept of an antiderivative. An antiderivative of a function f is any function F having the property that $F^{\prime}=f$.

The definite and indefinite integrals are related by the Fundamental Theorem of Calculus,* which states that $\int_{a}^{b} f(x) d x$ can be computed by first finding an antiderivative F of f and then evaluating $F(b)-F(a)$. Thus, using traditional notation, we have

$$
\int_{1}^{3}\left(x^{2}-2\right) d x=\left.\left(\frac{x^{3}}{3}-2 x\right)\right|_{1} ^{3}=\left(\frac{27}{3}-6\right)-\left(\frac{1}{3}-2\right)=\frac{14}{3}
$$

As another example of the Fundamental Theorem of Calculus, we can write

$$
\begin{aligned}
\int_{a}^{b} F^{\prime}(x) d x & =F(b)-F(a) \\
\int_{a}^{x} F^{\prime}(t) d t & =F(x)-F(a)
\end{aligned}
$$

If this second equation is differentiated with respect to x, the result is (and here we have put $f=F^{\prime}$)

$$
\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)
$$

This last equation shows that $\int_{a}^{x} f(t) d t$ must be an antiderivative (indefinite integral) of f.
The foregoing technique for computing definite integrals is virtually the only one emphasized in elementary calculus. The definite integral of a function, however, has an interpretation as the area under a curve, and so the existence of a numerical value for $\int_{a}^{b} f(x) d x$ should not depend logically on our limited ability to find antiderivatives. Thus, for instance,

$$
\int_{0}^{1} e^{x^{2}} d x
$$

has a precise numerical value despite the fact that there is no elementary function F such that $F^{\prime}(x)=e^{x^{2}}$. By the preceding remarks, $e^{x^{2}}$ does have antiderivatives, one of which is

$$
F(x)=\int_{0}^{x} e^{t^{2}} d t
$$

However, this form of the function F is of no help in determining the numerical value sought.

Lower and Upper Sums

The existence of the definite integral of a nonnegative function f on a closed interval $[a, b]$ is based on an interpretation of that integral as the area under the graph of f. The definite integral is defined by means of two concepts, the lower sums of f and the upper sums of f; these are approximations to the area under the graph.

[^5]Let P be a partition of the interval $[a, b]$ given by

$$
P=\left\{a=x_{0}<x_{1}<x_{2}<\cdots<x_{n-1}<x_{n}=b\right\}
$$

with partition points $x_{0}, x_{1}, x_{2}, \ldots, x_{n}$ that divide the interval $[a, b]$ into n subintervals [x_{i}, x_{i+1}]. Now denote by m_{i} the greatest lower bound (infimum or inf) of $f(x)$ on the subinterval $\left[x_{i}, x_{i+1}\right]$. In symbols,

$$
m_{i}=\inf \left\{f(x): x_{i} \leqq x \leqq x_{i+1}\right\}
$$

Likewise, we denote by M_{i} the least upper bound (supremum or sup) of $f(x)$ on $\left[x_{i}, x_{i+1}\right]$. Thus,

$$
M_{i}=\sup \left\{f(x): x_{i} \leqq x \leqq x_{i+1}\right\}
$$

The lower sums and upper sums of f corresponding to the given partition P are defined to be

$$
\begin{aligned}
& L(f ; P)=\sum_{i=0}^{n-1} m_{i}\left(x_{i+1}-x_{i}\right) \\
& U(f ; P)=\sum_{i=0}^{n-1} M_{i}\left(x_{i+1}-x_{i}\right)
\end{aligned}
$$

If f is a positive function, these two quantities can be interpreted as estimates of the area under the curve for f. These sums are shown in Figure 5.1.

(a) Lower sums

FIGURE 5.1 Illustrating lower and upper sums

(b) Upper sums

EXAMPLE 1 What are the numerical values of the upper and lower sums for $f(x)=x^{2}$ on the interval $[0,1]$ if the partition is $P=\left\{0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1\right\}$?

Solution We want the value of

$$
U(f ; P)=M_{0}\left(x_{1}-x_{0}\right)+M_{1}\left(x_{2}-x_{1}\right)+M_{2}\left(x_{3}-x_{2}\right)+M_{3}\left(x_{4}-x_{3}\right)
$$

Since f is increasing on $[0,1], M_{0}=f\left(x_{1}\right)=\frac{1}{16}$. Similarly, $M_{1}=f\left(x_{2}\right)=\frac{1}{4}, M_{2}=$ $f\left(x_{3}\right)=\frac{9}{16}$, and $M_{3}=f\left(x_{4}\right)=1$. The widths of the subintervals are all equal to $\frac{1}{4}$. Hence,

$$
U(f ; P)=\frac{1}{4}\left(\frac{1}{16}+\frac{1}{4}+\frac{9}{16}+1\right)=\frac{15}{32}
$$

In the same way, we find that $m_{0}=f\left(x_{0}\right)=0, m_{1}=\frac{1}{16}, m_{2}=\frac{1}{4}$, and $m_{3}=\frac{9}{16}$. Hence,

$$
L(f ; P)=\frac{1}{4}\left(0+\frac{1}{16}+\frac{1}{4}+\frac{9}{16}\right)=\frac{7}{32}
$$

If we had no other way of calculating $\int_{0}^{1} x^{2} d x$, we would take a value halfway between $U(f ; P)$ and $L(f ; P)$ as the best estimate. This number is $\frac{11}{32}$. The correct value is $\frac{1}{3}$, and the error is $\frac{11}{32}-\frac{1}{3}=\frac{1}{96}$.

It is intuitively clear that the upper sum overestimates the area under the curve, and the lower sum underestimates it. Therefore, the expression $\int_{a}^{b} f(x) d x$, which we are trying to define, is required to satisfy the basic inequality

$$
\begin{equation*}
L(f ; P) \leqq \int_{a}^{b} f(x) d x \leqq U(f ; P) \tag{1}
\end{equation*}
$$

for all partitions P. It turns out that if f is a continuous function defined on $[a, b]$, then Inequality (1) does indeed define the integral. That is, there is one and only one real number that is greater than or equal to all lower sums of f and less than or equal to all upper sums of f. This unique number (depending on f, a, and b) is defined to be $\int_{a}^{b} f(x) d x$. The integral also exists if f is monotone increasing on $[a, b]$ or monotone decreasing on $[a, b]$.

Riemann-Integrable Functions

We consider the least upper bound (supremum) of the set of all numbers $L(f ; P)$ obtained when P is allowed to range over all partitions of the interval $[a, b]$. This is abbreviated $\sup _{P} L(f ; P)$. Similarly, we consider the greatest lower bound (infimum) of $U(f ; P)$ when P ranges over all partitions of $[a, b]$. This is denoted by $\inf _{P} U(f ; P)$. Now if these two numbers are the same-that is, if

$$
\begin{equation*}
\inf _{P} U(f ; P)=\sup _{P} L(f ; P) \tag{2}
\end{equation*}
$$

then we say that f is Riemann-integrable on $[a, b]$ and define $\int_{a}^{b} f(x) d x$ to be the common value obtained in Equation (2). The important result mentioned above can be stated formally as follows:

THEOREM ON RIEMANN INTEGRAL

Every continuous function defined on a closed and bounded interval of the real line is Riemann-integrable.

There are plenty of functions that are not Riemann-integrable. The simplest is known as the Dirichlet function:

$$
d(x)= \begin{cases}0 & \text { if } x \text { is rational } \\ 1 & \text { if } x \text { is irrational }\end{cases}
$$

For any interval $[a, b]$ and for any partition P of $[a, b]$, we have $L(d ; P)=0$ and $U(d ; P)=$ $b-a$. Hence,

$$
0=\sup _{P} L(d ; P)<\inf _{P} U(d ; P)=b-a
$$

In calculus, it is proved not only that the Riemann integral of a continuous function on $[a, b]$ exists but also that it can be obtained by two limits:

$$
\lim _{n \rightarrow \infty} L\left(f ; P_{n}\right)=\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} U\left(f ; P_{n}\right)
$$

in which P_{0}, P_{1}, \ldots is any sequence of partitions with the property that the length of the largest subinterval in P_{n} converges to zero as $n \rightarrow \infty$. Furthermore, if it is so arranged that P_{n+1} is obtained from P_{n} by adding new points (and not deleting points), then the lower sums converge upward to the integral and the upper sums converge downward to the integral. From the numerical standpoint, this is a desirable feature of the process because at each step, an interval that contains the unknown number $\int_{a}^{b} f(x) d x$ will be available. Moreover, these intervals shrink in width at each succeeding step.

Examples and Pseudocode

The process just described can easily be carried out on a computer. To illustrate, we select the function $f(x)=e^{-x^{2}}$ and the interval $[0,1]$; that is, we consider

$$
\begin{equation*}
\int_{0}^{1} e^{-x^{2}} d x \tag{3}
\end{equation*}
$$

This function is of great importance in statistics, but its indefinite integral cannot be obtained by the elementary techniques of calculus. For partitions, we take equally spaced points in $[0,1]$. Thus, if there are to be n subintervals in P_{n}, then we define $P_{n}=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$, where $x_{i}=i h$ for $0 \leqq i \leqq n$ and $h=1 / n$. Since $e^{-x^{2}}$ is decreasing on [0, 1], the least value of f on the subinterval $\left[x_{i}, x_{i+1}\right]$ occurs at x_{i+1}. Similarly, the greatest value occurs at x_{i}. Hence, $m_{i}=f\left(x_{i+1}\right)$ and $M_{i}=f\left(x_{i}\right)$. Putting this into the formulas for the upper and lower sums, we obtain for this function

$$
\begin{aligned}
& L\left(f ; P_{n}\right)=\sum_{i=0}^{n-1} h f\left(x_{i+1}\right)=h \sum_{i=0}^{n-1} e^{-x_{i+1}^{2}} \\
& U\left(f ; P_{n}\right)=\sum_{i=0}^{n-1} h f\left(x_{i}\right)=h \sum_{i=0}^{n-1} e^{-x_{i}^{2}}
\end{aligned}
$$

Since these sums are almost the same, it is more economical to compute $L\left(f ; P_{n}\right)$ by the given formula and to obtain $U\left(f ; P_{n}\right)$ by observing that

$$
U\left(f ; P_{n}\right)=h f\left(x_{0}\right)+L\left(f ; P_{n}\right)-h f\left(x_{n}\right)=L\left(f ; P_{n}\right)+h\left(1-e^{-1}\right)
$$

The last equation also shows that the interval defined by Inequality (1) is of width $h\left(1-e^{-1}\right)$ for this problem.

Here is a pseudocode to carry out this experiment with $n=1000$:

```
program Sums
integer i; real h, sum, sum_lower, sum_upper, x
integer }n\leftarrow1000; real a\leftarrow0,b\leftarrow
h\leftarrow(b-a)/n
sum}\leftarrow
for }i=n\mathrm{ to 1 step -1 do
    x}\leftarrowa+i
    sum}\leftarrow\operatorname{sum}+f(x
end for
sum_lower }\leftarrow(\mathrm{ sum)}
sum_upper }\leftarrow\mathrm{ sum_lower }+h[f(a)-f(b)
output sum_lower, sum_upper
end program Sums
real function }f(x
real }
f}\mp@subsup{e}{}{-\mp@subsup{x}{}{2}
end function }
```

A few comments about this pseudocode may be helpful. First, a subscripted variable is not needed for the points x_{i}. Each point is labeled x. After it has been defined and used, it need not be saved. Next, observe that the program has been written so that only one line of code must be changed if another value of n is required. Finally, the numbers $e^{-x_{i}^{2}}$ are added in order of ascending magnitude to reduce roundoff error. However, roundoff errors in the computer are negligible compared to the error in our final estimation of the integral. This code can be used with any function that is decreasing on $[a, b]$ because with that assumption, $U(f ; P)$ can be easily obtained from $L(f ; P)$ (see Problem 5.1.4).

The computer program corresponding to the pseudocode produces as output the following values of the lower and upper sums:

$$
\text { sum_lower }=0.74651, \quad \text { sum_upper }=0.74714
$$

At this juncture, the reader is urged to program this experiment or one like it. The experiment shows how the computer can mimic the abstract definition of the Riemann integral, at least in cases in which the numbers m_{i} and M_{i} can be obtained easily. Another conclusion that can be drawn from the experiment is that the direct translation of a definition into a computer algorithm may leave much to be desired in precision. With 999 evaluations of the function, the absolute error is still about 0.0003 . We shall soon see that more sophisticated algorithms (such as Romberg's) improve this situation dramatically.

A good approximate value for the integral in Equation (3) can be computed from knowing that this integral is related to the error function

$$
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t
$$

Using appropriate mathematical software, we obtain

$$
\int_{0}^{1} e^{-x^{2}} d x=\frac{1}{2} \sqrt{\pi} \operatorname{erf}(1) \approx 0.7468241330
$$

Mathematical software systems such as Maple and Matlab contain the error function. However, we are interested in learning about algorithms for approximating integrals that can only be evaluated numerically.

In the problems of this chapter, we have used various well-known integrals to illustrate numerical integration. Many of these integrals have been thoroughly investigated and tabulated. Examples are elliptic integrals, the sine integral, the Fresnel integral, the logarithmic integral, the error function, and Bessel functions. In the real world, when one is faced with a daunting integral, the first question to raise is whether the integral has already been studied and perhaps tabulated. The first place to look is in the Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, edited by M. Abramowitz and I. Stegun [1964]. In modern numerical analysis, such tables are of limited use because of the ready availability of software packages such as Matlab, Maple, and Mathematica. Nevertheless, on rare occasions, problems have been found for which one obtains the wrong answer when using such packages.

EXAMPLE 2 If the integral

$$
\int_{0}^{\pi} e^{\cos x} d x
$$

is to be computed with absolute error less than $\frac{1}{2} \times 10^{-3}$, and if we are going to use upper and lower sums with a uniform partition, how many subintervals are needed?

Solution The integrand, $f(x)=e^{\cos x}$, is a decreasing function on the interval $[0, \pi]$. Hence, in the formulas for $U(f ; P)$ and $L(f ; P)$, we have

$$
m_{i}=f\left(x_{i+1}\right) \quad \text { and } \quad M_{i}=f\left(x_{i}\right)
$$

Let P denote the partition of $[0, \pi]$ by $n+1$ equally spaced points, $0=x_{0}<\cdots<x_{n}=\pi$. Then there will be n subintervals, all of width π / n. Hence,

$$
\begin{align*}
& L(f ; P)=\frac{\pi}{n} \sum_{i=0}^{n-1} m_{i}=\frac{\pi}{n} \sum_{i=0}^{n-1} f\left(x_{i+1}\right) \tag{4}\\
& U(f ; P)=\frac{\pi}{n} \sum_{i=0}^{n-1} M_{i}=\frac{\pi}{n} \sum_{i=0}^{n-1} f\left(x_{i}\right) \tag{5}
\end{align*}
$$

The correct value of the integral lies in the interval between $L(f ; P)$ and $U(f ; P)$. We take the midpoint of the interval as the best estimate, thus obtaining an error of at most $\frac{1}{2}[U(f ; P)-L(f ; P)]$-that is, the length of half the interval. To meet the error criterion imposed in the problem, we must have

$$
\frac{1}{2}[U(f ; P)-L(f ; P)]<\frac{1}{2} \times 10^{-3}
$$

From Formulas (4) and (5), we can calculate the difference between the upper and lower sums. This leads to $(\pi / n)\left(e^{1}-e^{-1}\right)<10^{-3}$. With the aid of a calculator, we determine that n must be at least 7385 .

For historical reasons, formulas for approximating definite integrals are called rules. The lower and upper sums give rise to the left and right rectangle rules, the midpoint rule, the trapezoid rule, and many other rules, some of which are found in the problems and subsequent chapters of this book. A large collection of these quadrature rules can be found in Abramowitz and Stegun [1964], Standard Mathematical Tables, which had its origins in a U.S. government work project conducted during the Depression of the 1930s.

The word quadrature has several meanings both in mathematics and in astronomy. In the dictionary, the first mathematical meaning is the process of finding a square whose area is equal to the area enclosed by a given curve. The general mathematical meaning is the process of determining the area of a surface, especially one bounded by a curve. We use it primarily to mean the approximation of the area under a curve using a numerical integration procedure.

Summary

(1) Let $P=\left\{a=x_{0}<x_{1}<x_{2}<\cdots<x_{n-1}<x_{n}=b\right\}$ be a partition of the interval [a, b], which divides the interval $[a, b]$ into n subintervals $\left[x_{i}, x_{i+1}\right]$. The lower sums and upper sums of f corresponding to the given partition P are

$$
\begin{aligned}
& L(f ; P)=\sum_{i=0}^{n-1} m_{i}\left(x_{i+1}-x_{i}\right) \\
& U(f ; P)=\sum_{i=0}^{n-1} M_{i}\left(x_{i+1}-x_{i}\right)
\end{aligned}
$$

where m_{i} is the greatest lower bound and M_{i} is the least upper bound of $f(x)$ on the subinterval $\left[x_{i}, x_{i+1}\right]$, namely,

$$
\begin{aligned}
m_{i} & =\inf \left\{f(x): x_{i} \leqq x \leqq x_{i+1}\right\} \\
M_{i} & =\sup \left\{f(x): x_{i} \leqq x \leqq x_{i+1}\right\}
\end{aligned}
$$

(2) We have

$$
L(f ; P) \leqq \int_{a}^{b} f(x) d x \leqq U(f ; P)
$$

Problems 5.1

${ }^{a}$ 1. If we estimate $\int_{0}^{1}\left(x^{2}+2\right)^{-1} d x$ by means of a lower sum using the partition $P=$ $\left\{0, \frac{1}{2}, 1\right\}$, what is the result?
2. What is the result if we estimate $\int_{1}^{2} x^{-1} d x$ by means of the upper sum using the partition $P=\left\{1, \frac{3}{2}, 2\right\}$?
${ }^{a}$ 3. Calculate an approximate value of $\int_{0}^{\alpha}\left[\left(e^{x}-1\right) / x\right] d x$ for $\alpha=10^{-4}$ correct to 14 decimal places (rounded). Hint: Use Taylor series.
4. For a decreasing function $f(x)$ over an interval $[a, b]$ with n uniform subintervals, show that the difference between the upper sum and the lower sum is given by the expression $[(b-a) / n][f(a)-f(b)]$.
5. (Continuation) Repeat the preceding problem for an increasing function.
${ }^{a} 6$. If upper and lower sums are used with regularly spaced points to compute $\int_{2}^{5}(d x / \log x)$, how many points are needed if one is to achieve an accuracy of $\frac{1}{2} \times 10^{-4}$?
${ }^{a} 7$. Let f be an increasing function. If the integral $\int_{0}^{1} f(x) d x$ is to be estimated by using the method of upper and lower sums, taking n equally spaced points, what is the worst possible error?
8. If f is a (strictly) increasing function on $[a, b]$, and if $\alpha=f(a)$ and $\beta=f(b)$, then $f^{-1}(x)$ is well defined for $\alpha \leqq x \leqq \beta$. Discover the relationship between $\int_{a}^{b} f(x) d x$ and $\int_{\alpha}^{\beta} f^{-1}(x) d x$.
9. Show that if $\theta_{i} \geqq 0$ and $\sum_{i=0}^{n} \theta_{i}=1$, then $\sum_{i=0}^{n} \theta_{i} a_{i}$ lies between the least and the greatest of the numbers a_{i}.
10. Establish the composite midpoint rule for estimating an integral:

$$
\int_{a}^{b} f(x) d x \approx \sum_{i=0}^{n-1}\left(x_{i+1}-x_{i}\right) f\left[\frac{1}{2}\left(x_{i+1}+x_{i}\right)\right]
$$

${ }^{a}$ 11. (Continuation) Find the relationship between the midpoint rule and the upper and lower sums.
12. (Continuation) Establish that the composite midpoint rule for equal subintervals is given by

$$
\int_{a}^{b} f(x) d x \approx h \sum_{i=0}^{n-1} f\left(x_{i}+\frac{1}{2} h\right)
$$

where $h=(b-a) / n, x_{i}=a+i h$, and $0 \leqq i \leqq n$.

Computer Problems 5.1

1. Write a general-purpose procedure to estimate integrals of decreasing functions by the method of upper and lower sums with a uniform partition. Give the procedure the calling sequence
real function Integral (f, a, b, ε, n, sum_lower, sum_upper $)$
where f is the function name, a and b are the endpoints of the interval, and ε is the tolerance. The procedure determines n so that sum_upper - sum_lower $<2 \varepsilon$. The procedure returns the average of sum_upper and sum_lower. Test it on the sine integral of the next computer problem, using $\varepsilon=\frac{1}{2} \times 10^{-5}$.
${ }^{a}$ 2. Estimate the definite integral $\int_{0}^{1} x^{-1} \sin x d x$ by computing the upper and lower sums, using 800 points in the interval. The integrand is defined to be 1 at $x=0$. The function is decreasing, and this fact should be shown by calculus. (For a decreasing function f, $f^{\prime}<0$.) Note: The function

$$
\operatorname{Si}(x)=\int_{0}^{x} t^{-1} \sin t d t
$$

is an important special function known as the sine integral. It is represented by a Taylor series that converges for all real or complex values of x. The easiest way to obtain this series is to start with the series for $\sin t$, divide by t, and integrate term by term:

$$
\begin{aligned}
\operatorname{Si}(x) & =\int_{0}^{x} t^{-1} \sin t d t=\int_{0}^{x} \sum_{n=0}^{\infty}(-1)^{n} \frac{t^{2 n}}{(2 n+1)!} d t \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!(2 n+1)}=x-\frac{x^{3}}{18}+\frac{x^{5}}{600}-\frac{x^{7}}{35280}+\cdots
\end{aligned}
$$

This series is rapidly convergent. For example, from only the terms shown, $\mathrm{Si}(1)$ is computed to be 0.9460827 with an error of at most four units in the last digit shown.
3. The logarithmic integral is a special mathematical function defined by the equation

$$
\operatorname{li}(x)=\int_{2}^{x} \frac{d t}{\ln t}
$$

For large x, the number of prime integers less than or equal to x is closely approximated by $\operatorname{li}(x)$. For example, there are 46 primes less than 200, and li(200) is around 50 . Find li(200) with three significant figures by means of upper and lower sums. Determine the number of partition points needed prior to executing the program.
${ }^{a}$ 4. From calculus, the length of a curve is $\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x$, where f is a function whose graph is the curve on the interval $a \leqq x \leqq b$.
a. Find the length of the ellipse $y^{2}+4 x^{2}=1$. Use the symmetry of the ellipse.
b. Verify the numerical approximation given for the arc length in the introductory example at the beginning of Chapter 3 .
5. Using a mathematical software system that contains the error function erf, find a numerical approximation of $\int_{0}^{1} e^{-x^{2}} d x$ to the full precision available. Also, plot the error function.
6. (Continuation) Evaluate the integral $\int_{0}^{1} e^{-x^{2}} d x$ using a numerical integration routine in a mathematical software system such as Matlab. Compare the results to those obtained previously.

5.2 Trapezoid Rule

The next method considered is an improvement over the coarse method of the preceding section. Moreover, it is an important ingredient of the Romberg algorithm of the next section.

This method is called the trapezoid rule and is based on an estimation of the area beneath a curve using trapezoids. Again, the estimation of $\int_{a}^{b} f(x) d x$ is approached by first dividing the interval $[a, b]$ into subintervals according to the partition $P=\left\{a=x_{0}<\right.$ $\left.x_{1}<x_{2}<\cdots<x_{n}=b\right\}$. For each such partition of the interval (the partition points x_{i} need not be uniformly spaced), an estimation of the integral by the trapezoid rule is obtained. We denote it by $T(f ; P)$. Figure 5.2 shows what the trapezoids are. A typical trapezoid has the subinterval $\left[x_{i}, x_{i+1}\right]$ as its base, and the two vertical sides are $f\left(x_{i}\right)$ and $f\left(x_{i+1}\right)$ (see Figure 5.3). The area is equal to the base times the average height, and we have the basic trapezoid rule for the subinterval $\left[x_{i}, x_{i+1}\right]$:

$$
\int_{x_{i}}^{x_{i+1}} f(x) d x \approx \frac{1}{2}\left(x_{i+1}-x_{i}\right)\left[f\left(x_{i}\right)+f\left(x_{i+1}\right)\right]
$$

Hence, the total area of all the trapezoids is

FIGURE 5.2
Trapezoid rule

FIGURE 5.3
Typical trapezoid

$$
\int_{a}^{b} f(x) d x \approx \frac{1}{2} \sum_{i=0}^{n-1}\left(x_{i+1}-x_{i}\right)\left[f\left(x_{i}\right)+f\left(x_{i+1}\right)\right]
$$

This formula is called the composite trapezoid rule. The composite trapezoid rule is easy to understand: on each subinterval $\left[x_{i}, x_{i+1}\right]$, we multiply ($x_{i+1}-x_{i}$) times the average of $f\left(x_{i}\right)$ and $f\left(x_{i+1}\right)$.

Uniform Spacing

In practice and in the Romberg algorithm (discussed in the next section), the trapezoid rule is used with a uniform partition of the interval. This means that the division points x_{i} are equally spaced: $x_{i}=a+i h$, where $h=(b-a) / n$ and $0 \leqq i \leqq n$. Think of h as the step size in the process. In this case, the formula for $T(f ; P)$ can be given in simpler form because $x_{i+1}-x_{i}=h$. Thus, we obtain

$$
T(f ; P)=\frac{h}{2} \sum_{i=0}^{n-1}\left[f\left(x_{i}\right)+f\left(x_{i+1}\right)\right]
$$

It should be emphasized that to economize the amount of arithmetic, the computationally preferable formula for the composite trapezoid rule is

$$
\begin{equation*}
\int_{a}^{b} f(x) d x \approx T(f ; P)=h\left\{\frac{1}{2}\left[f\left(x_{0}\right)+f\left(x_{n}\right)\right]+\sum_{i=1}^{n-1} f\left(x_{i}\right)\right\} \tag{1}
\end{equation*}
$$

Here, we have expanded the summation and gathered similar terms in the new summation. To illustrate, we consider the integral

$$
\int_{0}^{1} e^{-x^{2}} d x
$$

which was approximated in Section 5.1 by lower and upper sums. Here is a pseudocode for Equation (1) with $n=60$ and $f(x)=e^{-x^{2}}$:

```
program Trapezoid
integer i; real h, sum, x
integer }n\leftarrow60;\quad\mathrm{ real }a\leftarrow0,b\leftarrow
h\leftarrow(b-a)/n
sum}\leftarrow\frac{1}{2}[f(a)+f(b)
for }i=1\mathrm{ to }n-1\mathrm{ do
    x}\leftarrowa+i
    sum}\leftarrow\operatorname{sum}+f(x
end for
sum}\leftarrow(\mathrm{ sum )h
output sum
end Trapezoid
real function f(x)
real }
f\leftarrow1/e e
end function f
```

The computer output for the approximate value of the integral is 0.74681 .

EXAMPLE 1 Compute

$$
\int_{0}^{1}(\sin x / x) d x
$$

by using the composite trapezoid rule with six uniform points (cf. Computer Problem 5.1.2).
Solution The function values are arranged in a table as follows:

x_{i}	$f\left(x_{i}\right)$
0.0	1.00000
0.2	0.99335
0.4	0.97355
0.6	0.94107
0.8	0.89670
1.0	0.84147

Notice that we have assigned the value $\sin x / x=1$ at $x=0$. Then

$$
\begin{aligned}
T(f ; P) & =0.2 \sum_{i=1}^{4} f\left(x_{i}\right)+(0.1)\left[f\left(x_{0}\right)+f\left(x_{5}\right)\right] \\
& =(0.2)(3.80467)+(0.1)(1.84147) \\
& =0.94508
\end{aligned}
$$

This result is not accurate to all the digits shown, as might be expected because only five subintervals were used. Using mathematical software, we obtain $\mathrm{Si}(1) \approx 0.9460830704$. (Refer to Computer Problem 5.1.2.) We shall see later how to determine a suitable value for n to obtain a desired accuracy using the trapezoid rule.

Error Analysis

The next task is to analyze the error incurred in using the trapezoid rule to estimate an integral. We shall establish the following result.

THEOREM ON PRECISION OF TRAPEZOID RULE

If $f^{\prime \prime}$ exists and is continuous on the interval $[a, b]$ and if the composite trapezoid rule T with uniform spacing h is used to estimate the integral $I=\int_{a}^{b} f(x) d x$, then for some ζ in (a, b),

$$
I-T=-\frac{1}{12}(b-a) h^{2} f^{\prime \prime}(\zeta)=\mathcal{O}\left(h^{2}\right)
$$

Proof The first step in the analysis is to prove the above result when $a=0, b=1$, and $h=1$. In this case, we have to show that

$$
\begin{equation*}
\int_{0}^{1} f(x) d x-\frac{1}{2}[f(0)+f(1)]=-\frac{1}{12} f^{\prime \prime}(\zeta) \tag{2}
\end{equation*}
$$

This is easily established with the aid of the error formula for polynomial interpolation (see Section 4.2). To use this formula, let p be the polynomial of degree 1 that interpolates f at

0 and 1 . Then p is given by

$$
p(x)=f(0)+[f(1)-f(0)] x
$$

Hence,

$$
\begin{aligned}
\int_{0}^{1} p(x) d x & =f(0)+\frac{1}{2}[f(1)-f(0)] \\
& =\frac{1}{2}[f(0)+f(1)]
\end{aligned}
$$

By the error formula that governs polynomial interpolation [Equation (2) in Section 4.2], we have (here, of course, $n=1, x_{0}=0$, and $x_{1}=1$)

$$
\begin{equation*}
f(x)-p(x)=\frac{1}{2} f^{\prime \prime}[\xi(x)] x(x-1) \tag{3}
\end{equation*}
$$

where $\xi(x)$ depends on x in $(0,1)$. From Equation (3), it follows that

$$
\int_{0}^{1} f(x) d x-\int_{0}^{1} p(x) d x=\frac{1}{2} \int_{0}^{1} f^{\prime \prime}[\xi(x)] x(x-1) d x
$$

That $f^{\prime \prime}[\xi(x)]$ is continuous can be proved by solving Equation (3) for $f^{\prime \prime}[\xi(x)]$ and verifying the continuity. (See Problem 4.2.12.) Notice that $x(x-1)$ does not change sign in the interval $[0,1]$. Hence, by the Mean-Value Theorem for Integrals, ${ }^{*}$ there is a point $x=s$ for which

$$
\begin{aligned}
\int_{0}^{1} f^{\prime \prime}[\xi(x)] x(x-1) d x & =f^{\prime \prime}[\xi(s)] \int_{0}^{1} x(x-1) d x \\
& =-\frac{1}{6} f^{\prime \prime}(\zeta)
\end{aligned}
$$

By putting all these equations together, we obtain Equation (2). From Equation (2), by making a change of variable, we obtain the basic trapezoid rule with its error term:

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=\frac{b-a}{2}[f(a)+f(b)]-\frac{1}{12}(b-a)^{3} f^{\prime \prime}(\xi) \tag{4}
\end{equation*}
$$

The details of this are as follows: Let $g(t)=f(a+t(b-a))$ and $x=a+(b-a) t$. Thus, as t traverses the interval $[0,1], x$ traverses the interval $[a, b]$. Also, $d x=(b-a) d t$, $g^{\prime}(t)=f^{\prime}[a+t(b-a)](b-a)$ and $g^{\prime \prime}(t)=f^{\prime \prime}[a+t(b-a)](b-a)^{2}$. Hence, by Equation (2),

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & =(b-a) \int_{0}^{1} f[a+t(b-a)] d t \\
& =(b-a) \int_{0}^{1} g(t) d t \\
& =(b-a)\left\{\frac{1}{2}[g(0)+g(1)]-\frac{1}{12} g^{\prime \prime}(\zeta)\right\} \\
& =\frac{b-a}{2}[f(a)+f(b)]-\frac{(b-a)^{3}}{12} f^{\prime \prime}(\xi)
\end{aligned}
$$

[^6]This is the trapezoid rule and error term for the interval $[a, b]$ with only one subinterval, which is the entire interval. Thus, the error term is $\mathcal{O}\left(h^{3}\right)$, where $h=b-a$. Here, ξ is in (a, b).

Now let the interval $[a, b]$ be divided into n equal subintervals by points $x_{0}, x_{1}, \ldots, x_{n}$ with spacing h. Applying Formula (4) to subinterval $\left[x_{i}, x_{i+1}\right]$, we have

$$
\begin{equation*}
\int_{x_{i}}^{x_{i+1}} f(x) d x=\frac{h}{2}\left[f\left(x_{i}\right)+f\left(x_{i+1}\right)\right]-\frac{1}{12} h^{3} f^{\prime \prime}\left(\xi_{i}\right) \tag{5}
\end{equation*}
$$

where $x_{i}<\xi_{i}<x_{i+1}$. We use this result over the interval [$\left.a, b\right]$, obtaining the composite trapezoid rule

$$
\begin{align*}
\int_{a}^{b} f(x) d x & =\sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i+1}} f(x) d x \\
& =\frac{h}{2} \sum_{i=0}^{n-1}\left[f\left(x_{i}\right)+f\left(x_{i+1}\right)\right]-\frac{h^{3}}{12} \sum_{i=0}^{n-1} f^{\prime \prime}\left(\xi_{i}\right) \tag{6}
\end{align*}
$$

The final term in Equation (6) is the error term, and it can be simplified in the following way: Since $h=(b-a) / n$, the error term for the composite trapezoid rule is

$$
-\frac{h^{3}}{12} \sum_{i=0}^{n-1} f^{\prime \prime}\left(\xi_{i}\right)=-\frac{b-a}{12} h^{2}\left[\frac{1}{n} \sum_{i=0}^{n-1} f^{\prime \prime}\left(\xi_{i}\right)\right]=-\frac{b-a}{12} h^{2} f^{\prime \prime}(\zeta)
$$

Here, we have reasoned that the average $[1 / n] \sum_{i=0}^{n-1} f^{\prime \prime}\left(\xi_{i}\right)$ lies between the least and greatest values of $f^{\prime \prime}$ on the interval (a, b). Hence, by the Intermediate-Value Theorem,* it is $f^{\prime \prime}(\zeta)$ for some point ζ in (a, b). This completes our proof of the error formula.

EXAMPLE 2 Use Taylor series to represent the error in the basic trapezoid rule by an infinite series.
Solution Equation (4) is equivalent to

$$
\int_{a}^{a+h} f(x) d x=\frac{h}{2}[f(a)+f(a+h)]-\frac{1}{12} h^{3} f^{\prime \prime}(\xi)
$$

Let

$$
F(t)=\int_{a}^{t} f(x) d x
$$

The Taylor series for F is

$$
F(a+h)=F(a)+h F^{\prime}(a)+\frac{h^{2}}{2} F^{\prime \prime}(a)+\frac{h^{3}}{3!} F^{\prime \prime \prime}(a)+\cdots
$$

[^7]By the Fundamental Theorem of Calculus (p. 181), $F^{\prime}=f$, and we observe that $F(a)=0$, $F^{\prime \prime}=f^{\prime}, F^{\prime \prime \prime}=f^{\prime \prime}$, and so on. Hence, we have

$$
\int_{a}^{a+h} f(x) d x=h f(a)+\frac{h^{2}}{2} f^{\prime}(a)+\frac{h^{3}}{3!} f^{\prime \prime}(a)+\cdots
$$

The Taylor series for f is

$$
f(a+h)=f(a)+h f^{\prime}(a)+\frac{h^{2}}{2} f^{\prime \prime}(a)+\frac{h^{3}}{3!} f^{\prime \prime \prime}(a)+\cdots
$$

Adding $f(a)$ to both sides of this equation and then multiplying by $h / 2$, we get

$$
\frac{h}{2}[f(a)+f(a+h)]=h f(a)+\frac{h^{2}}{2} f^{\prime}(a)+\frac{h^{3}}{4} f^{\prime \prime}(a)+\cdots
$$

Subtracting, we have

$$
\int_{a}^{a+h} f(x) d x-\frac{h}{2}[f(a)+f(a+h)]=-\frac{1}{12} h^{3} f^{\prime \prime}(a)+\cdots
$$

Applying the Error Formula

How can an error formula like the one just derived be used? Our first application is in predicting how small h must be to attain a specified precision in the trapezoid rule.

EXAMPLE 3 If the composite trapezoid rule is to be used to compute

$$
\int_{0}^{1} e^{-x^{2}} d x
$$

with an error of at most $\frac{1}{2} \times 10^{-4}$, how many points should be used?
Solution The error formula is

$$
-\frac{b-a}{12} h^{2} f^{\prime \prime}(\zeta)
$$

In this example, $f(x)=e^{-x^{2}}, f^{\prime}(x)=-2 x e^{-x^{2}}$, and $f^{\prime \prime}(x)=\left(4 x^{2}-2\right) e^{-x^{2}}$. Thus, $\left|f^{\prime \prime}(x)\right| \leqq 2$ on the interval $[0,1]$, and the error in absolute value will be no greater than $\frac{1}{6} h^{2}$. To have an error of at most $\frac{1}{2} \times 10^{-4}$, we require

$$
\frac{1}{6} h^{2} \leqq \frac{1}{2} \times 10^{-4} \quad \text { or } \quad h \leqq 0.01732
$$

In this example, $h=1 / n$, so we require $n \geqq 58$. Hence, 59 or more points will certainly produce the desired accuracy.

EXAMPLE 4 How many subintervals are needed to approximate

$$
\int_{0}^{1} \frac{\sin x}{x} d x
$$

with error not to exceed $\frac{1}{2} \times 10^{-5}$ using the composite trapezoid rule? Here, the integrand, $f(x)=x^{-1} \sin x$, is defined to be 1 when x is 0 .

Solution We wish to establish a bound on $f^{\prime \prime}(x)$ for x in the range [0, 1]. Taking derivatives in the usual way is not satisfactory because each term contains x with a negative power, and it is difficult to find an upper bound on $\left|f^{\prime \prime}(x)\right|$. However, using Taylor series, we have

$$
\begin{aligned}
& f(x)=1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\frac{x^{6}}{7!}+\frac{x^{8}}{9!}-\cdots \\
& f^{\prime}(x)=-\frac{2 x}{3!}+\frac{4 x^{3}}{5!}-\frac{6 x^{5}}{7!}+\frac{8 x^{7}}{9!}-\cdots \\
& f^{\prime \prime}(x)=-\frac{2}{3!}+\frac{3 \times 4 x^{2}}{5!}-\frac{5 \times 6 x^{4}}{7!}+\frac{7 \times 8 x^{6}}{9!}-\cdots
\end{aligned}
$$

Thus, on the interval $[0,1],\left|f^{\prime \prime}(x)\right|$ cannot exceed $\frac{1}{2}$ because

$$
\frac{2}{3!}+\frac{3 \times 4}{5!}+\frac{5 \times 6}{7!}+\frac{7 \times 8}{9!}+\cdots<\frac{1}{3}+\frac{1}{10}+\frac{1}{24}\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots\right)<\frac{1}{2}
$$

Therefore, the error term $\left|(b-a) h^{2} f^{\prime \prime}(\zeta) / 12\right|$ cannot exceed $h^{2} / 24$. For this to be less than $\frac{1}{2} \times 10^{-5}$, it suffices to take $h<\sqrt{1.2} \times 10^{-2}$ or $n>(1 / \sqrt{1.2}) 10^{2}=91.3$. This analysis induces us to take 92 subintervals.

Recursive Trapezoid Formula for Equal Subintervals

In the next section, we require a formula for the composite trapezoid rule when the interval [a, b] is subdivided into 2^{n} equal parts. By Formula (1), we have

$$
\begin{aligned}
T(f ; P) & =h \sum_{i=1}^{n-1} f\left(x_{i}\right)+\frac{h}{2}\left[f\left(x_{0}\right)+f\left(x_{n}\right)\right] \\
& =h \sum_{i=1}^{n-1} f(a+i h)+\frac{h}{2}[f(a)+f(b)]
\end{aligned}
$$

If we now replace n by 2^{n} and use $h=(b-a) / 2^{n}$, the preceding formula becomes

$$
\begin{equation*}
R(n, 0)=h \sum_{i=1}^{2^{n}-1} f(a+i h)+\frac{h}{2}[f(a)+f(b)] \tag{7}
\end{equation*}
$$

Here, we have introduced the notation that will be used in Section 5.3 on the Romberg algorithm, namely, $R(n, 0)$. It denotes the result of applying the composite trapezoid rule with 2^{n} equal subintervals.

In the Romberg algorithm, it will also be necessary to have a means of computing $R(n, 0)$ from $R(n-1,0)$ without involving unneeded evaluations of f. For example, the computation of $R(2,0)$ utilizes the values of f at the five points $a, a+(b-a) / 4$, $a+2(b-a) / 4, a+3(b-a) / 4$, and b. In computing $R(3,0)$, we need values of f at these five points, as well as at four new points: $a+(b-a) / 8, a+3(b-a) / 8, a+5(b-a) / 8$, and $a+7(b-a) / 8$ (see Figure 5.4). The computation should take advantage of the previously computed result. The manner of doing so is now explained.

If $R(n-1,0)$ has been computed and $R(n, 0)$ is to be computed, we use the identity

$$
R(n, 0)=\frac{1}{2} R(n-1,0)+\left[R(n, 0)-\frac{1}{2} R(n-1,0)\right]
$$

FIGURE 5.4
2^{n} equal subintervals

It is desirable to compute the bracketed expression with as little additional work as possible. Fixing $h=(b-a) / 2^{n}$ for the analysis and putting

$$
C=\frac{h}{2}[f(a)+f(b)]
$$

we have, from Equation (7),

$$
\begin{align*}
R(n, 0) & =h \sum_{i=1}^{2^{n}-1} f(a+i h)+C \tag{8}\\
R(n-1,0) & =2 h \sum_{j=1}^{2^{n-1}-1} f(a+2 j h)+2 C \tag{9}
\end{align*}
$$

Notice that the subintervals for $R(n-1,0)$ are twice the size of those for $R(n, 0)$. Now from Equations (8) and (9), we have

$$
\begin{aligned}
R(n, 0)-\frac{1}{2} R(n-1,0) & =h \sum_{i=1}^{2^{n}-1} f(a+i h)-h \sum_{j=1}^{2^{n-1}-1} f(a+2 j h) \\
& =h \sum_{k=1}^{2^{n-1}} f[a+(2 k-1) h]
\end{aligned}
$$

Here, we have taken account of the fact that each term in the first sum that corresponds to an even value of i is canceled by a term in the second sum. This leaves only terms that correspond to odd values of i.

To summarize:

THEOREM 2

RECURSIVE TRAPEZOID FORMULA

If $R(n-1,0)$ is available, then $R(n, 0)$ can be computed by the formula

$$
\begin{equation*}
R(n, 0)=\frac{1}{2} R(n-1,0)+h \sum_{k=1}^{2^{n-1}} f[a+(2 k-1) h] \quad(n \geqq 1) \tag{10}
\end{equation*}
$$

using $h=(b-a) / 2^{n}$. Here, $R(0,0)=\frac{1}{2}(b-a)[f(a)+f(b)]$.

This formula allows us to compute a sequence of approximations to a definite integral using the trapezoid rule without reevaluating the integrand at points where it has already been evaluated.

Multidimensional Integration

Here, we give a brief account of multidimensional numerical integration. For simplicity, we illustrate with the trapezoid rule for the interval $[0,1]$, using $n+1$ equally spaced points. The step size is therefore $h=1 / n$. The composite trapezoid rule is then

$$
\int_{0}^{1} f(x) d x \approx \frac{1}{2 h}\left[f(0)+2 \sum_{i=1}^{n-1} f\left(\frac{i}{n}\right)+f(1)\right]
$$

We write this in the form

$$
\int_{0}^{1} f(x) d x \approx \sum_{i=0}^{n} C_{i} f\left(\frac{i}{n}\right)
$$

where

$$
C_{i}= \begin{cases}1 /(2 h), & i=0 \\ 1 / h, & 0<i<n \\ 1 /(2 h), & i=n\end{cases}
$$

The error is $\mathcal{O}\left(h^{2}\right)=\mathcal{O}\left(n^{-2}\right)$ for functions having a continuous second derivative.
If one is faced with a two-dimensional integration over the unit square, then the trapezoid rule can be applied twice:

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{1} f(x, y) d x d y & \approx \int_{0}^{1} \sum_{\alpha_{1}=0}^{n} C_{\alpha_{1}} f\left(\frac{\alpha_{1}}{n}, y\right) d y \\
& =\sum_{\alpha_{1}=0}^{n} C_{\alpha_{1}} \int_{0}^{1} f\left(\frac{\alpha_{1}}{n}, y\right) d y \\
& \approx \sum_{\alpha_{1}=0}^{n} C_{\alpha_{1}} \sum_{\alpha_{2}=0}^{n} C_{\alpha_{2}} f\left(\frac{\alpha_{1}}{n}, \frac{\alpha_{2}}{n}\right) \\
& =\sum_{\alpha_{1}=0}^{n} \sum_{\alpha_{2}=0}^{n} C_{\alpha_{1}} C_{\alpha_{2}} f\left(\frac{\alpha_{1}}{n}, \frac{\alpha_{2}}{n}\right)
\end{aligned}
$$

The error here is again $\mathcal{O}\left(h^{2}\right)$, because each of the two applications of the trapezoid rule entails an error of $\mathcal{O}\left(h^{2}\right)$.

In the same way, we can integrate a function of k variables. Suitable notation is the vector $x=\left(x_{1}, x_{2}, \ldots, x_{k}\right)^{T}$ for the independent variable. The region now is taken to be the k-dimensional cube $[0,1]^{k} \equiv[0,1] \times[0,1] \times \cdots \times[0,1]$. Then we obtain a multidimensional numerical integration rule

$$
\int_{[0,1]^{k}} f(\boldsymbol{x}) d \boldsymbol{x} \approx \sum_{\alpha_{1}=0}^{n} \sum_{\alpha_{2}=0}^{n} \cdots \sum_{\alpha_{k}=0}^{n} C_{\alpha_{1}} C_{\alpha_{2}} \cdots C_{\alpha_{k}} f\left(\frac{\alpha_{1}}{n}, \frac{\alpha_{2}}{n}, \ldots, \frac{\alpha_{k}}{n}\right)
$$

The error is still $\mathcal{O}\left(h^{2}\right)=\mathcal{O}\left(n^{-2}\right)$, provided that f has continuous partial derivatives $\partial^{2} f / \partial x_{i}^{2}$.

Besides the error involved, one must consider the effort, or work, required to attain a desired level of accuracy. The work in the one-variable case is $\mathcal{O}(n)$. In the two-variable case, it is $\mathcal{O}\left(n^{2}\right)$, and it is $\mathcal{O}\left(n^{k}\right)$ for k variables. The error, now expressed as a function of
the number of nodes $N=n^{k}$, is

$$
\mathcal{O}\left(h^{2}\right)=\mathcal{O}\left(n^{-2}\right)=\mathcal{O}\left(\left(n^{k}\right)^{-2 / k}\right)=\mathcal{O}\left(N^{-2 / k}\right)
$$

Thus, the quality of the numerical approximation of the integral declines very quickly as the number of variables, k, increases. Expressed in other terms, if a constant order of accuracy is to be retained while the number of variables, k, goes up, the number of nodes must go up like n^{k}. These remarks indicate why the Monte Carlo method for numerical integration becomes more attractive for high-dimensional integration. (This subject is discussed in Chapter 13.)

Summary

(1) To estimate $\int_{a}^{b} f(x) d x$, divide the interval $[a, b]$ into subintervals according to the partition $P=\left\{a=x_{0}<x_{1}<x_{2}<\cdots<x_{n}=b\right\}$. The basic trapezoid rule for the subinterval $\left[x_{i}, x_{i+1}\right]$ is

$$
\int_{x_{i}}^{x_{i+1}} f(x) d x \approx A_{i}=\frac{1}{2}\left(x_{i+1}-x_{i}\right)\left[f\left(x_{i}\right)+f\left(x_{i+1}\right)\right]
$$

where the error is $-\frac{1}{12}\left(x_{i+1}-x_{i}\right)^{3} f^{\prime \prime}\left(\xi_{i}\right)$. The composite trapezoid rule is

$$
\int_{a}^{b} f(x) d x \approx T(f ; P)=\sum_{i=0}^{n-1} A_{i}=\frac{1}{2} \sum_{i=0}^{n-1}\left(x_{i+1}-x_{i}\right)\left[f\left(x_{i}\right)+f\left(x_{i+1}\right)\right]
$$

where the error is $-\frac{1}{12} \sum_{i=1}^{n}\left(x_{i+1}-x_{i}\right)^{2} f^{\prime \prime}\left(\xi_{i}\right)$.
(2) For uniform spacing of nodes in the interval $[a, b]$, we let $x_{i}=a+i h$, where $h=$ $(b-a) / n$ and $0 \leqq i \leqq n$. The composite trapezoid rule with uniform spacing is

$$
\int_{a}^{b} f(x) d x \approx T(f ; P)=\frac{h}{2}\left[f\left(x_{0}\right)+f\left(x_{n}\right)\right]+h \sum_{i=1}^{n-1} f\left(x_{i}\right)
$$

where the error is $-\frac{1}{12}(b-a)^{2} f^{\prime \prime}(\zeta)$.
(3) For uniform spacing of nodes in the interval $[a, b]$ with 2^{n} subintervals, we let $h=$ $(b-a) / 2^{n}$, and we have

$$
\left\{\begin{array}{l}
R(0,0)=\frac{1}{2}(b-a)[f(a)+f(b)] \\
R(n, 0)=h \sum_{i=1}^{2^{n}-1} f(a+i h)+\frac{h}{2}[f(a)+f(b)]
\end{array}\right.
$$

We can compute the first column of the array $R(n, 0)$ recursively by the Recursive Trapezoid Formula:

$$
R(n, 0)=\frac{1}{2} R(n-1,0)+h \sum_{k=1}^{2^{n-1}} f[a+(2 k-1) h]
$$

(4) For two-dimensional integration over the unit square, the trapezoid rule can be applied twice:

$$
\int_{0}^{1} \int_{0}^{1} f(x, y) d x d y \approx \sum_{\alpha_{1}=0}^{n} \sum_{\alpha_{2}=0}^{n} C_{\alpha_{1}} C_{\alpha_{2}} f\left(\frac{\alpha_{1}}{n}, \frac{\alpha_{2}}{n}\right)
$$

with error $\mathcal{O}\left(h^{2}\right)$. For a k-dimensional cube $[0,1]^{k} \equiv[0,1] \times[0,1] \times \cdots \times[0,1]$, a multidimensional numerical integration rule is

$$
\int_{[0,1]^{k}} f(\boldsymbol{x}) d \boldsymbol{x} \approx \sum_{\alpha_{1}=0}^{n} \sum_{\alpha_{2}=0}^{n} \cdots \sum_{\alpha_{k}=0}^{n} C_{\alpha_{1}} C_{\alpha_{2}} \cdots C_{\alpha_{k}} f\left(\frac{\alpha_{1}}{n}, \frac{\alpha_{2}}{n}, \ldots, \frac{\alpha_{k}}{n}\right)
$$

with error $\mathcal{O}\left(h^{2}\right)=\mathcal{O}\left(n^{-2}\right)$.

Problems 5.2

${ }^{a}$ 1. What is the numerical value of the composite trapezoid rule applied to the reciprocal function $f(x)=x^{-1}$ using the points $1, \frac{4}{3}$, and 2?
${ }^{a}$ 2. Compute an approximate value of $\int_{0}^{1}\left(x^{2}+1\right)^{-1} d x$ by using the composite trapezoid rule with three points. Then compare with the actual value of the integral. Next, determine the error formula and numerically verify an upper bound on it.
3. (Continuation) Having computed $R(1,0)$ in the preceding problem, compute $R(2,0)$ by using Formula (10).
4. Obtain an upper bound on the absolute error when we compute $\int_{0}^{6} \sin x^{2} d x$ by means of the composite trapezoid rule using 101 equally spaced points.
5. If the composite trapezoid rule is used to compute $\int_{-1}^{2} \sin x d x$ with $h=0.01$, give a realistic bound on the error.
${ }^{a}$ 6. Consider the function $f(x)=|x|$ on the interval $[-1,1]$. Calculate the results of applying the following rules to approximate $\int_{-1}^{1} f(x) d x$. Account for the differences in the results and compare with the true solution. Use the
a. lower sums
b. upper sums
c. composite trapezoid rule
with uniform spacings $h=2,1, \frac{1}{2}, \frac{1}{4}$.
${ }^{a}$ 7. How large must n be if the composite trapezoid rule in Equation (1) is being used to estimate $\int_{0}^{\pi} \sin x d x$ with error $\leqq 10^{-12}$? Will the estimate be too big or too small?
${ }^{a}$ 8. What formula results from using the composite trapezoid rule on $f(x)=x^{2}$, with interval $[0,1]$ and $n+1$ equally spaced points? Simplify your result by using the fact that $1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{1}{6} n(2 n+1)(n+1)$. Show that as $n \rightarrow \infty$, the trapezoidal estimate converges to the correct value, $\frac{1}{3}$.
9. Prove that if a function is concave downward, then the trapezoid rule underestimates the integral.
10. Compute two approximate values for $\int_{1}^{2} d x / x^{2}$ using $h=\frac{1}{2}$ with lower sums and the composite trapezoid rule.
11. Consider $\int_{1}^{2} d x / x^{3}$. What is the result of using the composite trapezoid rule with the partition points $1, \frac{3}{2}$, and 2 ?
${ }^{a}$ 12. If the composite trapezoid rule is used with $h=0.01$ to compute $\int_{2}^{5} \sin x d x$, what numerical value will the error not exceed? (Use the absolute value of error.) Give the best answer based on the error formula.
${ }^{a}$ 13. Approximate $\int_{0}^{2} 2^{x} d x$ using the composite trapezoid rule with $h=\frac{1}{2}$.
${ }^{a}$ 14. Consider $\int_{0}^{1} d x /\left(x^{2}+2\right)$. What is the result of using the composite trapezoid rule with $0, \frac{1}{2}$, and 1 as partition points?
${ }^{a} 15$. What is a reasonable bound on the error when we use the composite trapezoid rule on $\int_{0}^{4} \cos x^{3} d x$ taking 201 equally spaced points (including endpoints)?
${ }^{a}$ 16. We want to approximate $\int_{1}^{2} f(x) d x$ given the table of values

x	1	$\frac{5}{4}$	$\frac{3}{2}$	$\frac{7}{4}$	2
$f(x)$	10	8	7	6	5

Compute an estimate by the composite trapezoid rule. Can upper and lower sums be computed from the given data?
17. Consider the integral $I(h) \equiv \int_{a}^{a+h} f(x) d x$. Establish an expression for the error term for each of the following rules:
${ }^{a}$ a. $I(h) \approx h f(a+h)$
ab. $I(h) \approx h f(a+h)-\frac{1}{2} h^{2} f^{\prime}(a)$
c. $I(h) \approx h f(a)$
d. $I(h) \approx h f(a)-\frac{1}{2} h^{2} f^{\prime}(a)$

For each, determine the corresponding general rule and error terms for the integral $\int_{a}^{b} f(x) d x$, where the partition is uniform; that is, $x_{i}=a+i h$ and $h=(b-a) / n$ for $0 \leqq i \leqq n$.
18. Obtain the following expressions for the midpoint rule error terms
${ }^{a} \mathbf{a}$. $\int_{a}^{a+h} f(x) d x \approx h f\left(a+\frac{1}{2} h\right) \quad$ (one subinterval)
${ }^{a}$ b. $\int_{a}^{b} f(x) d x \approx \sum_{i=0}^{n-1} h_{i} f\left(x_{i}+\frac{1}{2} h_{i}\right) \quad(n$ unequal subintervals)
${ }^{a}$ c. $\int_{a}^{b} f(x) d x \approx h \sum_{i=0}^{n-1} f\left[a+\left(i+\frac{1}{2}\right) h\right] \quad(n$ uniform subintervals)
where $h_{i}=x_{i+1}-x_{i}$ and $h=(b-a) / n$. (The midpoint rule was introduced in Problems 5.1.10-5.1.12.)
19. Show that there exist coefficients $w_{0}, w_{1}, \ldots, w_{n}$ depending on $x_{0}, x_{1}, \ldots, x_{n}$ and on a, b such that

$$
\int_{a}^{b} p(x) d x=\sum_{i=0}^{n} w_{i} p\left(x_{i}\right)
$$

for all polynomials p of degree $\leqq n$. Hint: Use the Lagrange form of the interpolating polynomials from Section 4.1.
20. Show that when the composite trapezoid rule is applied to $\int_{a}^{b} e^{x} d x$ using equally spaced points, the relative error is exactly $1-(h / 2)-\left[h /\left(e^{h}-1\right)\right]$.
21. Let f be a decreasing function on $[a, b]$. Let P be a partition of the interval. Show that

$$
T(f ; P)=\frac{1}{2}[L(f ; P)+U(f ; P)]
$$

where T, L, and U are the trapezoid rule, the lower sums, and the upper sums, respectively.
22. Show that for any function f and any partition P,

$$
L(f ; P) \leqq T(f ; P) \leqq U(f ; P)
$$

23. Let f be a continuous function and let P_{n}, for $n=0,1, \ldots$, be partitions of $[a, b]$ such that the width of the largest subinterval in P_{n} converges to zero as $n \rightarrow \infty$. Show that $T\left(f ; P_{n}\right)$ converges to $\int_{a}^{b} f(x) d x$ as $n \rightarrow \infty$. Hint: Use the preceding problem and known facts about upper and lower sums.
${ }^{a}$ 24. Give an example of a function f and a partition P for which $L(f ; P)$ is a better estimate of $\int_{a}^{b} f(x) d x$ than is $T(f ; P)$.
${ }^{a}$ 25. A function is said to be convex if its graph between any two points lies beneath the chord drawn between those two points. What is the relationship of $L(f ; P), U(f ; P)$, $T(f ; P)$, and $\int_{a}^{b} f(x) d x$ for such a function?
${ }^{a}$ 26. How large must n be if the composite trapezoid rule with equal subintervals is to estimate $\int_{0}^{2} e^{-x^{2}} d x$ with an error not exceeding 10^{-6} ? First find a crude estimate of n by using the error formula. Then determine the least possible value for n.
24. Show that

$$
\int_{a}^{b} f(x) d x-\frac{b-a}{2}[f(a)+f(b)]=-\sum_{k=3}^{\infty} \frac{k-2}{2 \times k!}(b-a)^{k} f^{(k-1)}(a)
$$

28. The composite (left) rectangle rule for numerical integration is like the upper and lower sums but simpler:

$$
\int_{a}^{b} f(x) d x \approx \sum_{i=0}^{n-1}\left(x_{i+1}-x_{i}\right) f\left(x_{i}\right)
$$

Here, the partition is $P=\left\{a=x_{0}<x_{1}<x_{2}<\cdots<x_{n}=b\right\}$. Show that the rectangle rule converges to the integral as $n \rightarrow \infty$.
${ }^{a}$ 29. (Continuation) The composite rectangle rule with uniform spacing reads as follows:

$$
\int_{a}^{b} f(x) d x \approx h \sum_{i=0}^{n-1} f\left(x_{i}\right)
$$

where $h=(b-a) / n$ and $x_{i}=a+i h$ for $0 \leqq i \leqq n$. Find an expression for the error involved in this latter formula.
${ }^{a}$ 30. From the previous two problems, the basic rectangle rule for a single interval is given by

$$
\int_{a}^{b} f(x) d x=(b-a) f(a)+\frac{1}{2}(b-a)^{2} f^{\prime}(\zeta)
$$

Establish the rectangle rule and its error term when the interval $[a, b]$ is partitioned into 2^{n} uniform subintervals, each of width h. Simplify the results.
31. In the composite trapezoid rule, the spacing need not be uniform. Establish the formula

$$
\int_{a}^{b} f(x) d x \approx \frac{1}{2} \sum_{i=1}^{n-1}\left(h_{i-1}+h_{i}\right) f\left(x_{i}\right)+\frac{1}{2}\left[h_{0} f\left(x_{0}\right)+h_{n-1} f\left(x_{n}\right)\right]
$$

where $h_{i}=x_{i+1}-x_{i}$ and $a=x_{0}<x_{1}<x_{2}<\cdots<x_{n}=b$.
32. (Continuation) Establish the following error formula for the composite trapezoid rule with unequal spacing of points:

$$
\int_{a}^{b} f(x) d x=\sum_{i=0}^{n-1} \frac{h_{i}}{2}\left[f\left(x_{i}\right)+f\left(x_{i+1}\right)\right]-\frac{1}{12}(b-a) h^{2} f^{\prime \prime}(\xi)
$$

where $\xi \in(a, b), h_{i}=x_{i+1}-x_{i}$, and $\min _{i} h_{i} \leqq h \leqq \max _{i} h_{i}$. (The composite trapezoid rule with nonuniform spacing was introduced in the preceding problem.)
33. How many points should we use in the trapezoid rule in computing an approximate value of $\int_{0}^{1} e^{x^{2}} d x$ if the answer is to be within 10^{-6} of the correct value? Hint: Recall the error formula for the trapezoid rule: $-\frac{1}{12} h^{2}(b-a) f^{\prime \prime}(\xi)$. You may use coarse estimates, such as $2<e<3$. Explain what you are doing. In the end, we want a suitable value of n, the number of points.

Computer Problems 5.2

1. Write
real function Trapezoid_Uniform (f, a, b, n)
to calculate $\int_{a}^{b} f(x) d x$ using the composite trapezoid rule with n equal subintervals.
2. (Continuation) Test the code written in the preceding computer problem on the following functions. In each case, compare with the correct answer.
${ }^{a}$ a. $\int_{0}^{\pi} \sin x d x$
${ }^{a}$ b. $\int_{0}^{1} e^{x} d x$
${ }^{a}$ c. $\int_{0}^{1} \arctan x d x$
3. Compute π from an integral of the form $c \int_{a}^{b} d x /\left(1+x^{2}\right)$.
4. Compute an approximate value for the integral $\int_{0}^{0.8}(\sin x / x) d x$.
5. Compute these integrals by using small and large values for the lower and upper limits and applying a numerical method. Then compute them by first making the indicated change of variable.
a. $\int_{0}^{\infty} e^{-x^{2 / 2}} d x=\sqrt{\frac{\pi}{2}}, \quad$ using $x=-\ln t \quad$ (Gaussian/probability integral)
b. $\int_{0}^{\infty} x^{-1} \sin x d x=\frac{\pi}{2}, \quad$ using $x=t^{-1} \quad$ (sine integral)
c. $\int_{0}^{\infty} \sin x^{2} d x=\frac{1}{2} \sqrt{\frac{\pi}{2}}, \quad$ using $x=\tan t \quad$ (Fresnel sine integral)

Here and elsewhere, we have used various well-known integrals as examples in testing numerical integration schemes. Some of these integrals are tabulated and can be found in tables in Abramowitz and Stegun [1964].
6. Using a numerical integration routine in a mathematical software system such as Matlab, find an approximate value for the sine integral $\int_{0}^{1}(\sin x / x) d x$. Compare the approximate value obtained to the value of $\operatorname{Si}(1)$ if the system contains this function. Make a plot of the integrand.
7. Use the composite trapezoid rule with 59 subintervals to verify numerically that the approximation obtained agrees with results from Example 3.
8. Using a mathematical software system, verify the numerical approximation to the integral given in the introductory example at the beginning of this chapter.

5.3 Romberg Algorithm

Description

The Romberg algorithm produces a triangular array of numbers, all of which are numerical estimates of the definite integral $\int_{a}^{b} f(x) d x$. The array is denoted here by the notation

The first column of this table contains estimates of the integral obtained by the recursive trapezoid formula with decreasing values of the step size. Explicitly, $R(n, 0)$ is the result of applying the trapezoid rule with 2^{n} equal subintervals. The first of them, $R(0,0)$, is obtained with just one trapezoid:

$$
R(0,0)=\frac{1}{2}(b-a)[f(a)+f(b)]
$$

Similarly, $R(1,0)$ is obtained with two trapezoids:

$$
\begin{aligned}
R(1,0) & =\frac{1}{4}(b-a)\left[f(a)+f\left(\frac{a+b}{2}\right)\right]+\frac{1}{4}(b-a)\left[f\left(\frac{a+b}{2}\right)+f(b)\right] \\
& =\frac{1}{4}(b-a)[f(a)+f(b)]+\frac{1}{2}(b-a) f\left(\frac{a+b}{2}\right) \\
& =\frac{1}{2} R(0,0)+\frac{1}{2}(b-a) f\left(\frac{a+b}{2}\right)
\end{aligned}
$$

These formulas agree with those developed in the preceding section. In particular, note that $R(n, 0)$ is obtained easily from $R(n-1,0)$ if Equation (10) in Section 5.2 is used; that is,

$$
\begin{equation*}
R(n, 0)=\frac{1}{2} R(n-1,0)+h \sum_{k=1}^{2^{n-1}} f[a+(2 k-1) h] \tag{1}
\end{equation*}
$$

where $h=(b-a) / 2^{n}$ and $n \geqq 1$.
The second and successive columns in the Romberg array are generated by the extrapolation formula

$$
\begin{equation*}
R(n, m)=R(n, m-1)+\frac{1}{4^{m}-1}[R(n, m-1)-R(n-1, m-1)] \tag{2}
\end{equation*}
$$

with $n \geqq 1$ and $m \geqq 1$. This formula will be derived later using the theory of Richardson extrapolation from Section 4.3.

EXAMPLE 1 If $R(4,2)=8$ and $R(3,2)=1$, what is $R(4,3)$?
Solution From Equation (2), we have

$$
\begin{aligned}
R(4,3) & =R(4,2)+\frac{1}{63}[R(4,2)-R(3,2)] \\
& =8+\frac{1}{63}(8-1)=\frac{73}{9}
\end{aligned}
$$

Pseudocode

The objective now is to develop computational formulas for the Romberg algorithm. By replacing n with i and m with j in Equation (2), we obtain, for $i \geqq 1$ and $j \geqq 1$,

$$
R(i, j)=R(i, j-1)+\frac{1}{4^{j}-1}[R(i, j-1)-R(i-1, j-1)]
$$

and

$$
R(i, 0)=\frac{1}{2} R(i-1,0)+h \sum_{k=1}^{2^{i-1}} f[a+(2 k-1) h]
$$

The range of the summation is $1 \leqq k \leqq 2^{i-1}$, so that $1 \leqq 2 k-1 \leqq 2^{i}-1$.
One way to generate the Romberg array is to compute a reasonable number of terms in the first column, $R(0,0)$ up to $R(n, 0)$, and then use the extrapolation Formula (2) to construct columns $1,2, \ldots, n$ in order. Another way is to compute the array row by row. Observe, for example, that $R(1,1)$ can be computed by the extrapolation formula as soon as $R(1,0)$ and $R(0,0)$ are available. The procedure Romberg computes, row by row, n rows
and columns of the Romberg array for a function f and a specified interval $[a, b]$:

```
procedure \(\operatorname{Romberg}\left(f, a, b, n,\left(r_{i j}\right)\right)\)
integer \(i, j, k, n\); real \(a, b, h\), sum; real array \(\left(r_{i j}\right)_{0: n \times 0: n}\)
external function \(f\)
\(h \leftarrow b-a\)
\(r_{00} \leftarrow(h / 2)[f(a)+f(b)]\)
for \(i=1\) to \(n\) do
    \(h \leftarrow h / 2\)
    sum \(\leftarrow 0\)
    for \(k=1\) to \(2^{i}-1\) step 2 do
        sum \(\leftarrow \operatorname{sum}+f(a+k h)\)
    end for
    \(r_{i 0} \leftarrow \frac{1}{2} r_{i-1,0}+(\) sum \() h\)
    for \(j=1\) to \(i\) do
        \(r_{i j} \leftarrow r_{i, j-1}+\left(r_{i, j-1}-r_{i-1, j-1}\right) /\left(4^{j}-1\right)\)
    end for
end for
end procedure Romberg
```

This procedure is used with a main program and a function procedure (for computing values of the function f). In the main program and perhaps in the procedure Romberg, some language-specific interface must be included to indicate that the first argument is an external function. Remember that in the Romberg algorithm as described, the number of subintervals is 2^{n}. Thus, a modest value of n should be chosen-for example, $n=5$. A more sophisticated program would include automatic tests to terminate the calculation as soon as the error reaches a preassigned tolerance.

As an example, one can approximate π by using the procedure Romberg with $n=5$ to obtain a numerical approximation for the integral

$$
\int_{0}^{1} \frac{4}{1+x^{2}} d x
$$

We obtain the following results:
3.0000000000000
3.09999990463263 .1333332061768
3.13117647171023 .14156866073613 .1421177387238
$\begin{array}{lllll}3.13898 & 34948730 & 3.1415925025940 & 3.1415941715240 & 3.1415858268738\end{array}$
$\begin{array}{llllll}3.1409416198730 & 3.1415927410126 & 3.1415927410126 & 3.1415927410126 & 3.1415927410126\end{array}$

Euler-Maclaurin Formula

Here we explain the source of Equation (2), which is used for constructing the successive columns of the Romberg array. We begin with a formula that expresses the error in the trapezoid rule over 2^{n-1} subintervals:

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=R(n-1,0)+a_{2} h^{2}+a_{4} h^{4}+a_{6} h^{6}+\cdots \tag{3}
\end{equation*}
$$

Here, $h=(b-a) / 2^{n-1}$ and the coefficients a_{i} depend on f but not on h. This equation is one form of the Euler-Maclaurin formula and is given here without proof. (See Young and Gregory [1972].) In this equation, $R(n-1,0)$ denotes a typical element of the first column in the Romberg array; hence, it is one of the trapezoidal estimates of the integral. Notice particularly that the error is expressed in powers of h^{2}, and the error series is $\mathcal{O}\left(h^{2}\right)$. For our purposes, it is not necessary to know the coefficients, but, in fact, they have definite expressions in terms of f and its derivatives. For the theory to work smoothly, it is assumed that f possesses derivatives of all orders on the interval $[a, b]$.

The reader should now recall the theory of Richardson extrapolation as outlined in Section 4.3. That theory is applicable because of Equation (3). In Equation (8) of Section 4.3, $L=\phi(h)+\sum_{k=1}^{\infty} a_{2 k} h^{2 k}$. Here, L is the value of the integral and $\phi(h)$ is $R(n-1,0)$, the trapezoidal estimate of L using subintervals of size h. Equation (10) of Section 4.3 gives the approximate extrapolation formula, which in this situation is Equation (2).

We briefly review this procedure. Replacing n with $n+1$ and h with $h / 2$ in Equation (3), we have

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=R(n, 0)+\frac{1}{4} a_{2} h^{2}+\frac{1}{16} a_{4} h^{4}+\frac{1}{64} a_{6} h^{6}+\cdots \tag{4}
\end{equation*}
$$

Subtract Equation (3) from 4 times Equation (4) to obtain

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=R(n, 1)-\frac{1}{4} a_{4} h^{4}-\frac{5}{16} a_{6} h^{6}-\cdots \tag{5}
\end{equation*}
$$

where

$$
R(n, 1)=R(n, 0)+\frac{1}{3}[R(n, 0)-R(n-1,0)] \quad(n \geqq 1)
$$

Note that this is the first case $(m=1)$ of the extrapolation Formula (2). Now $R(n, 1)$ should be considerably more accurate than $R(n, 0)$ or $R(n-1,0)$ because its error formula begins with an h^{4} term. Hence, the error series is now $\mathcal{O}\left(h^{4}\right)$. This process can be repeated using Equation (5) slightly modified as the starting point - that is, with n replaced by $n-1$ and with h replaced by $2 h$. Then combine the two equations appropriately to eliminate the h^{4} term. The result is a new combination of elements from column 2 in the Romberg array:

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=R(n, 2)+\frac{1}{4^{3}} a_{6} h^{6}+\frac{21}{4^{5}} a_{8} h^{8}+\cdots \tag{6}
\end{equation*}
$$

where

$$
R(n, 2)=R(n, 1)+\frac{1}{15}[R(n, 1)-R(n-1,1)] \quad(n \geqq 2)
$$

which agrees with Equation (2) when $m=2$. Thus, $R(n, 2)$ is an even more accurate approximation to the integral because its error series is $\mathcal{O}\left(h^{6}\right)$.

The basic assumption on which of all this analysis depends is that Equation (3) is valid for the function f being integrated. Of course, in practice, we will use a modest number of rows in the Romberg algorithm, and only this number of terms in Equation (3) is needed.

Here is the theorem that governs the situation:

EULER-MACLAURIN FORMULA AND ERROR TERM

If $f^{(2 m)}$ exists and is continuous on the interval $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=\frac{h}{2} \sum_{i=0}^{n-1}\left[f\left(x_{i}\right)+f\left(x_{i+1}\right)\right]+E
$$

where $h=(b-a) / n, x_{i}=a+i h$ for $0 \leqq i \leqq n$, and

$$
E=\sum_{k=1}^{m-1} A_{2 k} h^{2 k}\left[f^{(2 k-1)}(a)-f^{(2 k-1)}(b)\right]-A_{2 m}(b-a) h^{2 m} f^{(2 m)}(\xi)
$$

for some ξ in the interval (a, b).

In this theorem, the A_{k} 's are constants (related to the Bernoulli numbers) and ξ is some point in the interval (a, b). The interested reader should refer to Young and Gregory [1972, vol. 1, p. 374]. It turns out that the A_{k} 's can be defined by the equation

$$
\begin{equation*}
\frac{x}{e^{x}-1}=\sum_{k=0}^{\infty} A_{k} x^{k} \tag{7}
\end{equation*}
$$

Observe that in the Euler-Maclaurin formula, the right-hand side contains the trapezoid rule and an error term, E. Furthermore, E can be expressed as a finite sum in ascending powers of h^{2}. This theorem gives the formal justification (and the details) of Equation (3).

If the integrand f does not possess a large number of derivatives but is at least Riemannintegrable, then the Romberg algorithm still converges in the following sense: The limit of each column in the array equals the integral:

$$
\lim _{n \rightarrow \infty} R(n, m)=\int_{a}^{b} f(x) d x \quad(m \geqq 0)
$$

The convergence of the first column is easily justified by referring to the upper and lower sums. (See Problem 5.2.23.) After the convergence of the first column has been established, the convergence of the remaining columns can be proved by using Equation (2). (See Problems 5.3.24 and 5.3.25.)

In practice, we may not know whether the function f whose integral we seek satisfies the smoothness criterion upon which the theory depends. Then it would not be known whether Equation (3) is valid for f. One way of testing this in the course of the Romberg algorithm is to compute the ratios

$$
\frac{R(n, m)-R(n-1, m)}{R(n+1, m)-R(n, m)}
$$

and to note whether they are close to 4^{m+1}. Let us verify, at least for the case $m=0$, that this ratio is near 4 for a function that obeys Equation (3).

If we subtract Equation (4) from (3), the result is

$$
\begin{equation*}
R(n, 0)-R(n-1,0)=\frac{3}{4} a_{2} h^{2}+\frac{15}{16} a_{4} h^{4}+\frac{63}{64} a_{6} h^{6}+\cdots \tag{8}
\end{equation*}
$$

If we write down the same equation for the next value of n, then the h of that equation is half the value of h used in Equation (8). Hence,

$$
\begin{equation*}
R(n+1,0)-R(n, 0)=\frac{3}{4^{2}} a_{2} h^{2}+\frac{15}{16^{2}} a_{4} h^{4}+\frac{63}{64^{2}} a_{6} h^{6}+\cdots \tag{9}
\end{equation*}
$$

Equations (8) and (9) are now used to express the ratio mentioned previously:

$$
\begin{aligned}
\frac{R(n, 0)-R(n-1,0)}{R(n+1,0)-R(n, 0)} & =4\left[\frac{1+\frac{5}{4}\left(\frac{a_{4}}{a_{2}}\right) h^{2}+\frac{21}{16}\left(\frac{a_{6}}{a_{2}}\right) h^{4}+\cdots}{\left.1+\frac{5}{4^{2}}\left(\frac{a_{4}}{a_{2}}\right) h^{2}+\frac{21}{16^{2}}\left(\frac{a_{6}}{a_{2}}\right) h^{4}+\cdots\right]}\right] \\
& =4\left[1+\frac{15}{4^{2}}\left(\frac{a_{4}}{a_{2}}\right) h^{2}+\cdots\right]
\end{aligned}
$$

For small values of h, this expression is close to 4 .

General Extrapolation

In closing, we return to the extrapolation process that is the heart of the Romberg algorithm. The process is Richardson extrapolation, which was discussed in Section 4.3. It is an example of a general dictum in numerical mathematics that if anything is known about the errors in a process, then that knowledge can be exploited to improve the process.

The only type of extrapolation illustrated so far (in this section and Section 4.3) has been the so-called h^{2} extrapolation. It applies to a numerical process in which the error series is of the form

$$
E=a_{2} h^{2}+a_{4} h^{4}+a_{6} h^{6}+\cdots
$$

In this case, the errors behave like $\mathcal{O}\left(h^{2}\right)$ as $h \rightarrow 0$, but the basic idea of Richardson extrapolation has much wider applicability. We could apply extrapolation if we knew, for example, that

$$
E=a h^{\alpha}+b h^{\beta}+c h^{\gamma}+\cdots
$$

provided that $0<\alpha<\beta<\gamma<\cdots$. It is sufficient to see how to annihilate the first term of the error expansion because the succeeding steps would be similar.

Suppose therefore that

$$
\begin{equation*}
L=\varphi(h)+a h^{\alpha}+b h^{\beta}+c h^{\gamma}+\cdots \tag{10}
\end{equation*}
$$

Here, L is a mathematical entity that is approximated by a formula $\varphi(h)$ depending on h with the error series $a h^{\alpha}+b h^{\beta}+\cdots$. It follows that

$$
L=\varphi\left(\frac{h}{2}\right)+a\left(\frac{h}{2}\right)^{\alpha}+b\left(\frac{h}{2}\right)^{\beta}+c\left(\frac{h}{2}\right)^{\gamma}+\cdots
$$

Hence, if we multiply this by 2^{α}, we get

$$
2^{\alpha} L=2^{\alpha} \varphi\left(\frac{h}{2}\right)+a h^{\alpha}+2^{\alpha} b\left(\frac{h}{2}\right)^{\beta}+2^{\alpha} c\left(\frac{h}{2}\right)^{\gamma}+\cdots
$$

By subtracting Equation (10) from this equation, we rid ourselves of the h^{α} term:

$$
\left(2^{\alpha}-1\right) L=2^{\alpha} \varphi\left(\frac{h}{2}\right)-\varphi(h)+\left(2^{\alpha-\beta}-1\right) b h^{\beta}+\left(2^{\alpha-\gamma}-1\right) c h^{\gamma}+\cdots
$$

We rewrite this as

$$
\begin{equation*}
L=\frac{2^{\alpha}}{2^{\alpha}-1} \varphi\left(\frac{h}{2}\right)-\frac{1}{2^{\alpha}-1} \varphi(h)+\widetilde{b} h^{\beta}+\widetilde{c} h^{\gamma}+\cdots \tag{11}
\end{equation*}
$$

Thus, the special linear combination

$$
\begin{equation*}
\frac{2^{\alpha}}{2^{\alpha}-1} \varphi\left(\frac{h}{2}\right)-\frac{1}{2^{\alpha}-1} \varphi(h)=\varphi\left(\frac{h}{2}\right)+\frac{1}{2^{\alpha}-1}\left[\varphi\left(\frac{h}{2}\right)-\varphi(h)\right] \tag{12}
\end{equation*}
$$

should be a more accurate approximation to L than either $\varphi(h)$ or $\varphi(h / 2)$ because their error series, in Equations (10) and (11), improve from $\mathcal{O}\left(h^{\alpha}\right)$ to $\mathcal{O}\left(h^{\beta}\right)$ as $h \rightarrow 0$ and $\beta>\alpha>0$. Notice that when $\alpha=2$, the combination in Equation (12) is the one we have already used for the second column in the Romberg array.

Extrapolation of the same type can be used in still more general situations, as is illustrated next (and in the problems).

EXAMPLE 2 If φ is a function with the property

$$
\varphi(x)=L+a_{1} x^{-1}+a_{2} x^{-2}+a_{3} x^{-3}+\cdots
$$

how can L be estimated using Richardson extrapolation?
Solution Obviously, $L=\lim _{x \rightarrow \infty} \varphi(x)$; thus, L can be estimated by evaluating $\varphi(x)$ for a succession of ever-larger values of x. To use extrapolation, we write

$$
\begin{aligned}
\varphi(x) & =L+a_{1} x^{-1}+a_{2} x^{-2}+a_{3} x^{-3}+\cdots \\
\varphi(2 x) & =L+2^{-1} a_{1} x^{-1}+2^{-2} a_{2} x^{-2}+2^{-3} a_{3} x^{-3}+\cdots \\
2 \varphi(2 x) & =2 L+a_{1} x^{-1}+2^{-1} a_{2} x^{-2}+2^{-2} a_{3} x^{-3}+\cdots \\
2 \varphi(2 x)-\varphi(x) & =L-2^{-1} a_{2} x^{-2}-3 \cdot 2^{-2} a_{3} x^{-3}-\cdots
\end{aligned}
$$

Thus, having computed $\varphi(x)$ and $\varphi(2 x)$, we can compute a new function $\psi(x)=2 \varphi(2 x)-$ $\varphi(x)$. It should be a better approximation to L because its error series begins with x^{-2} and is $\mathcal{O}\left(x^{-2}\right)$ as $x \rightarrow \infty$. This process can be repeated, as in the Romberg algorithm.

Here is a concrete illustration of the preceding example. We want to estimate $\lim _{x \rightarrow \infty} \varphi(x)$ from the following table of numerical values:

x	1	2	4	8	16	32	64	128
$\phi(x)$	21.1100	16.4425	14.3394	13.3455	12.8629	12.6253	12.5073	12.4486

A tentative hypothesis is that φ has the form in the preceding example. When we compute the values of the function $\psi(x)=2 \varphi(2 x)-\varphi(x)$, we get a new table of values:

x	1	2	4	8	16	32	64
$\psi(x)$	11.7750	12.2363	12.3516	12.3803	12.3877	12.3893	12.3899

It therefore seems reasonable to believe that the value of $\lim _{x \rightarrow \infty} \varphi(x)$ is approximately 12.3899. If we do another extrapolation, we should compute $\theta(x)=[4 \psi(2 x)-\psi(x)] / 3$;
values for this table are

x	1	2	4	8	16	32
$\theta(x)$	12.3901	12.3900	12.3899	12.3902	12.3898	12.3901

For the precision of the given data, we conclude that $\lim _{x \rightarrow \infty} \varphi(x)=12.3900$ to within roundoff error.

Summary

(1) By using the Recursive Trapezoid Rule, we find that the first column of the Romberg algorithm is

$$
R(n, 0)=\frac{1}{2} R(n-1,0)+h \sum_{k=1}^{2^{n-1}} f[a+(2 k-1) h]
$$

where $h=(b-a) / 2^{n}$ and $n \geqq 1$. The second and successive columns in the Romberg array are generated by the Richardson extrapolation formula and are

$$
R(n, m)=R(n, m-1)+\frac{1}{4^{m}-1}[R(n, m-1)-R(n-1, m-1)]
$$

with $n \geqq 1$ and $m \geqq 1$. The error is $\mathcal{O}\left(h^{2}\right)$ for the first column, $\mathcal{O}\left(h^{4}\right)$ for the second column, $\mathcal{O}\left(h^{6}\right)$ for the third column, and so on. Check the ratios

$$
\frac{R(n, m)-R(n-1, m)}{R(n+1, m)-R(n, m)} \approx 4^{m+1}
$$

to test whether the algorithm is working.
(2) If the expression L is approximated by $\varphi(h)$ and if these entities are related by the error series

$$
L=\varphi(h)+a h^{\alpha}+b h^{\beta}+c h^{\gamma}+\cdots
$$

then a more accurate approximation is

$$
L \approx \varphi\left(\frac{h}{2}\right)+\frac{1}{2^{\alpha}-1}\left[\varphi\left(\frac{h}{2}\right)-\varphi(h)\right]
$$

with error $\mathcal{O}\left(h^{\beta}\right)$.

Additional References

For additional study, see Abramowitz and Stegun [1964], Clenshaw and Curtis [1960], Davis and Rabinowitz [1984], de Boor [1971], Dixon [1974], Fraser and Wilson [1966], Gentleman [1972], Ghizetti and Ossiccini [1970], Havie [1969], Kahaner [1971], Krylov [1962], O'Hara and Smith [1968], Stroud [1974], and Stroud and Secrest [1966].

Problems 5.3

${ }^{a}$. What is $R(5,3)$ if $R(5,2)=12$ and $R(4,2)=-51$, in the Romberg algorithm?
2. If $R(3,2)=-54$ and $R(4,2)=72$, what is $R(4,3)$?
${ }^{a}$ 3. Compute $R(5,2)$ from $R(3,0)=R(4,0)=8$ and $R(5,0)=-4$.
4. Let $f(x)=2^{x}$. Approximate $\int_{0}^{4} f(x) d x$ by the trapezoid rule using partition points 0,2 , and 4 . Repeat by using partition points $0,1,2,3$, and 4 . Now apply Romberg extrapolation to obtain a better approximation.
${ }^{a}$ 5. By the Romberg algorithm, approximate $\int_{0}^{2} 4 d x /\left(1+x^{2}\right)$ by evaluating $R(1,1)$.
6. Using the Romberg scheme, establish a numerical value for the approximation

$$
\int_{0}^{1} e^{-(10 x)^{2}} d x \approx R(1,1)
$$

Compute the approximation to only three decimal places of accuracy.
${ }^{a} 7$. We are going to use the Romberg method to estimate $\int_{0}^{1} \sqrt{x} \cos x d x$. Will the method work? Will it work well? Explain.
${ }^{a}$ 8. By combining $R(0,0)$ and $R(1,0)$ for the partition $P=\{-h<0<h\}$, determine $R(1,1)$.
9. In calculus, a technique of integration by substitution is developed. For example, if the substitution $x=z^{2}$ is made in the integral $\int_{0}^{1}\left(e^{x} / \sqrt{x}\right) d x$, the result is $2 \int_{0}^{1} e^{z^{2}} d z$. Verify this and discuss the numerical aspects of this example. Which form is likely to produce a more accurate answer by the Romberg method?
${ }^{a}$ 10. How many evaluations of the function (integrand) are needed if the Romberg array with n rows and n columns is to be constructed?
11. Using Equation (2), fill in the circles in the following diagram with coefficients used in the Romberg algorithm:

12. Derive the quadrature rule for $R(1,1)$ in terms of the function f evaluated at partition points $a, a+h$, and $a+2 h$, where $h=(b-a) / 2$. Do the same for $R(n, 1)$ with $h=(b-a) / 2^{n}$.
${ }^{a}$ 13. (Continuation) Derive the quadrature rule $R(2,2)$ in terms of the function f evaluated at $a, a+h, a+2 h, a+3 h$, and b, where $h=(b-a) / 4$.
${ }^{a}$ 14. We want to compute $X=\lim _{n \rightarrow \infty} S_{n}$, and we have already computed the two numbers $u=S_{10}$ and $v=S_{30}$. It is known that $X=S_{n}+\mathrm{Cn}^{-3}$. What is X in terms of u and v ?
${ }^{a}$ 15. Suppose that we want to estimate $Z=\lim _{h \rightarrow 0} f(h)$ and that we calculate $f(1), f\left(2^{-1}\right)$, $f\left(2^{-2}\right), f\left(2^{-3}\right), \ldots, f\left(2^{-10}\right)$. Then suppose also that it is known that $Z=f(h)+$ $a h^{2}+b h^{4}+c h^{6}$. Show how to obtain an improved estimate of Z from the 11 numbers already computed. Show how Z can be determined exactly from any 4 of the 11 computed numbers.
16. Show how Richardson extrapolation works on a sequence $x_{1}, x_{2}, x_{3}, \ldots$ that converges to L as $n \rightarrow \infty$ in such a way that $L-x_{n}=a_{2} n^{-2}+a_{3} n^{-3}+a_{4} n^{-4}+\cdots$.
${ }^{a}$ 17. Let x_{n} be a sequence that converges to L as $n \rightarrow \infty$. If $L-x_{n}$ is known to be of the form $a_{3} n^{-3}+a_{4} n^{-4}+\cdots$ (in which the coefficients are unknown), how can the convergence of the sequence be accelerated by taking combinations of x_{n} and x_{n+1} ?
${ }^{a}$ 18. If the Romberg algorithm is operating on a function that possesses continuous derivatives of all orders on the interval of integration, then what is a bound on the quantity $\left|\int_{a}^{b} f(x) d x-R(n, m)\right|$ in terms of h ?
19. Show that the precise form of Equation (5) is

$$
\int_{a}^{b} f(x) d x=R(n, 1)-\sum_{j=1}^{\infty}\left(\frac{4^{j}-1}{3 \times 4^{j}}\right) a_{2 j+2} h^{2 j+2}
$$

20. Derive Equation (6), and show that its precise form is

$$
\int_{a}^{b} f(x) d x=R(n, 2)+\sum_{j=2}^{\infty}\left(\frac{4^{j}-1}{3 \times 4^{j}}\right)\left(\frac{4^{j-1}-1}{15 \times 4^{j-1}}\right) a_{2 j+2} h^{2 j+2}
$$

21. Use the fact that the coefficients in Equation (3) have the form

$$
a_{k}=c_{k}\left[f^{(k-1)}(b)-f^{(k-1)}(a)\right]
$$

to prove that $\int_{a}^{b} f(x) d x=R(n, m)$ if f is a polynomial of degree $\leqq 2 m-2$.
${ }^{a}$ 22. In the Romberg algorithm, $R(n, 0)$ denotes an estimate of $\int_{a}^{b} f(x) d x$ with subintervals of size $h=(b-a) / 2^{n}$. If it were known that

$$
\int_{a}^{b} f(x) d x=R(n, 0)+a_{3} h^{3}+a_{6} h^{6}+\cdots
$$

how would we have to modify the Romberg algorithm?
a3. Show that if $f^{\prime \prime}$ is continuous, then the first column in the Romberg array converges to the integral in such a way that the error at the nth step is bounded in magnitude by a constant times 4^{-n}.
${ }^{a}$ 24. Assuming that the first column of the Romberg array converges to $\int_{a}^{b} f(x) d x$, show that the second column does also.
25. (Continuation) In the preceding problem, we established the elementary property that if $\lim _{n \rightarrow \infty} R(n, 0)=\int_{a}^{b} f(x) d x$, then $\lim _{n \rightarrow \infty} R(n, 1)=\int_{a}^{b} f(x) d x$. Show that

$$
\lim _{n \rightarrow \infty} R(n, 2)=\lim _{n \rightarrow \infty} R(n, 3)=\cdots=\lim _{n \rightarrow \infty} R(n, n)=\int_{a}^{b} f(x) d x
$$

26. a. Using Formula (7), prove Euler-Maclaurin coefficients can be generated recursively.

$$
A_{0}=1, \quad A_{k}=-\sum_{j=1}^{k} \frac{A_{k-j}}{(j+1)!}
$$

b. Determine A_{k} for $1 \leqq k \leqq 6$.
${ }^{a}$ 27. Evaluate E in the theorem on the Euler-Maclaurin formula for this special case: $a=0$, $b=2 \pi, f(x)=1+\cos 4 x, n=4$, and m arbitrary.

Computer Problems 5.3

${ }^{a}$ 1. Compute eight rows and columns in the Romberg array for $\int_{1.3}^{2.19} x^{-1} \sin x d x$.
2. Design and carry out an experiment using the Romberg algorithm. Suggestions: For a function that possesses many continuous derivatives on the interval, the method should work well. Try such a function first. If you choose one whose integral you can compute by other means, you will acquire a better understanding of the accuracy in the Romberg algorithm. For example, try definite integrals for

$$
\int(1+x)^{-1} d x=\ln (1+x) \quad \int e^{x} d x=e^{x}
$$

and

$$
\int\left(1+x^{2}\right)^{-1} d x=\arctan x
$$

3. Test the Romberg algorithm on a bad function, such as \sqrt{x} on $[0,1]$. Why is it bad?
4. The transcendental number π is the area of a circle whose radius is 1 . Show that

$$
8 \int_{0}^{1 / \sqrt{2}}\left(\sqrt{1-x^{2}}-x\right) d x=\pi
$$

with the help of a diagram, and use this integral to approximate π by the Romberg method.
${ }^{a}$ 5. Apply the Romberg method to estimate $\int_{0}^{\pi}(2+\sin 2 x)^{-1} d x$. Observe the high precision obtained in the first column of the array, that is, by the simple trapezoidal estimates.
${ }^{a} 6$. Compute $\int_{0}^{\pi} x \cos 3 x d x$ by the Romberg algorithm using $n=6$. What is the correct answer?
${ }^{a}$ 7. An integral of the form $\int_{0}^{\infty} f(x) d x$ can be transformed into an integral on a finite interval by making a change of variable. Verify, for instance, that the substitution $x=-\ln y$ changes the integral $\int_{0}^{\infty} f(x) d x$ into $\int_{0}^{1} y^{-1} f(-\ln y) d y$. Use this idea to compute $\int_{0}^{\infty}\left[e^{-x} /\left(1+x^{2}\right)\right] d x$ by means of the Romberg algorithm, using 128 evaluations of the transformed function.
8. By the Romberg algorithm, calculate

$$
\int_{0}^{\infty} e^{-x} \sqrt{1-\sin x} d x
$$

9. Calculate

$$
\int_{0}^{1} \frac{\sin x}{\sqrt{x}} d x
$$

by the Romberg algorithm. Hint: Consider making a change of variable.
10. Compute $\log 2$ by using the Romberg algorithm on a suitable integral.
${ }^{a} \mathbf{1 1}$. The Bessel function of order 0 is defined by the equation

$$
J_{0}(x)=\frac{1}{\pi} \int_{0}^{\pi} \cos (x \sin \theta) d \theta
$$

Calculate $J_{0}(1)$ by applying the Romberg algorithm to the integral.
12. Recode the Romberg procedure so that all the trapezoid rule results are computed first and stored in the first column. Then in a separate procedure,

```
procedures Extrapolate(n, (r
```

carry out Richardson extrapolation, and store the results in the lower triangular part of the $\left(r_{i}\right)$ array. What are the advantages and disadvantages of this procedure over the routine given in the text? Test on the two integrals $\int_{0}^{4} d x /(1+x)$ and $\int_{-1}^{1} e^{x} d x$ using only one computer run.
13. (Student research project) Study the Clenshaw-Curtis method for numerical quadrature. If possible, read the original paper by Clenshaw and Curtis [1960] and then program the method. If programmed well, it should be superior to the Romberg method in many cases. For further information on it, consult papers by Dixon [1974], Fraser and Wilson [1966], Gentleman [1972], Havie [1969] Kahaner [1971], and O’Hara and Smith [1968].
14. (Student research project) Numerical integration is an ideal problem for use on a parallel computer, since the interval of integration can be subdivided into subintervals on each of which the integral can be approximated simultaneously and independently of each other. Investigate how numerical integration can be done in parallel. If you have access to a parallel computer or can simulate a parallel computer on a collection of PCs, write a parallel program to approximate π by using the standard example

$$
\int_{0}^{1}\left(1+x^{2}\right)^{-1} d x
$$

with a basic rule such as the midpoint rule. Vary the number of processors used and the number of subintervals. You can read about parallel computing in books such as Pacheco [1997], Quinn [1994], and others or at any of the numerous sites on the Internet.
15. Use a mathematical software system with symbolic capabilities such as Mathematica to verify the relationship between A_{k} and the Bernoulli numbers for $k=6$.

6
 Additional Topics on Numerical Integration

Some interesting test integrals (for which numerical values are known) are

$$
\int_{0}^{1} \frac{d x}{\sqrt{\sin x}} \quad \int_{0}^{\infty} e^{-x^{3}} d x \quad \int_{0}^{1} x|\sin (1 / x)| d x
$$

An important feature that is desirable in a numerical integration scheme is the capability of dealing with functions that have peculiarities, such as becoming infinite at some point or being highly oscillatory on certain subintervals. Another special case arises when the interval of integration is infinite. In this chapter, additional methods for numerical integration are introduced: the Gaussian quadrature formulas and an adaptive scheme based on Simpson's Rule. Gaussian formulas can often be used when the integrand has a singularity at an endpoint of the interval. The adaptive Simpson code is robust in the sense that it can concentrate the calculations on troublesome parts of the interval, where the integrand may have some unexpected behavior. Robust quadrature procedures automatically detect singularities or rapid fluctuations in the integrand and deal with them appropriately.

6.1 Simpson's Rule and Adaptive Simpson's Rule Basic Simpson's Rule

The basic trapezoid rule for approximating $\int_{a}^{b} f(x) d x$ is based on an estimation of the area beneath the curve over the interval $[a, b]$ using a trapezoid. The function of integration $f(x)$ is taken to be a straight line between $f(a)$ and $f(b)$. The numerical integration formula is of the form

$$
\int_{a}^{b} f(x) d x \approx A f(a)+B f(b)
$$

where the values of A and B are selected so that the resulting approximate formula will correctly integrate any linear function. It suffices to integrate exactly the two functions 1 and x because a polynomial of degree at most one is a linear combination of these two monomials. To simplify the calculations, let $a=0$ and $b=1$ and find a formula of the
following type:

$$
\int_{0}^{1} f(x) d x \approx A f(0)+B f(1)
$$

Thus, these equations should be fulfilled:

$$
\begin{array}{ll}
f(x)=1: & \int_{0}^{1} d x=A+B \\
f(x)=x: & \int_{0}^{1} x d x=\frac{1}{2}=B
\end{array}
$$

The solution is $A=B=\frac{1}{2}$, and the integration formula is

$$
\int_{0}^{1} f(x) d x \approx \frac{1}{2}[f(0)+f(1)]
$$

By a linear mapping $y=(b-a) x+a$ from $[0,1]$ to $[a, b]$, the basic Trapezoid Rule for the interval $[a, b]$ is obtained:

$$
\int_{a}^{b} f(x) d x \approx \frac{1}{2}(b-a)[f(a)+f(b)]
$$

See Figure 6.1 for a graphical illustration.

FIGURE 6.1 Basic Trapezoid Rule

The next obvious generalization is to take two subintervals $\left[a, \frac{a+b}{2}\right]$ and $\left[\frac{a+b}{2}, b\right]$ and to approximate $\int_{a}^{b} f(x) d x$ by taking the function of integration $f(x)$ to be a quadratic polynomial passing through the three points $f(a), f\left(\frac{a+b}{2}\right)$, and $f(b)$. Let us seek a numerical integration formula of the following type:

$$
\int_{a}^{b} f(x) d x \approx A f(a)+B f\left(\frac{a+b}{2}\right)+C f(b)
$$

The function f is assumed to be continuous on the interval $[a, b]$. The coefficients A, B, and C will be chosen such that the formula above will give correct values for the integral whenever f is a quadratic polynomial. It suffices to integrate correctly the three functions $1, x$, and x^{2} because a polynomial of degree at most 2 is a linear combination of those

3 monomials. To simplify the calculations, let $a=-1$ and $b=1$ and consider the equation

$$
\int_{-1}^{1} f(x) d x \approx A f(-1)+B f(0)+C f(1)
$$

Thus, these equations should be fulfilled:

$$
\begin{aligned}
& f(x)=1: \quad \int_{-1}^{1} d x=2=A+B+C \\
& f(x)=x: \quad \int_{-1}^{1} x d x=0=-A+C \\
& f(x)=x^{2}: \quad \int_{-1}^{1} x^{2} d x=\frac{2}{3}=A+C
\end{aligned}
$$

The solution is $A=\frac{1}{3}, C=\frac{1}{3}$, and $B=\frac{4}{3}$. The resulting formula is

$$
\int_{-1}^{1} f(x) d x \approx \frac{1}{3}[f(-1)+4 f(0)+f(1)]
$$

Using a linear mapping $y=\frac{1}{2}(b-a)+\frac{1}{2}(a+b)$ from $[-1,1]$ to $[a, b]$, we obtain the basic Simpson's Rule over the interval $[a, b]$:

$$
\int_{a}^{b} f(x) d x \approx \frac{1}{6}(b-a)\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right]
$$

See Figure 6.2 for an illustration.

FIGURE 6.2

FIGURE 6.3
Example of Trapezoid Rule vs. Simpson's Rule

Figure 6.3 shows graphically the difference between the Trapezoid Rule and the Simpson's Rule.

EXAMPLE 1 Find approximate values for the integral

$$
\int_{-1}^{1} e^{-x^{2}} d s
$$

using the basic Trapezoid Rule and the basic Simpson's Rule. Carry five significant digits.
Solution Let $a=0$ and $b=1$. For the basic Trapezoid Rule (1), we obtain

$$
\int_{0}^{1} e^{-x^{2}} d s \approx \frac{1}{2}\left[e^{0}+e^{-1}\right] \approx 0.5[1+0.36788]=0.68394
$$

which is correct to only one significant decimal place (rounded). For the basic Simpson's Rule (2), we find

$$
\begin{aligned}
\int_{0}^{1} e^{-x^{2}} d s & \approx \frac{1}{6}\left[e^{0}+4 e^{-0.25}+e^{-1}\right] \\
& \approx 0.16667[1+4(0.77880)+0.36788]=0.7472
\end{aligned}
$$

which is correct to three significant decimal places (rounded). Recall that $\int_{0}^{1} e^{-x^{2}} d x=$ $\frac{1}{2} \sqrt{\pi} \operatorname{erf}(1) \approx 0.74682$.

Simpson's Rule

A numerical integration rule over two equal subintervals with partition points $a, a+h$, and $a+2 h=b$ is the widely used basic Simpson's Rule:

$$
\begin{equation*}
\int_{a}^{a+2 h} f(x) d x \approx \frac{h}{3}[f(a)+4 f(a+h)+f(a+2 h)] \tag{1}
\end{equation*}
$$

Simpson's Rule computes exactly the integral of an interpolating quadratic polynomial over an interval of length $2 h$ using three points; namely, the two endpoints and the middle point. It can be derived by integrating over the interval $[0,2 h]$ the Lagrange quadratic polynomial p through the points $(0, f(0)),(h, f(h))$, and $(2 h, f(2 h))$:

$$
\int_{0}^{2 h} f(x) d x \approx \int_{0}^{2 h} p(x) d x=\frac{h}{3}[f(0)+4 f(h)+f(2 h)]
$$

where

$$
p(x)=\frac{1}{2 h^{2}}(x-h)(x-2 h) f(0)-\frac{1}{h^{2}} x(x-2 h) f(h)+\frac{1}{2 h^{2}} x(x-h) f(2 h)
$$

The error term in Simpson's rule can be established by using the Taylor series from Section 1.2:

$$
f(a+h)=f+h f^{\prime}+\frac{1}{2!} h^{2} f^{\prime \prime}+\frac{1}{3!} h^{3} f^{\prime \prime \prime}+\frac{1}{4!} h^{4} f^{(4)}+\cdots
$$

where the functions $f, f^{\prime}, f^{\prime \prime}, \ldots$ on the right-hand side are evaluated at a. Now replacing h by $2 h$, we have

$$
f(a+2 h)=f+2 h f^{\prime}+2 h^{2} f^{\prime \prime}+\frac{4}{3} h^{3} f^{\prime \prime \prime}+\frac{2^{4}}{4!} h^{4} f^{(4)}+\cdots
$$

Using these two series, we obtain

$$
f(a)+4 f(a+h)+f(a+2 h)=6 f+6 h f^{\prime}+4 h^{2} f^{\prime \prime}+2 h^{3} f^{\prime \prime \prime}+\frac{20}{4!} h^{4} f^{(4)}+\cdots
$$

and, thereby, we have

$$
\begin{align*}
\frac{h}{3}[f(a)+4 f(a+h)+f(a+2 h)]= & 2 h f+2 h^{2} f^{\prime}+\frac{4}{3} h^{3} f^{\prime \prime} \\
& +\frac{2}{3} h^{4} f^{\prime \prime \prime}+\frac{20}{3 \cdot 4!} h^{5} f^{(4)}+\cdots \tag{2}
\end{align*}
$$

Hence, we have a series for the right-hand side of Equation (1). Now let's find one for the left-hand side. The Taylor series for $F(a+2 h)$ is

$$
\begin{aligned}
F(a+2 h)= & F(a)+2 h F^{\prime}(a)+2 h^{2} F^{\prime \prime}(a)+\frac{4}{3} h^{3} F^{\prime \prime \prime}(a) \\
& +\frac{2}{3} h^{4} F^{(4)}(a)+\frac{2^{5}}{5!} h^{5} F^{(5)}(a)+\cdots
\end{aligned}
$$

Let

$$
F(x)=\int_{a}^{x} f(t) d t
$$

By the Fundamental Theorem of Calculus, $F^{\prime}=f$. We observe that $F(a)=0$ and $F(a+2 h)$ is the integral on the left-hand side of Equation (1). Since $F^{\prime \prime}=f^{\prime}, F^{\prime \prime \prime}=f^{\prime \prime}$, and so on, we have

$$
\begin{equation*}
\int_{a}^{a+2 h} f(x) d x=2 h f+2 h^{2} f^{\prime}+\frac{4}{3} h^{3} f^{\prime \prime}+\frac{2}{3} h^{4} f^{\prime \prime \prime}+\frac{2^{5}}{5 \cdot 4!} h^{5} f^{(4)}+\cdots \tag{3}
\end{equation*}
$$

Subtracting Equation (2) from Equation (3), we obtain

$$
\int_{a}^{a+2 h} f(x) d x=\frac{h}{3}[f(a)+4 f(a+h)+f(a+2 h)]-\frac{h^{5}}{90} f^{(4)}-\cdots
$$

A more detailed analysis will show that the error term for the basic Simpson's Rule (1) is $-\left(h^{5} / 90\right) f^{(4)}(\xi)=\mathcal{O}\left(h^{5}\right)$ as $h \rightarrow 0$, for some ξ between a and $a+2 h$. We can rewrite the basic Simpson's Rule over the interval $[a, b]$ as

$$
\int_{a}^{b} f(x) d x \approx \frac{(b-a)}{6}\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right]
$$

with error term

$$
-\frac{1}{90}\left(\frac{b-a}{2}\right)^{5} f^{(4)}(\xi)
$$

for some ξ in (a, b).

Composite Simpson's Rule

Suppose that the interval $[a, b]$ is subdivided into an even number of subintervals, say n, each of width $h=(b-a) / n$. Then the partition points are $x_{i}=a+i h$ for $0 \leqq i \leqq n$, where
n is divisible by 2. Now from basic calculus, we have

$$
\int_{a}^{b} f(x) d x=\sum_{i=1}^{n / 2} \int_{a+2(i-1) h}^{a+2 i h} f(x) d x
$$

Using the basic Simpson's Rule, we have, for the right-hand side,

$$
\begin{array}{r}
\approx \sum_{i=1}^{n / 2} \frac{h}{3}\{f(a+2(i-1) h)+4 f(a+(2 i-1) h)+f(a+2 i h)\} \\
=\frac{h}{3}\left\{f(a)+\sum_{i=1}^{(n / 2)-1} f(a+2 i h)+4 \sum_{i=1}^{n / 2} f(a+(2 i-1) h)\right. \\
\\
\left.+\sum_{i=1}^{(n / 2)-1} f(a+2 i h)+f(b)\right\}
\end{array}
$$

Thus, we obtain

$$
\int_{a}^{b} f(x) d x \approx \frac{h}{3}\left\{[f(a)+f(b)]+4 \sum_{i=1}^{n / 2} f[a+(2 i-1) h]+2 \sum_{i=1}^{(n-2) / 2} f(a+2 i h)\right\}
$$

where $h=(b-a) / n$. The error term is

$$
-\frac{1}{180}(b-a) h^{4} f^{(4)}(\xi)
$$

Many formulas for numerical integration have error estimates that involve derivatives of the function being integrated. An important point that is frequently overlooked is that such error estimates depend on the function having derivatives. So if a piecewise function is being integrated, the numerical integration should be broken up over the region to coincide with the regions of smoothness of the function. Another important point is that no polynomial ever becomes infinite in the finite plane, so any integration technique that uses polynomials to approximate the integrand will fail to give good results without extra work at integrable singularities.

An Adaptive Simpson's Scheme

Now we develop an adaptive scheme based on Simpson's Rule for obtaining a numerical approximation to the integral

$$
\int_{a}^{b} f(x) d x
$$

In this adaptive algorithm, the partitioning of the interval $[a, b]$ is not selected beforehand but is automatically determined. The partition is generated adaptively so that more and smaller subintervals are used in some parts of the interval and fewer and larger subintervals are used in other parts.

In the adaptive process, we divide the interval $[a, b]$ into two subintervals and then decide whether each of them is to be divided into more subintervals. This procedure is continued until some specified accuracy is obtained throughout the entire interval $[a, b]$. Since the integrand f may vary in its behavior on the interval $[a, b]$, we do not expect the final partitioning to be uniform but to vary in the density of the partition points.

It is necessary to develop the test for deciding whether subintervals should continue to be divided. One application of Simpson's Rule over the interval $[a, b]$ can be written as

$$
I \equiv \int_{a}^{b} f(x) d x=S(a, b)+E(a, b)
$$

where

$$
S(a, b)=\frac{(b-a)}{6}\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right]
$$

and

$$
E(a, b)=-\frac{1}{90}\left(\frac{b-a}{2}\right)^{5} f^{(4)}(a)+\cdots
$$

Letting $h=b-a$, we have

$$
\begin{equation*}
I=S^{(1)}+E^{(1)} \tag{4}
\end{equation*}
$$

where

$$
S^{(1)}=S(a, b)
$$

and

$$
\begin{aligned}
E^{(1)} & =-\frac{1}{90}\left(\frac{h}{2}\right)^{5} f^{(4)}(a)+\cdots \\
& =-\frac{1}{90}\left(\frac{h}{2}\right)^{5} C
\end{aligned}
$$

Here we assume that $f^{(4)}$ remains a constant value C throughout the interval $[a, b]$. Now two applications of Simpson's Rule over the interval $[a, b]$ give

$$
\begin{equation*}
I=S^{(2)}+E^{(2)} \tag{5}
\end{equation*}
$$

where

$$
S^{(2)}=S(a, c)+S(c, b)
$$

where $c=(a+b) / 2$, as in Figure 6.4, and

$$
\begin{aligned}
E^{(2)} & =-\frac{1}{90}\left(\frac{h / 2}{2}\right)^{5} f^{(4)}(a)+\cdots-\frac{1}{90}\left(\frac{h / 2}{2}\right)^{5} f^{(4)}(c)+\cdots \\
& =-\frac{1}{90}\left(\frac{h / 2}{2}\right)^{5}\left[f^{(4)}(a)+f^{(4)}(c)\right]+\cdots \\
& =-\frac{1}{90}\left(\frac{1}{2^{5}}\right)\left(\frac{h}{2}\right)^{5}(2 C)=\frac{1}{16}\left[-\frac{1}{90}\left(\frac{h}{2}\right)^{5} C\right]
\end{aligned}
$$

One Simpson's Rule

FIGURE 6.4

Again, we use the assumption that $f^{(4)}$ remains a constant value C throughout the interval $[a, b]$. We find that

$$
16 E^{(2)}=E^{(1)}
$$

Subtracting Equation (5) from (4), we have

$$
S^{(2)}-S^{(1)}=E^{(1)}-E^{(2)}=15 E^{(2)}
$$

From this equation and Equation (4), we have

$$
I=S^{(2)}+E^{(2)}=S^{(2)}+\frac{1}{15}\left(S^{(2)}-S^{(1)}\right)
$$

This value of I is the best we have at this step, and we use the inequality

$$
\begin{equation*}
\frac{1}{15}\left|S^{(2)}-S^{(1)}\right|<\varepsilon \tag{6}
\end{equation*}
$$

to guide the adaptive process.
If Test (6) is not satisfied, the interval $[a, b]$ is split into two subintervals, $[a, c]$ and $[c, b]$, where c is the midpoint $c=(a+b) / 2$. On each of these subintervals, we again use Test (6) with ε replaced by $\varepsilon / 2$ so that the resulting tolerance will be ε over the entire interval $[a, b]$. A recursive procedure handles this quite nicely.

To see why we take $\varepsilon / 2$ on each subinterval, recall that

$$
I=\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x=I_{\mathrm{left}}+I_{\mathrm{right}}
$$

If S is the sum of approximations $S_{\text {left }}^{(2)}$ over $[a, c]$ and $S_{\text {right }}^{(2)}$ over $[c, b]$, we have

$$
\begin{aligned}
|I-S| & =\left|I_{\text {left }}+I_{\text {right }}-S_{\text {left }}^{(2)}-S_{\text {right }}^{(2)}\right| \\
& \leqq\left|I_{\text {left }}^{(2)}-S_{\text {left }}^{(2)}\right|+\left|I_{\text {right }}-S_{\text {right }}^{(2)}\right| \\
& =\frac{1}{15}\left|S_{\text {left }}^{(2)}-S_{\text {leftt }}^{(1)}\right|+\frac{1}{15}\left|S_{\text {right }}^{(2)}-S_{\text {right }}^{(1)}\right|
\end{aligned}
$$

using Equation (6). Hence, if we require

$$
\frac{1}{15}\left|S_{\text {left }}^{(2)}-S_{\text {left }}^{(1)}\right| \leqq \frac{\varepsilon}{2} \quad \text { and } \quad \frac{1}{15}\left|S_{\text {right }}^{(2)}-S_{\text {right }}^{(1)}\right| \leqq \frac{\varepsilon}{2}
$$

then $|I-S| \leqq \varepsilon$ over the entire interval $[a, b]$.
We now describe an adaptive Simpson recursive procedure. The interval $[a, b]$ is partitioned into four subintervals of width $(b-a) / 4$. Two Simpson approximations are computed by using two double-width subintervals and four single-width subintervals; that is,

$$
\begin{aligned}
& \text { one_simpson } \leftarrow \frac{h}{6}\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right] \\
& \text { two_simpson } \leftarrow \frac{h}{12}\left[f(a)+4 f\left(\frac{a+c}{2}\right)+2 f(c)+4 f\left(\frac{c+b}{2}\right)+f(b)\right]
\end{aligned}
$$

where $h=b-a$ and $c=(a+b) / 2$.
According to Inequality (6), if one_simpson and two_simpson agree to within 15ε, then the interval $[a, b]$ does not need to be subdivided further to obtain an accurate approximation to the integral $\int_{a}^{b} f(x) d x$. In this case, the value of [16 (two_simpson) - (one_simpson)]/15 is used as the approximate value of the integral over the interval $[a, b]$. If the desired accuracy for the integral has not been obtained, then the interval $[a, b]$ is divided in half. The
subintervals $[a, c]$ and $[c, b]$, where $c=(a+b) / 2$, are used in a recursive call to the adaptive Simpson procedure with tolerance $\varepsilon / 2$ on each. This procedure terminates whenever all subintervals satisfy Inequality (6). Alternatively, a maximum number of allowable levels of subdividing intervals is used as well to terminate the procedure prematurely. The recursive procedure provides an elegant and simple way to keep track of which subintervals satisfy the tolerance test and which need to be divided further.

Example Using Adaptive Simpson Procedure

The main program for calling the adaptive Simpson procedure can best be presented in terms of a concrete example. An approximate value for the integral

$$
\begin{equation*}
\int_{0}^{\frac{5}{4} \pi}\left[\frac{\cos (2 x)}{e^{x}}\right] d x \tag{7}
\end{equation*}
$$

is desired with accuracy $\frac{1}{2} \times 10^{-3}$.

FIGURE 6.5
Adaptive Integration of $\int_{0}^{\frac{5}{4} \pi} \cos (2 x) / e^{x} d x$

The graph of the integrand function is shown in Figure 6.5. We see that this function has many turns and twists, so accurately determining the area under the curve may be difficult. A function procedure f is written for the integrand. Its name is the first argument in the procedure, and necessary interface statements are needed here and in the main program. Other arguments are the values of the upper and lower limits a and b of the integral, the desired accuracy ε, the level of the current subinterval, and the maximum level depth. Here is the pseudocode:

```
recursive real function Simpson(f,a,b, }\varepsilon\mathrm{ , level, level_max)
    result(simpson_result)
integer level,level_max; real a,b,c,d,e,h
external function f
level }\leftarrow\mathrm{ level + 1
h\leftarrowb-a
c}\leftarrow(a+b)/
one_simpson }\leftarrowh[f(a)+4f(c)+f(b)]/
d\leftarrow(a+c)/2
e\leftarrow(c+b)/2
```

```
two_simpson \leftarrowh[f(a)+4f(d)+2f(c)+4f(e)+f(b)]/12
if level\geqqlevel_max then
    simpson_result }\leftarrowtwo_simpso
    output "maximum level reached"
else
    if |two_simpson - one_simpson | < 15\varepsilon then
        simpson_result \leftarrowtwo_simpson + (two_simpson - one_simpson)/15
    else
        left_simpson \leftarrow Simpson(f,a,c,\varepsilon/2, level, level_max)
        right_simpson }\leftarrow\operatorname{Simpson}(f,c,b,\varepsilon/2, level, level_max)
        simpson_result }\leftarrow\mathrm{ left_simpson + right_simpson
    end if
end if
end function Simpson
```

By writing a driver computer program for this pseudocode and executing it on a computer, we obtain an approximate value of 0.208 for the integral (7). The adaptive Simpson procedure uses a different number of panels for different parts of the curve as shown in Figure 6.5.

Newton-Cotes Rules

Newton-Cotes quadrature formulas for approximating $\int_{a}^{b} f(x) d x$ are obtained by approximating the function of integration $f(x)$ by interpolating polynomials. The rules are closed when they involve function values at the ends of the interval of integration. Otherwise, they are said to be open.

Some closed Newton-Cotes rules with error terms are as follows. Here, $a=x_{0}, b=x_{n}$, $h=(b-a) / n, x_{i}=x_{0}+i h$, for $i=0,1, \ldots, n$, where $h=(b-a) / n, f_{i}=f\left(x_{i}\right)$, and $a=x_{0}<\xi<x_{n}=b$ in the error terms.

Trapezoid Rule:

$$
\int_{x_{0}}^{x_{1}} f(x) d x=\frac{1}{2} h\left[f_{0}+f_{1}\right]-\frac{1}{12} h^{3} f^{\prime \prime}(\xi)
$$

Simpson's $\frac{1}{3}$ Rule:

$$
\int_{x_{0}}^{x_{2}} f(x) d x=\frac{1}{3} h\left[f_{0}+4 f_{1}+f_{2}\right]-\frac{1}{90} h^{5} f^{(4)}(\xi)
$$

Simpson's $\frac{3}{8}$ Rule:

$$
\int_{x_{0}}^{x_{3}} f(x) d x=\frac{3}{8} h\left[f_{0}+3 f_{1}+3 f_{2}+f_{3}\right]-\frac{3}{80} h^{5} f^{(4)}(\xi)
$$

Boole's Rule:

$$
\int_{x_{0}}^{x_{4}} f(x) d x=\frac{2}{45} h\left[7 f_{0}+32 f_{1}+12 f_{2}+32 f_{3}+7 f_{4}\right]-\frac{8}{945} h^{7} f^{(6)}(\xi)
$$

Six-Point Newton-Cotes Closed Rule:

$$
\begin{aligned}
\int_{x_{0}}^{x_{5}} f(x) d x= & \frac{5}{288} h\left[19 f_{0}+75 f_{1}+50 f_{2}+50 f_{3}+75 f_{4}+19 f_{5}\right] \\
& -\frac{275}{12096} h^{7} f^{(6)}(\xi)
\end{aligned}
$$

Some of the open Newton-Cotes rules are as follows:

Midpoint Rule:

$$
\int_{x_{0}}^{x_{2}} f(x) d x=2 h f_{1}+\frac{1}{24} h^{3} f^{\prime \prime}(\xi)
$$

Two-Point Newton-Cotes Open Rule:

$$
\int_{x_{0}}^{x_{3}} f(x) d x=\frac{3}{2} h\left[f_{1}+f_{2}\right]+\frac{1}{4} h^{3} f^{\prime \prime}(\xi)
$$

Three-Point Newton-Cotes Open Rule:

$$
\int_{x_{0}}^{x_{4}} f(x) d x=\frac{4}{3} h\left[2 f_{1}-f_{2}+2 f_{3}\right]+\frac{28}{90} h^{5} f^{(4)}(\xi)
$$

Four-Point Newton-Cotes Open Rule:

$$
\int_{x_{0}}^{x_{5}} f(x) d x=\frac{5}{24} h\left[11 f_{1}+f_{2}+f_{3}+11 f_{4}\right]+\frac{95}{144} h^{5} f^{(4)}(\xi)
$$

Five-Point Newton-Cotes Open Rule:

$$
\int_{x_{0}}^{x_{6}} f(x) d x=\frac{6}{20} h\left[11 f_{1}-14 f_{2}+26 f_{3}-14 f_{4}+11 f_{5}\right]-\frac{41}{140} h^{7} f^{(6)}(\xi)
$$

Over the years, many Newton-Cotes formulas have been derived and are compiled in the handbook by Abramowitz and Stegun [1964], which is available online. Rather than using high-order Newton-Cotes rules that are derived by using a single polynomial over the entire interval, it is preferable to use a composite rule based on a low-order basic Newton-Cotes rule. There is seldom any advantage to using an open rule instead of a closed rule involving the same number of nodes. Nevertheless, open rules do have applications in integrating a function with singularities at the endpoints and in the numerical solution of ordinary differential equations as discussed in Chapter 10 and 11.

Before the widespread use of computers, the Newton-Cotes rules were the most commonly used quadrature rules, since they involved fractions that were easy to use in hand calculations. The Gaussian quadrature rules of the next section use fewer function evaluations with higher-order error terms. The fact that they involve nodes involving irrational numbers is no longer a drawback on modern computers.

Summary

(1) Over the interval $[a, b]$, the basic Simpson's Rule is

$$
\int_{a}^{b} f(x) d x \approx S(a, b)=\frac{(b-a)}{6}\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right]
$$

with error term $-\frac{1}{90}\left[\frac{1}{2}(b-a)\right]^{5} f^{(4)}(\xi)$ for some ξ in (a, b). Letting $h=(b-a) / 2$, another form for the basic Simpson's Rule is

$$
\int_{a}^{a+2 h} f(x) d x \approx \frac{h}{3}[f(a)+4 f(a+h)+f(a+2 h)]
$$

with error term $-\frac{1}{90} h^{5} f^{(4)}(\xi)$.
(2) The composite Simpson's $\frac{1}{\mathbf{3}}$ Rule over n (even) subintervals

$$
\begin{aligned}
\int_{a}^{b} f(x) d x \approx & \frac{h}{3}[f(a)+f(b)]+\frac{4 h}{3} \sum_{i=1}^{n / 2} f[a+(2 i-1) h] \\
& +\frac{2 h}{3} \sum_{i=1}^{(n-2) / 2} f(a+2 i h)
\end{aligned}
$$

where $h=(b-a) / n$ and the general error term is $-\frac{1}{180}(b-a) h^{4} f^{(4)}(\xi)$.
(3) On the interval $[a, b]$ with $c=\frac{1}{2}(a+b)$, the test

$$
\frac{1}{15}|S(a, c)+S(c, b)-S(a, b)|<\varepsilon
$$

can be used in an adaptive Simpson's algorithm.
(4) Newton-Cotes quadrature rules encompass many common quadrature rules, such as the Trapezoid Rule, Simpson's Rule, and the Midpoint Rule.

Problems 6.1

${ }^{a}$ 1. Compute $\int_{0}^{1}\left(1+x^{2}\right)^{-1} d x$ by the basic Simpson's Rule, using the three partition points $x=0,0.5$, and 1 . Compare with the true solution.
2. Consider the integral $\int_{0}^{1} \sin \left(\pi x^{2} / 2\right) d x$. Suppose that we wish to integrate numerically, with an error of magnitude less than 10^{-3}.
${ }^{a} \mathbf{a}$. What width h is needed if we wish to use the composite Trapezoid Rule?
${ }^{a}$ b. Composite Simpson's Rule? c. Composite Simpson's $\frac{3}{8}$ Rule?
3. A function f has the values shown.

x	1	1.25	1.5	1.75	2
$f(x)$	10	8	7	6	5

${ }^{a}$ a. Use Simpson's Rule and the function values at $x=1,1.5$, and 2 to approximate $\int_{1}^{2} f(x) d x$.
${ }^{a}$ b. Repeat the preceding part, using $x=1,1.25,1.5,1.75$, and 2 .
${ }^{a} \mathbf{c}$. Use the results from parts \mathbf{a} and \mathbf{b} along with the error terms to establish an improved approximation. Hint: Assume constant error term Ch^{4}.
d. Repeat the previous parts using lower sums, upper sums, and the Trapezoid Rule. Compare these results to that from Simpson's Rule.
${ }^{a}$ 4. Find an approximate value of $\int_{1}^{2} x^{-1} d x$ using composite Simpson's Rule with $h=$ 0.25 . Give a bound on the error.
5. Use Simpson's Rule and its error formula to prove that if a cubic polynomial and a quadratic polynomial cross at three equally spaced points, then the two areas enclosed are equal.
6. For the composite Simpson's $\frac{1}{3}$ Rule over n (even) subintervals, derive the general error term

$$
-\frac{1}{180}(b-a) h^{4} f^{(4)}(\xi)
$$

for some $\xi \in(a, b)$.
${ }^{a}$ 7. (Continuation) The composite Simpson's Rule for calculating $\int_{a}^{b} f(x) d x$ can be written as

$$
S_{n-1}=\frac{h}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\cdots+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]
$$

where $x_{i}=a+i h$ for $0 \leqq i \leqq n$ and $h=(b-a) / n$ with n even. Its error is of the form $C h^{4}$. Show how two values of S_{k} can be combined to obtain a more accurate estimate of the integral.
${ }^{a}$ 8. A numerical integration scheme that is not as well known is the basic Simpson's $\frac{3}{8}$ Rule over three subintervals:

$$
\int_{a}^{a+3 h} f(x) d x \approx \frac{3 h}{8}[f(a)+3 f(a+h)+3 f(a+2 h)+f(a+3 h)]
$$

Establish the error term for this rule, and explain why this rule is overshadowed by Simpson's Rule.
9. (Continuation) Using the preceding problem, establish the composite Simpson's $\frac{3}{8}$ Rule over n (divisible by 3) subintervals. Derive the general error term.
10. Write out the details in the derivation of Simpson's Rule.
11. Find a formula of the type

$$
\int_{0}^{1} f(x) d x \approx \alpha f(0)+\beta f(1)
$$

that gives correct values for $f(x)=1$ and $f(x)=x^{2}$. Does your formula give the correct value when $f(x)=x$?
12. If possible, find a formula

$$
\int_{-1}^{1} f(x) d x \approx \alpha f(-1)+\beta f(0)+\gamma f(1)
$$

that gives the correct value for $f(x)=x, x^{2}$, and x^{3}. Does it correctly integrate the functions $x \mapsto 1, x^{4}$, and x^{5}.
13. Use linear mappings from $[0,1]$ to $[a, b]$ and from $[-1,1]$ to $[a, b]$ to justify the basic Trapezoid Rule and the basic Simpson's Rule in general terms, respectively.

Computer Problems 6.1

1. Find approximate values for the two integrals

$$
4 \int_{0}^{1} \frac{d x}{1+x^{2}} \quad 8 \int_{0}^{1 / \sqrt{2}}\left(\sqrt{1-x^{2}}-x\right) d x
$$

Use recursive function Simpson with $\varepsilon=\frac{1}{2} \times 10^{-5}$ and level_max $=4$. Sketch the curves of the integrand $f(x)$ in each case, and show how Simpson partitions the intervals. You may want to print the intervals at which new values are added to simpson_result in function Simpson and also to print values of $f(x)$ over the entire interval $[a, b]$ in order to sketch the curves.
2. Discover how to save function evaluations in function Simpson so that the integrand $f(x)$ is evaluated only once at each partition point. Test the modified code using the example in the text; that is,

$$
\int_{0}^{2 \pi} \cos (2 x) e^{-x} d x
$$

with $\varepsilon=5.0 \times 10^{-5}$ and level_max $=4$.
3. Modify and test the pseudocode in this section so that it stores the partition points and function values. Using an automatic plotter and the modified code, repeat the preceding computer problem, and plot the resulting partition points and function values.
4. Write and test code similar to that in this section but based on a different Newton-Cotes rule.
5. Using mathematical software such as Matlab, Maple, or Mathematica, write and execute a computer program for finding an approximate value for the integral in Equation (7). Interpret warning messages. Try to obtain a more accurate approximation with more digits of precision by using additional (optional) parameters in the procedure.
6. Code and execute the recursive Simpson algorithm. Use integral (7) for one test.
7. Consider the integral

$$
\int_{-1}^{1} \frac{1}{\sqrt{1-x^{2}}} d x
$$

Because it has singularities at the endpoints of the interval $[-1,1]$, closed rules cannot be used. Apply all of the Newton-Cote open rules. Compare and explain these numerical results to the true solution, which is $\int_{-1}^{1}\left(1-x^{2}\right)^{-1 / 2} d x=\left.\arcsin x\right|_{-1} ^{1}=\pi$.

6.2 Gaussian Quadrature Formulas

Description

Most numerical integration formulas conform to the following pattern:

$$
\begin{equation*}
\int_{a}^{b} f(x) d x \approx A_{0} f\left(x_{0}\right)+A_{1} f\left(x_{1}\right)+\cdots+A_{n} f\left(x_{n}\right) \tag{1}
\end{equation*}
$$

In this section, every numerical integration formula is of this form. To use such a formula, it is necessary only to know the nodes $x_{0}, x_{1}, \ldots, x_{n}$ and the weights $A_{0}, A_{1}, \ldots, A_{n}$. There are tables that list the numerical values of the nodes and weights for important special cases.

Where do formulas such as Formula (1) come from? One major source is the theory of polynomial interpolation as presented in Chapter 4. If the nodes have been fixed, then there is a corresponding Lagrange interpolation formula:

$$
p(x)=\sum_{i=0}^{n} f\left(x_{i}\right) \ell_{i}(x) \quad \text { where } \quad \ell_{i}(x)=\prod_{\substack{j=0 \\ j \neq i}}^{n}\left(\frac{x-x_{j}}{x_{i}-x_{j}}\right)
$$

This formula [Equations (1) and (2) from Section 4.1] provides a polynomial p of degree at most n that interpolates f at the nodes; that is, $p\left(x_{i}\right)=f\left(x_{i}\right)$ for $0 \leqq i \leqq n$. If the circumstances are favorable, p will be a good approximation to f, and $\int_{a}^{b} p(x) d x$ will be a good approximation to $\int_{a}^{b} f(x) d x$. Therefore,

$$
\begin{equation*}
\int_{a}^{b} f(x) d x \approx \int_{a}^{b} p(x) d x=\sum_{i=0}^{n} f\left(x_{i}\right) \int_{a}^{b} \ell_{i}(x) d x=\sum_{i=0}^{n} A_{i} f\left(x_{i}\right) \tag{2}
\end{equation*}
$$

where we have put

$$
A_{i}=\int_{a}^{b} \ell_{i}(x) d x
$$

From the way in which Formula (2) has been derived, we know that it will give correct values for the integral of every polynomial of degree at most n.

EXAMPLE 1 Determine the quadrature formula of the form (1) when the interval is $[-2,2]$ and the nodes are $-1,0$, and 1 .

Solution The functions ℓ_{i} are given above. Thus, we have

$$
\ell_{0}(x)=\prod_{j=1}^{2}\left(\frac{x-x_{j}}{x_{0}-x_{j}}\right)=\frac{1}{2} x(x-1)
$$

Similarly, $\ell_{1}(x)=-(x+1)(x-1)$ and $\ell_{2}(x)=\frac{1}{2} x(x+1)$. The weights are obtained by integrating these functions. For example,

$$
A_{0}=\int_{-2}^{2} \ell_{0}(x) d x=\frac{1}{2} \int_{-2}^{2}\left(x^{2}-x\right) d x=\frac{8}{3}
$$

Similarly, $A_{1}=-\frac{4}{3}$ and $A_{2}=\frac{8}{3}$. Therefore, the quadrature formula is

$$
\int_{-2}^{2} f(x) d x \approx \frac{8}{3} f(-1)-\frac{4}{3} f(0)+\frac{8}{3} f(1)
$$

As a check on the work, one can verify that the formula gives exact values for the three functions $f(x)=1, x$, and x^{2}. By linear algebra, the formula provides correct values for any quadratic polynomial.

Change of Intervals

Gaussian rules for numerical integration are usually given on an interval such as $[0,1]$ or $[-1,1]$. Often, we want to use these rules over a different interval! We can derive a formula for any other interval by making a linear change of variables. If the first formula is exact for polynomials of a certain degree, the same is true of the second. Let us see how this is accomplished.

Suppose that a numerical integration formula is given:

$$
\int_{c}^{d} f(t) d t \approx \sum_{i=0}^{n} A_{i} f\left(t_{i}\right)
$$

It does not matter where this formula comes from; however, let us assume that it is exact for all polynomials of degree at most m. If a formula is needed for some other interval, say, $[a, b]$, we first define a linear function λ of t such that if t traverses $[c, d]$, then $\lambda(t)$ will traverse $[a, b]$. The function λ is given explicitly by

$$
\lambda(t)=\left(\frac{b-a}{d-c}\right) t+\left(\frac{a d-b c}{d-c}\right)
$$

Now in the integral

$$
\int_{a}^{b} f(x) d x
$$

we change the variable, $x=\lambda(t)$. Then $d x=\lambda^{\prime}(t) d t=(b-a)(d-c)^{-1} d t$, and so we have

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & =\left(\frac{b-a}{d-c}\right) \int_{c}^{d} f(\lambda(t)) d t \\
& \approx\left(\frac{b-a}{d-c}\right) \sum_{i=0}^{n} A_{i} f\left(\lambda\left(t_{i}\right)\right)
\end{aligned}
$$

Hence, we have

$$
\int_{a}^{b} f(x) d x \approx\left(\frac{b-a}{d-c}\right) \sum_{i=0}^{n} A_{i} f\left(\left(\frac{b-a}{d-c}\right) t_{i}+\left(\frac{a d-b c}{d-c}\right)\right)
$$

Observe that because λ is linear, $f(\lambda(t))$ is a polynomial in t if f is a polynomial, and the degrees are the same. Hence, the new formula is exact for polynomials of degree at most m.

Gaussian Nodes and Weights

In the preceding discussion, the nodes were arbitrary, although for practical reasons, they should belong to the interval in which the integration is to be carried out. The great mathematician Karl Friedrich Gauss (1777-1855) discovered that by a special placement of the nodes, the accuracy of the numerical integration process could be greatly increased. Here is Gauss's remarkable result.

GAUSSIAN OUADRATURE THEOREM

Let q be a nontrivial polynomial of degree $n+1$ such that

$$
\int_{a}^{b} x^{k} q(x) d x=0 \quad(0 \leqq k \leqq n)
$$

Let $x_{0}, x_{1}, \ldots, x_{n}$ be the zeros of q. Then the formula

$$
\begin{equation*}
\int_{a}^{b} f(x) d x \approx \sum_{i=0}^{n} A_{i} f\left(x_{i}\right) \quad \text { where } \quad A_{i}=\int_{a}^{b} \ell_{i}(x) d x \tag{3}
\end{equation*}
$$

with these x_{i} 's as nodes will be exact for all polynomials of degree at most $2 n+1$. Furthermore, the nodes lie in the open interval (a, b).

Proof (We prove only the first assertion.) Let f be any polynomial of degree $\leqq 2 n+1$. Dividing f by q, we obtain a quotient p and a remainder r, both of which have degree at most n. So

$$
f=p q+r
$$

By our hypothesis, $\int_{a}^{b} q(x) p(x) d x=0$. Furthermore, because each x_{i} is a root of q, we have $f\left(x_{i}\right)=p\left(x_{i}\right) q\left(x_{i}\right)+r\left(x_{i}\right)=r\left(x_{i}\right)$. Finally, since r has degree at most n, Formula (3) will give $\int_{a}^{b} r(x) d x$ precisely. Hence,

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & =\int_{a}^{b} p(x) q(x) d x+\int_{a}^{b} r(x) d x=\int_{a}^{b} r(x) d x \\
& =\sum_{i=0}^{n} A_{i} r\left(x_{i}\right)=\sum_{i=0}^{n} A_{i} f\left(x_{i}\right)
\end{aligned}
$$

To summarize: With arbitrary nodes, Formula (3) will be exact for all polynomials of degree $\leqq n$. With the Gaussian nodes, Formula (3) will be exact for all polynomials of degree $\leqq 2 n+1$.

The quadrature formulas that arise as applications of this theorem are called Gaussian or Gauss-Legendre quadrature formulas. There is a different formula for each interval $[a, b]$ and each value of n. There are also more general Gaussian formulas to give approximate values of integrals, such as

$$
\int_{0}^{\infty} f(x) e^{-x} d x \quad \int_{-1}^{1} f(x)\left(1-x^{2}\right)^{1 / 2} d x \quad \int_{-\infty}^{\infty} f(x) e^{-x^{2}} d x \quad \text { etc. }
$$

Next we derive a Gaussian formula that is not very complicated.

EXAMPLE 2 Determine the Gaussian quadrature formula with three Gaussian nodes and three weights for the integral $\int_{-1}^{1} f(x) d x$.

Solution We must find the polynomial q referred to in the Gaussian Quadrature Theorem and then compute its roots. The degree of q is 3 , so q has the form

$$
q(x)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}
$$

The conditions that q must satisfy are

$$
\int_{-1}^{1} q(x) d x=\int_{-1}^{1} x q(x) d x=\int_{-1}^{1} x^{2} q(x) d x=0
$$

If we let $c_{0}=c_{2}=0$, then $q(x)=c_{1} x+c_{3} x^{3}$, and so

$$
\int_{-1}^{1} q(x) d x=\int_{-1}^{1} x^{2} q(x) d x=0
$$

because the integral of an odd function over a symmetric interval is 0 . To obtain c_{1} and c_{3}, we impose the condition

$$
\int_{-1}^{1} x\left(c_{1} x+c_{3} x^{3}\right) d x=0
$$

A convenient solution of this is $c_{1}=-3$ and $c_{3}=5$. (Because it is a homogeneous equation, any multiple of a solution is another solution. We take the smallest integers that work.) Hence, we obtain

$$
q(x)=5 x^{3}-3 x
$$

The roots of q are $-\sqrt{3 / 5}, 0$, and $\sqrt{3 / 5}$. These, then, are the Gaussian nodes for the desired quadrature formula.

To obtain the weights A_{0}, A_{1}, and A_{2}, we use a procedure known as the method of undetermined coefficients. We want to select A_{0}, A_{1}, and A_{2} in the formula

$$
\begin{equation*}
\int_{-1}^{1} f(x) d x \approx A_{0} f\left(-\sqrt{\frac{3}{5}}\right)+A_{1} f(0)+A_{2} f\left(\sqrt{\frac{3}{5}}\right) \tag{4}
\end{equation*}
$$

so that the approximate equality (\approx) is an exact equality $(=)$ whenever f is of the form $a x^{2}+b x+c$. Since integration is a linear process, Formula (4) will be exact for all polynomials of degree $\leqq 2$ if it is exact for these three: $1, x$, and x^{2}. We arrange the calculations in a tabular form.

f	Left-hand side	Right-hand side
1	$\int_{-1}^{1} d x=2$	$A_{0}+A_{1}+A_{2}$
x	$\int_{-1}^{1} x d x=0$	$-\sqrt{\frac{3}{5}} A_{0}+\sqrt{\frac{3}{5}} A_{2}$
x^{2}	$\int_{-1}^{1} x^{2} d x=\frac{2}{3}$	$\frac{3}{5} A_{0}+\frac{3}{5} A_{2}$

The left-hand side of Equation (4) will equal the right-hand side for all quadratic polynomials when A_{0}, A_{1}, and A_{2} satisfy the equations

$$
\left\{\begin{aligned}
A_{0}+A_{1}+A_{2} & =2 \\
A_{0}-A_{2} & =0 \\
A_{0}+A_{2} & =\frac{10}{9}
\end{aligned}\right.
$$

The weights are $A_{0}=A_{2}=\frac{5}{9}$ and $A_{1}=\frac{8}{9}$. Therefore, the final formula is

$$
\begin{equation*}
\int_{-1}^{1} f(x) d x \approx \frac{5}{9} f\left(-\sqrt{\frac{3}{5}}\right)+\frac{8}{9} f(0)+\frac{5}{9} f\left(\sqrt{\frac{3}{5}}\right) \tag{5}
\end{equation*}
$$

It will integrate correctly all polynomials up to and including quintic ones. For example, $\int_{-1}^{1} x^{4} d x=\frac{2}{5}$, and the formula also yields the value $\frac{2}{5}$ for this function.

With the transformation $t=[2 x-(b+a)] /(b-a)$, a Gaussian quadrature rule of the form

$$
\int_{-1}^{1} f(t) d t \approx \sum_{i=0}^{n} A_{i} f\left(t_{i}\right)
$$

can be used over the interval $[a, b]$; that is,

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=\frac{1}{2}(b-a) \int_{-1}^{1} f\left[\frac{1}{2}(b-a) t+\frac{1}{2}(b+a)\right] d t \tag{6}
\end{equation*}
$$

EXAMPLE 3 Use Formulas (5) and (6) to approximate the integral

$$
\int_{0}^{1} e^{-x^{2}} d x
$$

Solution Since $a=0$ and $b=1$, we have

$$
\begin{aligned}
\int_{0}^{1} f(x) d x & =\frac{1}{2} \int_{-1}^{1} f\left(\frac{1}{2} t+\frac{1}{2}\right) d t \\
& =\frac{1}{2}\left[\frac{5}{9} f\left(\frac{1}{2}-\frac{1}{2} \sqrt{\frac{3}{5}}\right)+\frac{8}{9} f\left(\frac{1}{2}\right)+\frac{5}{9} f\left(\frac{1}{2}+\frac{1}{2} \sqrt{\frac{3}{5}}\right)\right]
\end{aligned}
$$

Letting $f(x)=e^{-x^{2}}$, we have

$$
\begin{aligned}
\int_{0}^{1} e^{-x^{2}} d x & \approx \frac{5}{18} e^{-0.112701665^{2}}+\frac{4}{9} e^{-0.5^{2}}+\frac{5}{18} e^{-0.887298335^{2}} \\
& \approx 0.746814584
\end{aligned}
$$

Comparing against the true solution $\frac{1}{2} \sqrt{\pi} \operatorname{erf}(1) \approx 0.7468241330$, we find that error in the computed solution is approximately 10^{-5}, which is excellent, considering that there were only three function evaluations.

Legendre Polynomials

Much more could be said about Gaussian quadrature formulas. In particular, there are efficient methods for generating the special polynomials whose roots are used as nodes in
the quadrature formula. If we specialize to the integral $\int_{-1}^{1} f(x) d x$ and standardize q_{n} so that $q_{n}(1)=1$, then these polynomials are called Legendre polynomials. Thus, the roots of the Legendre polynomials are the nodes for Gaussian quadrature on the interval $[-1,1]$. The first few Legendre polynomials are

$$
\begin{aligned}
& q_{0}(x)=1 \\
& q_{1}(x)=x \\
& q_{2}(x)=\frac{3}{2} x^{2}-\frac{1}{2} \\
& q_{3}(x)=\frac{5}{2} x^{3}-\frac{3}{2} x
\end{aligned}
$$

They can be generated by a three-term recurrence relation:

$$
\begin{equation*}
q_{n}(x)=\left(\frac{2 n-1}{n}\right) x q_{n-1}(x)-\left(\frac{n-1}{n}\right) q_{n-2}(x) \quad(n \geqq 2) \tag{7}
\end{equation*}
$$

With no new ideas, we can treat integrals of the form $\int_{a}^{b} f(x) w(x) d x$. Here, $w(x)$ should be a fixed positive function on (a, b) for which the integrals $\int_{a}^{b} x^{n} w(x) d x$ all exist, for $n=0,1,2, \ldots$. Important examples for the interval $[-1,1]$ are given by $w(x)=$ $\left(1-x^{2}\right)^{-1 / 2}$ and $w(x)=\left(1-x^{2}\right)^{1 / 2}$. The corresponding theorem is as follows:

THEOREM 2

WEIGHTED GAUSSIAN QUADRATURE THEOREM

Let q be a nonzero polynomial of degree $n+1$ such that

$$
\int_{a}^{b} x^{k} q(x) w(x) d x=0 \quad(0 \leqq k \leqq n)
$$

Let $x_{0}, x_{1}, \ldots, x_{n}$ be the roots of q. Then the formula

$$
\int_{a}^{b} f(x) w(x) d x \approx \sum_{i=0}^{n} A_{i} f\left(x_{i}\right)
$$

where

$$
l_{i}(x)=\prod_{\substack{j=0 \\ j \neq i}}^{n} \frac{x-x_{j}}{x_{i}-x_{j}} \quad \text { and } \quad A_{i}=\int_{a}^{b} \ell_{i}(x) w(x) d x
$$

will be exact whenever f is a polynomial of degree at most $2 n+1$.

The nodes and weights for several values of n in the Gaussian quadrature formula

$$
\int_{-1}^{1} f(x) d x \approx \sum_{i=0}^{n} A_{i} f\left(x_{i}\right)
$$

are given in Table 6.1. The numerical values of nodes and weights for various values of n up to 95 can be found in Abramowitz and Stegun [1964]. See also Stroud and Secrest [1966]. Since these nodes and weights are mostly irrational numbers, they are not used in computations by hand as much as are simpler rules that involve integer and rational values. However, in programs for automatic computation, it does not matter whether a formula

TABLE 6.1 Gaussian Quadrature Nodes and Weights

n	Nodes x_{i}	Weights A_{i}
1	$\begin{aligned} & -\sqrt{\frac{1}{3}} \\ & +\sqrt{\frac{1}{3}} \end{aligned}$	1
2	$\begin{aligned} & -\sqrt{\frac{3}{5}} \\ & 0 \\ & +\sqrt{\frac{3}{5}} \end{aligned}$	$\begin{aligned} & \frac{5}{9} \\ & \frac{8}{9} \\ & \frac{5}{9} \end{aligned}$
3	$\begin{aligned} & -\sqrt{\frac{1}{7}(3-4 \sqrt{0.3})} \\ & -\sqrt{\frac{1}{7}(3+4 \sqrt{0.3})} \\ & +\sqrt{\frac{1}{7}(3-4 \sqrt{0.3})} \\ & +\sqrt{\frac{1}{7}(3+4 \sqrt{0.3})} \end{aligned}$	$\begin{aligned} & \frac{1}{2}+\frac{1}{12} \sqrt{\frac{10}{3}} \\ & \frac{1}{2}-\frac{1}{12} \sqrt{\frac{10}{3}} \\ & \frac{1}{2}+\frac{1}{12} \sqrt{\frac{10}{3}} \\ & \frac{1}{2}-\frac{1}{12} \sqrt{\frac{10}{3}} \end{aligned}$
4	$\begin{aligned} & -\sqrt{\frac{1}{9}\left(5-2 \sqrt{\frac{10}{7}}\right)} \\ & -\sqrt{\frac{1}{9}\left(5+2 \sqrt{\frac{10}{7}}\right)} \\ & 0 \\ & +\sqrt{\frac{1}{9}\left(5-2 \sqrt{\frac{10}{7}}\right)} \\ & +\sqrt{\frac{1}{9}\left(5+2 \sqrt{\frac{10}{7}}\right)} \end{aligned}$	$\begin{aligned} & 0.3\left(\frac{-0.7+5 \sqrt{0.7}}{-2+5 \sqrt{0.7}}\right) \\ & 0.3\left(\frac{0.7+5 \sqrt{0.7})}{2+5 \sqrt{0.7}}\right) \\ & \frac{128}{225} \\ & 0.3\left(\frac{-0.7+5 \sqrt{0.7}}{-2+5 \sqrt{0.7}}\right) \\ & 0.3\left(\frac{0.7+5 \sqrt{0.7}}{2+5 \sqrt{0.7}}\right) \end{aligned}$

looks elegant, and the Gaussian quadrature formulas usually give greater accuracy with fewer function evaluations. The choice of quadrature formulas depends on the specific application being considered, and the reader should consult more advanced references for guidelines. See, for example, Davis and Rabinowitz [1984], Ghizetti and Ossiccini [1970], or Krylov [1962].

Integrals with Singularities

If either the interval of integration is unbounded or the function of integration is unbounded, then special procedures must be used to obtain accurate approximations to the integrals.

One approach for handling a singularity in the function of integration is to change variables to remove the singularity and then use a standard approximation technique. For example, we obtain

$$
\int_{0}^{1} \frac{d x}{e^{x} \sqrt{x}}=2 \int_{0}^{1} \frac{d t}{e^{t^{2}}}
$$

and

$$
\int_{0}^{\pi / 2} \frac{\cos x}{\sqrt{x}} d x=2 \int_{0}^{\sqrt{\pi / 2}} \cos t^{2} d t
$$

using $x=t^{2}$. Some other useful transformations are $x=-\log t, x=t /(1-t), x=\tan t$, and $x=\sqrt{(1+t) /(1-t)}$.

An important case where Gaussian formulas have an advantage occurs in integrating a function that is infinite at one end of the interval. The reason for this advantage is that the nodes in Gaussian quadrature are always interior points of the interval. Thus, for example, in computing

$$
\int_{0}^{1} \frac{\sin x}{x} d x
$$

we can safely use the statement $y \leftarrow \sin x / x$ with a Gaussian formula because the value at $x=0$ will not be required. More difficult integrals such as

$$
\int_{0}^{1} \frac{\sqrt[3]{x^{2}-1}}{\sqrt{\sin \left(e^{x}-1\right)}} d x
$$

can be computed directly with a Gaussian formula in spite of the singularity at 0 . Of course, we are referring to integrals that are well defined and finite in spite of a singularity. A typical case is

$$
\int_{0}^{1} \frac{d x}{\sqrt{x}}
$$

Summary

(1) Gaussian Quadrature Rules with nodes x_{i} and weights A_{i} are of the form

$$
\int_{a}^{b} f(x) d x \approx \sum_{i=0}^{n} A_{i} f\left(x_{i}\right)
$$

where the weights are

$$
A_{i}=\int_{a}^{b} \ell_{i}(x) d x \quad \ell_{i}(x)=\prod_{\substack{j=0 \\ j \neq i}}^{n}\left(\frac{x-x_{j}}{x_{i}-x_{j}}\right)
$$

If q is a nontrivial polynomial of degree $n+1$ such that

$$
\int_{a}^{b} x^{k} q(x) d x=0 \quad(0 \leqq k \leqq n)
$$

then the nodes $x_{0}, x_{1}, \ldots, x_{n}$ are the zeros of q. Furthermore, the nodes lie in the open interval (a, b). The rule is exact for all polynomials of degree at most $2 n+1$.
(2) Use the following formula to change an integration rule from the interval $[c, d]$ to $[a, b]$:

$$
\int_{a}^{b} f(x) d x \approx\left(\frac{b-a}{d-c}\right) \sum_{i=0}^{n} A_{i} f\left(\left(\frac{b-a}{d-c}\right) x_{i}+\left(\frac{a d-b c}{d-c}\right)\right)
$$

(3) Some Gaussian integration rules are

$$
\begin{gathered}
\int_{-1}^{1} f(x) d x \approx f\left(-\frac{1}{\sqrt{3}}\right)+f\left(\frac{1}{\sqrt{3}}\right) \\
\int_{-1}^{1} f(x) d x \approx \frac{5}{9} f\left(-\sqrt{\frac{3}{5}}\right)+\frac{8}{9} f(0)+\frac{5}{9} f\left(\sqrt{\frac{3}{5}}\right)
\end{gathered}
$$

(4) The Weighted Gaussian Quadrature Rules are of the form

$$
\int_{a}^{b} f(x) w(x) d x \approx \sum_{i=0}^{n} A_{i} f\left(x_{i}\right)
$$

where the weights are

$$
A_{i}=\int_{a}^{b} \ell_{i}(x) w(x) d x
$$

If q is a nonzero polynomial of degree $n+1$ such that

$$
\int_{a}^{b} x^{k} q(x) w(x) d x=0 \quad(0 \leqq k \leqq n)
$$

then nodes $x_{0}, x_{1}, \ldots, x_{n}$ are the roots of q. The rule is exact whenever f is a polynomial of degree at most $2 n+1$.
(5) If we have a basic numerical integration formula for the interval $[-1,1]$ such as

$$
\int_{-1}^{1} f(t) d t \approx \sum_{i=0}^{m} A_{i} f\left(t_{i}\right)
$$

it can be employed on an arbitrary interval $[c, d]$ by using a change of variables. To convert to the interval $[c, d]$, change variables by writing $x=\beta t+\alpha$, where $\alpha=\frac{1}{2}(c+d)$ and $\beta=\frac{1}{2}(d-c)$. Notice that when $t=-1$ then $x=c$ and when $t=+1$ then $x=d$. Also,
we must use $d x=\beta d t$. Putting this together, we have the following formulas:

$$
\int_{c}^{d} f(x) d x=\beta \int_{-1}^{1} f(\beta t+\alpha) d t \approx \beta \sum_{i=0}^{m} A_{i} f\left(\beta t_{i}+\alpha\right)
$$

If we want to find a composite rule for the interval $[a, b]$ with $m / 2$ applications of the basic rule, we use

$$
\int_{a}^{b} f(x) d x=\sum_{j=1}^{n / 2} \int_{x_{2}(j-1)}^{x_{2 j}} f(x) d x
$$

and determine

$$
\int_{a}^{b} f(x) d x \approx h \sum_{j=1}^{n / 2} \sum_{i=0}^{m} A_{i} f\left[h t_{i}+t_{2 i-1}\right]
$$

where $h=t_{2 i}-t_{2 i-1}=t_{2 i-1}-t_{2 i-2}$.

Additional References

For additional reading, see the following: Abell and Braselton [1993], Abramowitz and Stegun [1964], Acton [1990], Atkinson [1993], Clenshaw and Curtis [1960], Davis and Rabinowitz [1984], de Boor [1971], Dixon [1974], Fraser and Wilson [1966], Gander and Gautschi [2000], Gentleman [1972], Ghizetti and Ossiccini [1970], Havie [1969], Kahaner [1971], Krylov [1962], O’Hara and Smith [1968], Stroud [1974], and Stroud and Secrest [1966].

Problems 6.2

${ }^{a}$ 1. A Gaussian quadrature rule for the interval $[-1,1]$ can be used on the interval $[a, b]$ by applying a suitable linear transformation. Approximate

$$
\int_{0}^{2} e^{-x^{2}} d x
$$

using the transformed rule from Table 6.1 with $n=1$.
2. Using Table 6.1 , show directly that the Gaussian quadrature rule is exact for the polynomials $1, x, x^{2}, \ldots, x^{2 n+1}$ when
a. $n=1$
b. $n=3$
c. $n=4$
3. For how high a degree of polynomial is Formula (5) exact? Verify your answer by continuing the method of undetermined coefficients until an equation is not satisfied.
4. Verify parts of Table 6.1 by finding the roots of q_{n} and using the method of undetermined coefficients to establish the Gaussian quadrature formula on the interval $[-1,1]$ for the following:
${ }^{a}$ a. $n=1$
${ }^{a}$ b. $n=3$
c. $n=4$
${ }^{a} 5$. Construct a rule of the form

$$
\int_{-1}^{1} f(x) d x \approx \alpha f\left(-\frac{1}{2}\right)+\beta f(0)+\gamma f\left(\frac{1}{2}\right)
$$

that is exact for all polynomials of degree $\leqq 2$; that is, determine values for α, β, and γ. Hint: Make the relation exact for $1, x$, and x^{2} and find a solution of the resulting equations. If it is exact for these polynomials, it is exact for all polynomials of degree $\leqq 2$.
${ }^{a} \mathbf{6}$. Establish a numerical integration formula of the form

$$
\int_{a}^{b} f(x) d x \approx A f(a)+B f^{\prime}(b)
$$

that is accurate for polynomials of as high a degree as possible.
${ }^{a}$ 7. Derive a formula for $\int_{a}^{a+h} f(x) d x$ in terms of function evaluations $f(a), f(a+h)$, and $f(a+2 h)$ that is correct for polynomials of as high a degree as possible. Hint: Use polynomials $1, x-a,(x-a)^{2}$, and so on.
8. Derive a formula of the form

$$
\int_{a}^{b} f(x) d x \approx w_{0} f(a)+w_{1} f(b)+w_{2} f^{\prime}(a)+w_{3} f^{\prime}(b)
$$

that is exact for polynomials of the highest degree possible.
${ }^{a}$ 9. Derive the Gaussian quadrature rule of the form

$$
\int_{-1}^{1} f(x) x^{2} d x \approx a f(-\alpha)+b f(0)+c f(\alpha)
$$

that is exact for all polynomials of as high a degree as possible; that is, determine α, a, b, and c.
${ }^{a}$ 10. Determine a formula of the form

$$
\int_{0}^{h} f(x) d x \approx w_{0} f(0)+w_{1} f(h)+w_{2} f^{\prime \prime}(0)+w_{3} f^{\prime \prime}(h)
$$

that is exact for polynomials of as high a degree as possible.
${ }^{a} \mathbf{1 1}$. Derive a numerical integration formula of the form

$$
\int_{x_{n-1}}^{x_{n+1}} f(x) d x \approx A f\left(x_{n}\right)+B f^{\prime}\left(x_{n-1}\right)+C f^{\prime \prime}\left(x_{n+1}\right)
$$

for uniformly spaced points x_{n-1}, x_{n}, and x_{n+1} with spacing h. The formula should be exact for polynomials of as high a degree as possible. Hint: Consider

$$
\int_{-h}^{h} f(x) d x \approx A f(0)+B f^{\prime}(-h)+C f^{\prime \prime}(h)
$$

${ }^{a}$ 12. By the method of undetermined coefficients, derive a numerical integration formula of the form

$$
\int_{-2}^{+2}|x| f(x) d x \approx A f(-1)+B f(0)+C f(+1)
$$

that is exact for polynomials of degree $\leqq 2$. Is it exact for polynomials of degree greater than 2 ?
${ }^{a}$ 13. Determine A, B, C, and D for a formula of the form

$$
A f(-h)+B f(0)+C f(h)=h D f^{\prime}(h)+\int_{-h}^{h} f(x) d t
$$

that is accurate for polynomials of as high a degree as possible.
${ }^{a} \mathbf{1 4}$. The numerical integration rule

$$
\int_{0}^{3 h} f(x) d x \approx \frac{3 h}{8}[f(0)+3 f(h)+3 f(2 h)+f(3 h)]
$$

is exact for polynomials of degree $\leqq n$. Determine the largest value of n for which this assertion is true.
15. (Adams-Bashforth-Moulton formulas) Verify that the numerical integration formulas
a. $\int_{t}^{t+h} g(s) d s \approx \frac{h}{24}[55 g(t)-59 g(t-h)+37 g(t-2 h)-9 g(t-3 h)]$
b. $\int_{t}^{t+h} g(s) d s \approx \frac{h}{24}[9 g(t+h)+19 g(t)-5 g(t-h)+g(t-2 h)]$
are exact for polynomials of third degree. Note: These two formulas can also be derived by replacing the two integrands g with two interpolating polynomials from Chapter 4 using nodes $(t, t-h, t-2 h, t-3 h)$ or nodes $(t+h, t, t-h, t-2 h)$, respectively.
16. Let a quadrature formula be given in the form

$$
\int_{-1}^{1} f(x) d x \approx \sum_{i=1}^{n} w_{i} f\left(x_{i}\right)
$$

What is the corresponding formula for $\int_{0}^{1} f(x) d x$?
17. Using the rules in Table 6.1, determine the general rules for approximating integrals of the form $\int_{a}^{b} f(x) d x$.

Computer Problems 6.2

1. Write a program to evaluate an integral $\int_{a}^{b} f(x) d x$ using Formula (5).
2. (Continuation) By use of the same program, compute approximate values of the integrals
${ }^{a}$ a. $\int_{0}^{1} d x / \sqrt{x}$
b. $\int_{0}^{2} e^{-\cos ^{2} x} d x$
3. (Continuation) Compute $\int_{0}^{1} x^{-1} \sin x d x$ by the Gaussian Formula (5) suitably modified.
4. Write a procedure for evaluating $\int_{a}^{b} f(x) d x$ by first subdividing the interval into n equal subintervals and then using the three-point Gaussian Formula (5) modified to apply to the n different subintervals. The function f and the integer n will be furnished to the procedure.
5. (Continuation) Test the procedure written in the preceding computer problem on these examples:
a. $\int_{0}^{1} x^{5} d x \quad(n=1,2,10)$
b. $\int_{0}^{1} x^{-1} \sin x d x \quad(n=1,2,3,4)$
6. Apply and compare the composite rules for Trapezoid, Midpoint, Two-Point Gaussian, and Simpson's $\frac{1}{3}$ Rule for approximating the integral

$$
\int_{0}^{2 \pi} e^{-x} \cos x d x \approx 0.499066278634
$$

using 32 applications of each basic rule.
7. Code and test an adaptive two-point Gaussian integration procedure to approximate the integral

$$
\int_{1}^{3} 100 x^{-1} \sin \left(10 x^{-1}\right) d x \approx-18.79829683678703
$$

Write three procedures using double precision:
a. two-point Gauss procedure $\operatorname{Gauss}(f, a, b)$
b. nonrecursive procedure Adaptive_Initial $(\boldsymbol{f}, \boldsymbol{a}, \boldsymbol{b})$ that initializes variables sum and depth to zero and calls recursive procedure $\operatorname{Adaptive}(f$, sum, a, b, depth $)$
c. recursive procedure $\operatorname{Adaptive}(f$, sum, a, b, depth) that checks to see whether the maximum depth is exceeded; if so, it prints an error message and stops; if not, it continues by dividing the interval $[a, b]$ in half and calling procedure Gauss on the left subinterval, the right subinterval, and the whole interval, then checking to see whether the tolerance test is accepted; if it is, it adds the approximate value over the whole interval to the variable sum; otherwise it calls recursive procedure Adaptive on the left and right subintervals in addition to increasing the value of the depth variable. The tolerance test checks to see if the difference in absolute value between the approximate value over the whole interval and the sum of the approximate values over the left subinterval and right subinterval is less than the variable tolerance.

Print out the contribution of each subinterval and the depth at which the approximate value over the subinterval is accepted. Use a maximum depth of 100 subintervals, and stop subdividing subintervals when the tolerance is less than 10^{-7}.
8. Compute the three integrals that were mentioned as test cases in the introduction to this chapter:
${ }^{a}$ a. $\int_{0}^{1} \frac{d x}{\sqrt{\sin x}}$
${ }^{a}$ b. $\int_{0}^{\infty} e^{-x^{3}} d x$
${ }^{a}$ c. $\int_{0}^{1} x|\sin (1 / x)| d x$

To determine whether the computed results are accurate, use two different programs from Matlab, Maple, and/or Mathematica to do these calculations.
9. (Continuation) Another approach to computing the integral $\int_{0}^{1} x|\sin (1 / x)| d x$ is by a change of variables. Turn it into the integral $\int_{1}^{\infty}|\sin (t)| / t^{3} d t$ and then write it as the sum of the integrals from 1 to π, π to 2π, and $2 k \pi$ to $2(k+1) \pi$, for $k=$ $1,2,3, \ldots$. To get 12 -decimal places of accuracy, let k run to 112,536 . Adding up the subintegrals in order of smallest to largest, should give better roundoff errors. Taking 10,000 steps may require about five minutes of machine time, but the error should be no more than about two digits in the tenth decimal place. The first two partial integrals should be computed outside the loop and then added into the sum at the end. Using Matlab program quad, integrate the original integral, and then program this alternative approach.
10. Use Gaussian quadrature formulas on these test cases:
a. $\int_{0}^{1} \frac{\log (1-x)}{x} d x=-\frac{\pi^{2}}{6}$
b. $\int_{0}^{1} \frac{\log (1+x)}{x} d x=\frac{\pi^{2}}{12}$
c. $\int_{0}^{1} \frac{\log \left(1+x^{2}\right)}{x} d x=\frac{\pi^{2}}{24}$

This problem illustrates integrals with singularities at the endpoint. The integrals can be computed numerically by using Gaussian quadrature. The known values enable one to test the process. (See Haruki and Haruki [1983] and Jeffrey [2000].)
11. Suppose we want to compute $\int_{a}^{b} f(x) d x$. We divide the interval $[a, b]$ into n subintervals of uniform size $h=(b-a) / n$, where n is divisible by 2 . Let the nodes be $x_{i}=a+i h$ for $0 \leqq i \leqq n$. Consider the following numerical integration rules.
Composite Trapezoid Rule (n need not be even)

$$
\int_{a}^{b} f(x) d x \approx \frac{1}{2} h[f(a)+f(b)]+h \sum_{i=1}^{n-1} f\left(x_{i}\right)
$$

Composite Simpson's $\frac{1}{3}$ Rule (n even)

$$
\begin{aligned}
\int_{a}^{b} f(x) d x \approx & \frac{1}{3} h[f(a)+f(b)]+\frac{4}{3} h f(b-h) \\
& +\frac{2}{3} h \sum_{i=1}^{\frac{1}{2} n-1}\left[2 f\left(x_{2 i-1}\right)+f\left(x_{2 i}\right)\right]
\end{aligned}
$$

Composite Gaussian Three-Point Rule (n even)

$$
\begin{aligned}
\int_{a}^{b} f(x) d x \approx h \sum_{i=1}^{n / 2} & {\left[\frac{5}{9} f\left(x_{2 i-1}-h \sqrt{\frac{3}{5}}\right)\right.} \\
& \left.+\frac{5}{9} f\left(x_{2 i-1}+h \sqrt{\frac{3}{5}}\right)+\frac{8}{9} f\left(x_{2 i-1}\right)\right]
\end{aligned}
$$

Write and run computer programs for obtaining the numerical approximation to the integral $\int_{0}^{2 \pi}\left[\cos (2 x) / e^{x}\right] d x$ using these rules with $n=120$. Use the true solution
$\frac{1}{5}\left(1-e^{-2 \pi}\right)$ computed in double precision to compute the absolute errors in these results.
12. (Continuation) Repeat the previous problem using all of the rules in Table 6.1 and compare the results.
13. (Student research project) From a practical point of view, investigate some new algorithms for numerical integration that are associated with the names Clenshaw and Curtis [1960], Kronrod [1964], and Patterson [1968]. The later two are adaptive Gaussian quadrature methods that provide error estimates based on the evaluation and reuse of the results at Kronrod points. See QUADPACK by Pessens, de Doncker, Uberhuber, and Kahaner [1983] and also Laurie [1997], Ammar, Calvetti, and Reichel [1999], and Calvetti, Golub, Gragg, and Reichel [2000] for examples.
14. Consider the integral

$$
\int_{-1}^{1} \frac{1}{\sqrt{1-x^{2}}} d x
$$

Because it has singularities at the endpoints of the interval $[-1,1]$, closed rules cannot be used. Apply all of the Gaussian open rules in Table 6.1. Compare and explain these numerical results to the true solution, which is $\int_{-1}^{1}\left(1-x^{2}\right)^{-1 / 2} d x=\left.\arcsin x\right|_{-1} ^{1}=\pi$.
15. Use numerical integration to verify or refute each of the following conjectures:
a. $\int_{0}^{1} \frac{4}{1+x^{2}} d x=\pi$
b. $\int_{0}^{1} \sqrt{x} \log (x) d x=-\frac{4}{9}$
c. $\int_{0}^{1} \sqrt{x^{3}} d x=\frac{2}{5}$
d. $\int_{0}^{1} \frac{1}{1+10 x^{2}} d x=\frac{4}{5}$
e. $\int_{-9}^{100} \frac{1}{\sqrt{|x|}} d x=26$
f. $\int_{0}^{10} 25 e^{-25 x} d x=1$
g. $\int_{0}^{1} \log (x) d x=-1$

Systems of Linear Equations

A simple electrical network contains a number of resistances and a single source of electromotive force (a battery) as shown in Figure 7.1. Using Kirchhoff's laws and Ohm's law, we can write a system of linear equations that govern this circuit. If x_{1}, x_{2}, x_{3}, and x_{4} are the loop currents as shown, then the equations are

$$
\left\{\begin{array}{rlr}
15 x_{1}-2 x_{2}-6 x_{3} & =300 \\
-2 x_{1}+12 x_{2}-4 x_{3}-x_{4} & =0 \\
-6 x_{1}-4 x_{2}+19 x_{3}-9 x_{4} & =0 \\
-x_{2}-9 x_{3}+21 x_{4} & =0
\end{array}\right.
$$

Systems of equations like this, even those that contain hundreds of unknowns, can be solved by using the methods developed in this chapter. The solution to the preceding system is

$$
x_{1}=26.5 \quad x_{2}=9.35 \quad x_{3}=13.3 \quad x_{4}=6.13
$$

FIGURE 7.1

7.1 Naive Gaussian Elimination

One of the fundamental problems in many scientific and engineering applications is to solve an algebraic linear system $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ for the unknown vector \boldsymbol{x} when the coefficient matrix \boldsymbol{A} and right-hand side vector \boldsymbol{b} are known. Such systems arise naturally in various
applications, such as approximating nonlinear equations by linear equations or differential equations by algebraic equations. The cornerstone of many numerical methods for solving a variety of practical computational problems is the efficient and accurate solution of linear systems. The system of linear algebraic equations $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ may or may not have a solution, and if it has a solution, it may or may not be unique. Gaussian elimination is the standard method for solving the linear system by using a calculator or a computer. This method is undoubtedly familiar to most readers, since it is the simplest way to solve a linear system by hand. When the system has no solution, other approaches are used, such as linear least squares, which is discussed in Chapter 14. In this chapter and most of the next one, we assume that the coefficient matrix \boldsymbol{A} is $n \times n$ and invertible (nonsingular).

In a pure mathematical approach, the solution to the problem $\boldsymbol{A x}=\boldsymbol{b}$ is simply $\boldsymbol{x}=$ $\boldsymbol{A}^{-1} \boldsymbol{b}$, where \boldsymbol{A}^{-1} is the inverse matrix. But in most applications, it is advisable to solve the system directly for the unknown vector \boldsymbol{x} rather than explicitly computing the inverse matrix.

In applied mathematics and in many applications, it can be a daunting task for even the largest and fastest computers to solve accurately extremely large systems involving thousands or millions of unknowns. Some of the questions are the following: How do we store such large systems in the computer? How do we know that the computed answers are correct? What is the precision of the computed results? Can the algorithm fail? How long will it take to compute answers? What is the asymptotic operation count of the algorithm? Will the algorithm be unstable for certain systems? Can instability be controlled by pivoting? (Permuting the order of the rows of the matrix is called pivoting.) Which strategy of pivoting should be used? How do we know whether the matrix is ill-conditioned and whether the answers are accurate?

Gaussian elimination transforms a linear system into an upper triangular form, which is easier to solve. This process, in turn, is equivalent to finding the factorization $\boldsymbol{A}=$ $\boldsymbol{L} \boldsymbol{U}$, where \boldsymbol{L} is a unit lower triangular matrix and \boldsymbol{U} is an upper triangular matrix. This factorization is especially useful when solving many linear systems involving the same coefficient matrix but different right-hand sides, which occurs in various applications.

When the coefficient matrix \boldsymbol{A} has a special structure such as being symmetric, positive definite, triangular, banded, block, or sparse, the general approach of Gaussian elimination with partial pivoting needs to be modified or rewritten specifically for the system. When the coefficient matrix has predominantly zero entries, the system is sparse and iterative methods can involve much less computer memory than Gaussian elimination. We will address many of these issues in this chapter and the next one.

Our objective in this chapter is to develop a good program for solving a system of n linear equations in n unknowns:

$$
\left\{\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\cdots+a_{1 n} x_{n}=b_{1} \tag{1}\\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\cdots+a_{2 n} x_{n}=b_{2} \\
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+\cdots+a_{3 n} x_{n}=b_{3} \\
\vdots \\
\vdots
\end{array} \vdots \vdots \vdots \vdots \vdots \vdots+a_{i n} x_{n}=b_{i} .\right.
$$

In compact form, this system can be written simply as

$$
\sum_{j=1}^{n} a_{i j} x_{j}=b_{i} \quad(1 \leqq i \leqq n)
$$

In these equations, $a_{i j}$ and b_{i} are prescribed real numbers (data), and the unknowns x_{j} are to be determined. Subscripts on the letter a are separated by a comma only if necessary for clarity-for example, in $a_{32,75}$ but not in $a_{i j}$.

A Larger Numerical Example

In this section, the simplest form of Gaussian elimination is explained. The adjective naive applies because this form is not usually suitable for automatic computation unless essential modifications are made, as in Section 7.2. We illustrate naive Gaussian elimination with a specific example that has four equations and four unknowns:

$$
\left\{\begin{align*}
6 x_{1}-2 x_{2}+2 x_{3}+4 x_{4}= & 16 \tag{2}\\
12 x_{1}-8 x_{2}+6 x_{3}+10 x_{4} & =26 \\
3 x_{1}-13 x_{2}+9 x_{3}+3 x_{4} & =-19 \\
-6 x_{1}+4 x_{2}+x_{3}-18 x_{4} & =-34
\end{align*}\right.
$$

In the first step of the elimination procedure, certain multiples of the first equation are subtracted from the second, third, and fourth equations so as to eliminate x_{1} from these equations. Thus, we want to create 0 's as coefficients for each x_{1} below the first (where 12, 3 , and -6 now stand). It is clear that we should subtract 2 times the first equation from the second. (This multiplier is simply the quotient $\frac{12}{6}$.) Likewise, we should subtract $\frac{1}{2}$ times the first equation from the third. (Again, this multiplier is just $\frac{3}{6}$.) Finally, we should subtract -1 times the first equation from the fourth. When all of this has been done, the result is

$$
\left\{\begin{align*}
6 x_{1}-2 x_{2}+2 x_{3}+4 x_{4}= & 16 \tag{3}\\
-4 x_{2}+2 x_{3}+2 x_{4} & =-6 \\
-12 x_{2}+8 x_{3}+x_{4} & =-27 \\
2 x_{2}+3 x_{3}-14 x_{4} & =-18
\end{align*}\right.
$$

Note that the first equation was not altered in this process, although it was used to produce the 0 coefficients in the other equations. In this context, it is called the pivot equation.

Notice also that Systems (2) and (3) are equivalent in the following technical sense: Any solution of (2) is also a solution of (3), and vice versa. This follows at once from the fact that if equal quantities are added to equal quantities, the resulting quantities are equal. One can get System (2) from System (3) by adding 2 times the first equation to the second, and so on.

In the second step of the process, we mentally ignore the first equation and the first column of coefficients. This leaves a system of three equations with three unknowns. The same process is now repeated using the top equation in the smaller system as the current pivot equation. Thus, we begin by subtracting 3 times the second equation from the third. (The multiplier is just the quotient $\frac{-12}{-4}$.) Then we subtract $-\frac{1}{2}$ times the second equation
from the fourth. After doing the arithmetic, we arrive at

$$
\left\{\begin{align*}
6 x_{1}-2 x_{2}+2 x_{3}+4 x_{4} & =16 \tag{4}\\
-4 x_{2}+2 x_{3}+2 x_{4} & =-6 \\
2 x_{3}-5 x_{4} & =-9 \\
4 x_{3}-13 x_{4} & =-21
\end{align*}\right.
$$

The final step consists in subtracting 2 times the third equation from the fourth. The result is

$$
\left\{\begin{align*}
6 x_{1}-2 x_{2}+2 x_{3}+4 x_{4} & =16 \tag{5}\\
-4 x_{2}+2 x_{3}+2 x_{4} & =-6 \\
2 x_{3}-5 x_{4} & =-9 \\
-3 x_{4} & =-3
\end{align*}\right.
$$

This system is said to be in upper triangular form. It is equivalent to System (2).
This completes the first phase (forward elimination) in the Gaussian algorithm. The second phase (back substitution) will solve System (5) for the unknowns starting at the bottom. Thus, from the fourth equation, we obtain the last unknown

$$
x_{4}=\frac{-3}{-3}=1
$$

Putting $x_{4}=1$ in the third equation gives us

$$
2 x_{3}-5=-9
$$

and we find the next to last unknown

$$
x_{3}=\frac{-4}{2}=-2
$$

and so on. The solution is

$$
x_{1}=3 \quad x_{2}=1 \quad x_{3}=-2 \quad x_{4}=1
$$

Algorithm

To simplify the discussion, we write System (1) in matrix-vector form. The coefficient elements $a_{i j}$ form an $n \times n$ square array, or matrix. The unknowns x_{i} and the right-hand side elements b_{i} form $n \times 1$ arrays, or vectors.* (See Appendix D for linear algebra notation and concepts.) Hence, we have

$$
\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \tag{6}\\
a_{21} & a_{22} & a_{23} & \cdots & a_{2 n} \\
a_{31} & a_{32} & a_{33} & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & & \vdots \\
a_{i 1} & a_{i 2} & a_{i 3} & \cdots & a_{i n} \\
\vdots & \vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & a_{n 3} & \cdots & a_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{i} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
\vdots \\
b_{i} \\
\vdots \\
b_{n}
\end{array}\right]
$$

[^8]or
$$
A x=b
$$

Operations between equations correspond to operations between rows in this notation. We shall use these two words interchangeably.

Now let us organize the naive Gaussian elimination algorithm for the general system, which contains n equations and n unknowns. In this algorithm, the original data are overwritten with new computed values. In the forward elimination phase of the process, there are $n-1$ principal steps. The first of these steps uses the first equation to produce $n-1$ zeros as coefficients for each x_{1} in all but the first equation. This is done by subtracting appropriate multiples of the first equation from the others. In this process, we refer to the first equation as the first pivot equation and to a_{11} as the first pivot element. For each of the remaining equations $(2 \leqq i \leqq n)$, we compute

$$
\left\{\begin{array}{l}
a_{i j} \leftarrow a_{i j}-\left(\frac{a_{i 1}}{a_{11}}\right) a_{1 j} \quad(1 \leqq j \leqq n) \\
b_{i} \leftarrow b_{i}-\left(\frac{a_{i 1}}{a_{11}}\right) b_{1}
\end{array}\right.
$$

The symbol \leftarrow indicates a replacement. Thus, the content of the memory location allocated to $a_{i j}$ is replaced by $a_{i j}-\left(a_{i 1} / a_{11}\right) a_{1 j}$, and so on. This is accomplished by the following line of pseudocode:

$$
a_{i j} \leftarrow a_{i j}-\left(a_{i 1} / a_{11}\right) a_{1 j}
$$

Note that the quantities $\left(a_{i 1} / a_{11}\right)$ are the multipliers. The new coefficient of x_{1} in the i th equation will be 0 because $a_{i 1}-\left(a_{i 1} / a_{11}\right) a_{11}=0$.

After the first step, the system will be of the form

$$
\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\
0 & a_{22} & a_{23} & \cdots & a_{2 n} \\
0 & a_{23} & a_{33} & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & & \vdots \\
0 & a_{i 2} & a_{i 3} & \cdots & a_{i n} \\
\vdots & \vdots & \vdots & & \vdots \\
0 & a_{n 2} & a_{n 3} & \cdots & a_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{i} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
\vdots \\
b_{i} \\
\vdots \\
b_{n}
\end{array}\right]
$$

From here on, we will not alter the first equation, nor will we alter any of the coefficients for x_{1} (since a multiplier times 0 subtracted from 0 is still 0). Thus, we can mentally ignore the first row and the first column and repeat the process on the smaller system. With the second equation as the pivot equation, we compute for each remaining equation ($3 \leqq i \leqq n$)

$$
\left\{\begin{array}{l}
a_{i j} \leftarrow a_{i j}-\left(\frac{a_{i 2}}{a_{22}}\right) a_{2 j} \quad(2 \leqq j \leqq n) \\
b_{i} \leftarrow b_{i}-\left(\frac{a_{i 2}}{a_{22}}\right) b_{2}
\end{array}\right.
$$

Just prior to the k th step in the forward elimination, the system will appear as follows:

$$
\left[\begin{array}{ccccccccc}
a_{11} & a_{12} & a_{13} & \cdots & & \cdots & & \cdots & a_{1 n} \\
0 & a_{22} & a_{23} & \cdots & & \cdots & & \cdots & a_{2 n} \\
0 & 0 & a_{33} & \cdots & & \cdots & & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & \ddots & & & & & \vdots \\
0 & 0 & 0 & \cdots & a_{k k} & \cdots & a_{k j} & \cdots & a_{k n} \\
\vdots & \vdots & \vdots & \vdots & \vdots & & \vdots & & \vdots \\
0 & 0 & 0 & \cdots & a_{i k} & \cdots & a_{i j} & \cdots & a_{i n} \\
\vdots & \vdots & \vdots & \vdots & \vdots & & \vdots & & \vdots \\
0 & 0 & 0 & \cdots & a_{n k} & \cdots & a_{n j} & \cdots & a_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{k} \\
\vdots \\
x_{i} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
\vdots \\
b_{k} \\
\vdots \\
b_{i} \\
\vdots \\
b_{n}
\end{array}\right]
$$

Here, a wedge of 0 coefficients has been created, and the first k equations have been processed and are now fixed. Using the k th equation as the pivot equation, we select multipliers to create 0 's as coefficients for each x_{i} below the $a_{k k}$ coefficient. Hence, we compute for each remaining equation $(k+1 \leqq i \leqq n)$

$$
\left\{\begin{array}{l}
a_{i j} \leftarrow a_{i j}-\left(\frac{a_{i k}}{a_{k k}}\right) a_{k j} \quad(k \leqq j \leqq n) \\
b_{i} \leftarrow b_{i}-\left(\frac{a_{i k}}{a_{k k}}\right) b_{k}
\end{array}\right.
$$

Obviously, we must assume that all the divisors in this algorithm are nonzero.

Pseudocode

We now consider the pseudocode for forward elimination. The coefficient array is stored as a double-subscripted array $\left(a_{i j}\right)$; the right-hand side of the system of equations is stored as a single-subscripted array $\left(b_{i}\right)$; the solution is computed and stored in a single-subscripted array $\left(x_{i}\right)$. It is easy to see that the following lines of pseudocode carry out the forward elimination phase of naive Gaussian elimination:

```
integer }i,j,k;\quad\mathrm{ real array }(\mp@subsup{a}{ij}{}\mp@subsup{)}{1:n\times1:n}{},(\mp@subsup{b}{i}{}\mp@subsup{)}{1:n}{
for }k=1\mathrm{ to }n-1\mathrm{ do
    for }i=k+1\mathrm{ to }n\mathrm{ do
        for }j=k\mathrm{ to }n\mathrm{ do
            aij}\leftarrow\mp@subsup{a}{ij}{}-(\mp@subsup{a}{ik}{}/\mp@subsup{a}{kk}{})\mp@subsup{a}{kj}{
        end for
        bi}\leftarrow\mp@subsup{b}{i}{}-(\mp@subsup{a}{ik}{}/\mp@subsup{a}{kk}{})\mp@subsup{b}{k}{
    end for
end for
```

Since the multiplier $a_{i k} / a_{k k}$ does not depend on j, it should be moved outside the j loop. Notice also that the new values in column k will be 0 , at least theoretically, because when
$j=k$, we have

$$
a_{i k} \leftarrow a_{i k}-\left(a_{i k} / a_{k k}\right) a_{k k}
$$

Since we expect this to be 0 , no purpose is served in computing it. The location where the 0 is being created is a good place to store the multiplier. If these remarks are put into practice, the pseudocode will look like this:

```
integer i,j,k; real xmult; real array }(\mp@subsup{a}{ij}{}\mp@subsup{)}{1:n\times1:n}{},(\mp@subsup{b}{i}{}\mp@subsup{)}{1:n}{
for }k=1\mathrm{ to }n-1\mathrm{ do
    for }i=k+1\mathrm{ to }n\mathrm{ do
        xmult }\leftarrow\mp@subsup{a}{ik}{}/\mp@subsup{a}{kk}{
        a}\mp@subsup{a}{ik}{}\leftarrow\mathrm{ xmult
        for }j=k+1\mathrm{ to }n\mathrm{ do
            aij}\leftarrow\mp@subsup{a}{ij}{}-(\mathrm{ xmult )}\mp@subsup{a}{kj}{
        end for
        bi}\leftarrow\mp@subsup{b}{i}{}-(xmult)\mp@subsup{b}{k}{
    end for
end for
```

Here, the multipliers are stored because they are part of the $\boldsymbol{L} \boldsymbol{U}$-factorization that can be useful in some applications. This matter is discussed in Section 8.1.

At the beginning of the back substitution phase, the linear system is of the form

$$
\left\{\begin{array}{cccc}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\cdots & & \cdots+ & a_{1 n} x_{n}=b_{1} \\
a_{22} x_{2}+a_{23} x_{3}+\cdots & & \cdots+ & a_{2 n} x_{n}=b_{2} \\
a_{33} x_{3}+\cdots & & + & a_{3 n} x_{n}=b_{3} \\
\ddots & & & \vdots \\
& & \\
& a_{i i} x_{i}+a_{i, i+1} x_{i+1}+ & \cdots+ & a_{i n} x_{n}=b_{i} \\
& \ddots & \vdots & \vdots \\
& & a_{n-1, n-1} x_{n-1}+a_{n-1, n} x_{n}=b_{n-1} \\
& & a_{n n} x_{n}=b_{n}
\end{array}\right.
$$

where the $a_{i j}$'s and b_{i} 's are not the original ones from System (6) but instead are the ones that have been altered by the elimination process.

The back substitution starts by solving the nth equation for x_{n} :

$$
x_{n}=\frac{b_{n}}{a_{n n}}
$$

Then, using the $(n-1)$ th equation, we solve for x_{n-1} :

$$
x_{n-1}=\frac{1}{a_{n-1, n-1}}\left(b_{n-1}-a_{n-1, n} x_{n}\right)
$$

We continue working upward, recovering each x_{i} by the formula

$$
\begin{equation*}
x_{i}=\frac{1}{a_{i i}}\left(b_{i}-\sum_{j=i+1}^{n} a_{i j} x_{j}\right) \quad(i=n-1, n-2, \ldots, 1) \tag{7}
\end{equation*}
$$

Here is pseudocode to do this:

```
integer \(i, j, n ; \quad\) real \(\operatorname{sum} ; \quad\) real array \(\left(a_{i j}\right)_{1: n \times 1: n},\left(x_{i}\right)_{1: n}\)
\(x_{n} \leftarrow b_{n} / a_{n n}\)
for \(i=n-1\) to 1 step -1 do
    sum \(\leftarrow b_{i}\)
    for \(j=i+1\) to \(n\) do
        \(\operatorname{sum} \leftarrow \operatorname{sum}-a_{i j} x_{j}\)
    end for
    \(x_{i} \leftarrow \operatorname{sum} / a_{i i}\)
end for
```

Now we put these segments of pseudocode together to form a procedure, called Naive_Gauss, which is intended to solve a system of n linear equations in n unknowns by the method of naive Gaussian elimination. This pseudocode serves a didactic purpose only; a more robust pseudocode will be developed in the next section.

```
procedure Naive_Gauss \(\left(n,\left(a_{i j}\right),\left(b_{i}\right),\left(x_{i}\right)\right)\)
integer \(i, j, k, n\); real sum, xmult
real array \(\left(a_{i j}\right)_{1: n \times 1: n},\left(b_{i}\right)_{1: n},\left(x_{i}\right)_{1: n}\)
for \(k=1\) to \(n-1\) do
    for \(i=k+1\) to \(n\) do
        xmult \(\leftarrow a_{i k} / a_{k k}\)
        \(a_{i k} \leftarrow\) xmult
        for \(j=k+1\) to \(n\) do
                \(a_{i j} \leftarrow a_{i j}-(\) xmult \() a_{k j}\)
            end for
        \(b_{i} \leftarrow b_{i}-(\) xmult \() b_{k}\)
    end for
end for
\(x_{n} \leftarrow b_{n} / a_{n n}\)
for \(i=n-1\) to 1 step -1 do
    sum \(\leftarrow b_{i}\)
    for \(j=i+1\) to \(n\) do
        \(\operatorname{sum} \leftarrow \operatorname{sum}-a_{i j} x_{j}\)
    end for
    \(x_{i} \leftarrow \operatorname{sum} / a_{i i}\)
end for
end procedure Naive_Gauss
```

Before giving a test example, let us examine the crucial computation in our pseudocode, namely, a triply nested for-loop containing a replacement operation:

```
for k.........do
    for i.........do
        for j\ldots......do
        aij}\leftarrow\mp@subsup{a}{ij}{}-(\mp@subsup{a}{ik}{}/\mp@subsup{a}{kk}{})\mp@subsup{a}{kj}{
        end do
    end do
end do
```

Here, we must expect all quantities to be infected with roundoff error. Such a roundoff error in $a_{k j}$ is multiplied by the factor $\left(a_{i k} / a_{k k}\right)$. This factor is large if the pivot element $\left|a_{k k}\right|$ is small relative to $\left|a_{i k}\right|$. Hence, we conclude, tentatively, that small pivot elements lead to large multipliers and to worse roundoff errors.

Testing the Pseudocode

One good way to test a procedure is to set up an artificial problem whose solution is known beforehand. Sometimes the test problem will include a parameter that can be changed to vary the difficulty. The next example illustrates this.

Fixing a value of n, define the polynomial

$$
p(t)=1+t+t^{2}+\cdots+t^{n-1}=\sum_{j=1}^{n} t^{j-1}
$$

The coefficients in this polynomial are all equal to 1 . We shall try to recover these known coefficients from n values of the polynomial. We use the values of $p(t)$ at the integers $t=$ $1+i$ for $i=1,2, \ldots, n$. If the coefficients in the polynomial are denoted by $x_{1}, x_{2}, \ldots, x_{n}$, we should have

$$
\begin{equation*}
\sum_{j=1}^{n}(1+i)^{j-1} x_{j}=\frac{1}{i}\left[(1+i)^{n}-1\right] \quad(1 \leqq i \leqq n) \tag{8}
\end{equation*}
$$

Here, we have used the formula for the sum of a geometric series on the right-hand side; that is,

$$
\begin{equation*}
p(1+i)=\sum_{j=1}^{n}(1+i)^{j-1}=\frac{(1+i)^{n}-1}{(1+i)-1}=\frac{1}{i}\left[(1+i)^{n}-1\right] \tag{9}
\end{equation*}
$$

Letting $a_{i j}=(1+i)^{j-1}$ and $b_{i}=\left[(1+i)^{n}-1\right] / i$ in Equation (8), we have a linear system.

EXAMPLE 1 We write a pseudocode for a specific test case that solves the system of Equation (8) for various values of n.

Solution Since the naive Gaussian elimination procedure Naive_Gauss can be used, all that is needed is a calling program. We decide to use $n=4,5,6,7,8,9,10$ for the test. Here is a
suitable pseudocode:

```
program Test_NGE
integer parameter \(m \leftarrow 10\)
integer \(i, j, n ; \quad\) real array, \(\left(a_{i j}\right)_{1: m \times 1: m},\left(b_{i}\right)_{1: m},\left(x_{i}\right)_{1: m}\)
for \(n=4\) to 10 do
    for \(i=1\) to \(n\) do
        for \(j=1\) to \(n\) do
                \(a_{i j} \leftarrow(i+1)^{j-1}\)
            end for
            \(b_{i} \leftarrow\left[(i+1)^{n}-1\right] / i\)
    end for
    call Naive_Gauss( \(\left.n,\left(a_{i j}\right),\left(b_{i}\right),\left(x_{i}\right)\right)\)
    output \(n,\left(\boldsymbol{x}_{i}\right)_{1: n}\)
end for
end program Test_NGE
```

When this pseudocode was run on a machine that carries approximately seven decimal digits of accuracy, the solution was obtained with complete precision until n reached 9 , and then the computed solution was worthless because one component exhibited a relative error of $16,120 \%$! (Write and run a computer program to see for yourself!)

The coefficient matrix for this linear system is an example of a well-known illconditioned matrix called the Vandermonde matrix, and this accounts for the fact that the system cannot be solved accurately using naive Gaussian elimination. What is amazing is that the trouble happens so suddenly! When $n \geqq 9$, the roundoff error that is present in computing x_{i} is propagated and magnified throughout the back substitution phase so that most of the computed values for x_{i} are worthless. Insert some intermediate print statements in the code to see for yourself what is going on here. (See Gautschi [1990] for more information on the Vandermonde matrix and its ill-conditioned nature.)

Residual and Error Vectors

For a linear system $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ having the true solution \boldsymbol{x} and a computed solution $\widetilde{\boldsymbol{x}}$, we define

$$
\begin{array}{ll}
e=\widetilde{x}-x & \text { error vector } \\
r=A \widetilde{x}-b & \text { residual vector }
\end{array}
$$

An important relationship between the error vector and the residual vector is

$$
A e=r
$$

Suppose that two students using different computer systems solve the same linear system, $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$. What algorithm and what precision each student used are not known. Each vehemently claims to have the correct answer, but the two computer solutions $\widetilde{\boldsymbol{x}}$ and $\hat{\boldsymbol{x}}$ are totally different! How do we determine which, if either, computed solution is correct?

We can check the solutions by substituting them into the original system, which is the same as computing the residual vectors $\widetilde{\boldsymbol{r}}=\boldsymbol{A} \widetilde{\boldsymbol{x}}-\boldsymbol{b}$ and $\widehat{\boldsymbol{r}}=\boldsymbol{A} \widehat{\boldsymbol{x}}-\boldsymbol{b}$. Of course, the
computed solutions are not exact because each must contain some roundoff errors. So we would want to accept the solution with the smaller residual vector. However, if we knew the exact solution \boldsymbol{x}, then we would just compare the computed solutions with the exact solution, which is the same as computing the error vectors $\widetilde{\boldsymbol{e}}=\widetilde{\boldsymbol{x}}-\boldsymbol{x}$ and $\widehat{\boldsymbol{e}}=\widehat{\boldsymbol{x}}-\boldsymbol{x}$. Now the computed solution that produces the smaller error vector would most assuredly be the better answer.

Since the exact solution is usually not known in applications, one would tend to accept the computed solution that has the smaller residual vector. But this may not be the best computed solution if the original problem is sensitive to roundoff errors-that is, is illconditioned. In fact, the question of whether a computed solution to a linear system is a good solution is extremely difficult and beyond the scope of this book. Problem 7.1.5 may give some insight into the difficulty of assessing the accuracy of computed solutions of linear systems.

Summary

(1) The basic forward elimination procedure using equation k to operate on equations $k+$ $1, k+2, \ldots, n$ is

$$
\left\{\begin{array}{l}
a_{i j} \leftarrow a_{i j}-\left(a_{i k} / a_{k k}\right) a_{k j} \quad(k \leqq j \leqq n, k<i \leqq n) \\
b_{i} \leftarrow b_{i}-\left(a_{i k} / a_{k k}\right) b_{k}
\end{array}\right.
$$

Here we assume $a_{k k} \neq 0$. The basic back substitution procedure is

$$
x_{i}=\frac{1}{a_{i i}}\left(b_{i}-\sum_{j=i+1}^{n} a_{i j} x_{j}\right) \quad(i=n-1, n-2, \ldots, 1)
$$

(2) When solving the linear system $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, if the true or exact solution is \boldsymbol{x} and the approximate or computed solution is $\widetilde{\boldsymbol{x}}$, then important quantities are

$$
\begin{array}{ll}
\text { error vectors } & e=\widetilde{x}-x \\
\text { residual vectors } & r=A \widetilde{x}-b
\end{array}
$$

Problems 7.1

${ }^{a}$ 1. Show that the system of equations

$$
\left\{\begin{array}{r}
x_{1}+4 x_{2}+\alpha x_{3}=6 \\
2 x_{1}-x_{2}+2 \alpha x_{3}=3 \\
\alpha x_{1}+3 x_{2}+x_{3}=5
\end{array}\right.
$$

possesses a unique solution when $\alpha=0$, no solution when $\alpha=-1$, and infinitely many solutions when $\alpha=1$. Also, investigate the corresponding situation when the right-hand side is replaced by 0 's.
${ }^{a}$ 2. For what values of α does naive Gaussian elimination produce erroneous answers for this system?

$$
\left\{\begin{aligned}
x_{1}+x_{2} & =2 \\
\alpha x_{1}+x_{2} & =2+\alpha
\end{aligned}\right.
$$

Explain what happens in the computer.
3. Apply naive Gaussian elimination to these examples and account for the failures. Solve the systems by other means if possible.
${ }^{a}$ a. $\left\{\begin{aligned} 3 x_{1}+2 x_{2} & =4 \\ -x_{1}-\frac{2}{3} x_{2} & =1\end{aligned}\right.$
ab. $\left\{\begin{aligned} 6 x_{1}-3 x_{2} & =6 \\ -2 x_{1}+x_{2} & =-2\end{aligned}\right.$
c. $\left\{\begin{aligned} 0 x_{1}+2 x_{2} & =4 \\ x_{1}-x_{2} & =5\end{aligned}\right.$
d. $\left\{\begin{aligned} x_{1}+x_{2}+2 x_{3} & =4 \\ x_{1}+x_{2}+0 x_{3} & =2 \\ 0 x_{1}+x_{2}+x_{3} & =0\end{aligned}\right.$
${ }^{a}$ 4. Solve the following system of equations, retaining only four significant figures in each step of the calculation, and compare your answer with the solution obtained when eight significant figures are retained. Be consistent by either always rounding to the number of significant figures that are being carried or always chopping.

$$
\left\{\begin{array}{l}
0.1036 x_{1}+0.2122 x_{2}=0.7381 \\
0.2081 x_{1}+0.4247 x_{2}=0.9327
\end{array}\right.
$$

${ }^{a}$ 5. Consider

$$
\begin{array}{ll}
\boldsymbol{A}=\left[\begin{array}{ll}
0.780 & 0.563 \\
0.913 & 0.659
\end{array}\right], & \boldsymbol{b}=\left[\begin{array}{c}
0.217 \\
0.254
\end{array}\right] \\
\tilde{\boldsymbol{x}}=\left[\begin{array}{r}
0.999 \\
-1.001
\end{array}\right], & \widehat{\boldsymbol{x}}=\left[\begin{array}{r}
0.341 \\
-0.087
\end{array}\right]
\end{array}
$$

Compute residual vectors $\widetilde{\boldsymbol{r}}=\boldsymbol{A} \widetilde{\boldsymbol{x}}-\boldsymbol{b}$ and $\widehat{\boldsymbol{r}}=\boldsymbol{A} \widehat{\boldsymbol{x}}-\boldsymbol{b}$ and decide which of $\widetilde{\boldsymbol{x}}$ and $\widehat{\boldsymbol{x}}$ is the better solution vector. Now compute the error vectors $\boldsymbol{e}=\widetilde{\boldsymbol{x}}-\boldsymbol{x}$ and $\widehat{\boldsymbol{e}}=\widehat{\boldsymbol{x}}-\boldsymbol{x}$, where $\boldsymbol{x}=[1,-1]^{T}$ is the exact solution. Discuss the implications of this example.
6. Consider the system

$$
\left\{\begin{aligned}
10^{-4} x_{1}+x_{2} & =b_{1} \\
x_{1}+x_{2} & =b_{2}
\end{aligned}\right.
$$

where $b_{1} \neq 0$ and $b_{2} \neq 0$. Its exact solution is

$$
x_{1}=\frac{-b_{1}+b_{2}}{1-10^{-4}}, \quad x_{2}=\frac{b_{1}-10^{-4} b_{2}}{1-10^{-4}}
$$

${ }^{a}$ a. Let $b_{1}=1$ and $b_{2}=2$. Solve this system using naive Gaussian elimination with three-digit (rounded) arithmetic and compare with the exact solution $x_{1}=$ $1.00010 \ldots$ and $x_{2}=0.999899 \ldots$.
${ }^{a}$ b. Repeat the preceding part after interchanging the order of the two equations.
${ }^{a}$ c. Find values of b_{1} and b_{2} in the original system so that naive Gaussian elimination does not give poor answers.
7. Solve each of the following systems using naive Gaussian elimination-that is, forward elimination and back substitution. Carry four significant figures.
${ }^{a}$ a. $\left\{\begin{array}{r}3 x_{1}+4 x_{2}+3 x_{3}=10 \\ x_{1}+5 x_{2}-x_{3}=7 \\ 6 x_{1}+3 x_{3}+7 x_{3}=15\end{array} \quad{ }^{a}\right.$ b. $\left\{\begin{array}{r}3 x_{1}+2 x_{2}-5 x_{3}=0 \\ 2 x_{1}-3 x_{2}+x_{3}=0 \\ x_{1}+4 x_{2}-x_{3}=4\end{array}\right.$
${ }^{a} \mathbf{c} .\left[\begin{array}{rrrr}1 & -1 & 2 & 1 \\ 3 & 2 & 1 & 4 \\ 5 & 8 & 6 & 3 \\ 4 & 2 & 5 & 3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{r}1 \\ 1 \\ 1 \\ -1\end{array}\right]$
d. $\left\{\begin{aligned} 3 x_{1}+2 x_{2}-x_{3}= & 7 \\ 5 x_{1}+3 x_{2}+2 x_{3}= & 4 \\ -x_{1}+x_{2}-3 x_{3}= & -1\end{aligned}\right.$
e. $\left\{\begin{array}{rr}x_{1}+3 x_{2}+2 x_{3}+x_{4}= & -2 \\ 4 x_{1}+2 x_{2}+x_{3}+2 x_{4}= & 2 \\ 2 x_{1}+x_{2}+2 x_{3}+3 x_{4}= & 1 \\ x_{1}+2 x_{2}+4 x_{3}+x_{4}= & -1\end{array}\right.$

Computer Problems 7.1

1. Program and run the example in the text and insert some print statements to see what is happening.
2. Rewrite and test procedure Naive_Gauss so that it is column oriented; that is, the first index of $a_{i j}$ varies on the innermost loop.
3. Define an $n \times n$ matrix \boldsymbol{A} by the equation $a_{i j}=i+j$. Define \boldsymbol{b} by the equation $b_{i}=i+1$. Solve $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ by using procedure Naive_Gauss. What should \boldsymbol{x} be?
4. Define an $n \times n$ array by $a_{i j}=-1+2 \min \{i, j\}$. Then set up the array $\left(b_{i}\right)$ in such a way that the solution of the system $\sum_{j=1}^{n} a_{i j} x_{j}=b_{i}(1 \leqq i \leqq n)$ is $x_{j}=1(1 \leqq j \leqq n)$. Test procedure Naive_Gauss on this system for a moderate value of n, say $n=15$.
5. Write and test a version of procedure Naive_Gauss in which
a. An attempted division by 0 is signaled by an error return.
b. The solution \boldsymbol{x} is placed in array $\left(b_{i}\right)$.
${ }^{a}$ 6. Write a complex arithmetic version of Naive_Gauss by declaring certain variables complex and making other necessary changes to the code. Consider the complex linear system

$$
A z=b
$$

where

$$
\boldsymbol{A}=\left[\begin{array}{rrrr}
5+9 i & 5+5 i & -6-6 i & -7-7 i \\
3+3 i & 6+10 i & -5-5 i & -6-6 i \\
2+2 i & 3+3 i & -1+3 i & -5-5 i \\
1+i & 2+2 i & -3-3 i & 4 i
\end{array}\right]
$$

Solve this system four times with the following vectors \boldsymbol{b} :

$$
\left[\begin{array}{r}
-10+2 i \\
-5+i \\
-5+i \\
-5+i
\end{array}\right], \quad\left[\begin{array}{r}
2+6 i \\
4+12 i \\
2+6 i \\
2+6 i
\end{array}\right], \quad\left[\begin{array}{r}
7-3 i \\
7-3 i \\
0 \\
7-3 i
\end{array}\right], \quad\left[\begin{array}{r}
-4-8 i \\
-4-8 i \\
-4-8 i \\
0
\end{array}\right]
$$

Verify that the solutions are $z=\lambda^{-1} \boldsymbol{b}$ for scalars λ. The numbers λ are called eigenvalues, and the solutions \boldsymbol{z} are eigenvectors of \boldsymbol{A}. Usually, the \boldsymbol{b} vector is not known, and the solution of the problem $A z=\lambda z$ cannot be obtained by using a linear equation solver.
7. (Continuation) A common electrical engineering problem is to calculate currents in an electric circuit. For example, the circuit shown in the figure with R_{i} (ohms), C_{i} (microfarads), L (millihenries), and ω (hertz) leads to the system

$$
\left\{\begin{array}{rrr}
(50-10 i) I_{1} & +(50) I_{2}+(50) I_{3} & =V_{1} \\
(10 i) I_{1}+ & (10-10 i) I_{2}+(10-20 i) I_{3} & =0 \\
- & (30 i) I_{2}+(20-50 i) I_{3} & =
\end{array}-V_{2} .\right.
$$

Select V_{1} to be 100 millivolts, and solve two cases:
${ }^{a}$ a. The two voltages are in phase; that is, $V_{2}=V_{1}$.
${ }^{a} \mathbf{b}$. The second voltage is a quarter of a cycle ahead of the first; that is, $V_{2}=i V_{1}$.
Use the complex arithmetic version of Naive_Gauss, and in each case, solve the system for the amplitude (in milliamperes) and the phase (in degrees) for each current I_{k}. Hint: When $I_{k}=\operatorname{Re}\left(I_{k}\right)+i \operatorname{Im}\left(I_{k}\right)$, the amplitude is $\left|I_{k}\right|$, and the phase is $\left(180^{\circ} / \pi\right) \arctan \left[\operatorname{Im}\left(I_{k}\right) / \operatorname{Re}\left(I_{k}\right)\right]$. Draw a diagram to show why this is so.

8. Select a reasonable value of n, and generate a random $n \times n$ array a using a randomnumber generator. Define the array b such that the solution of the system

$$
\sum_{j=1}^{n} a_{i j} x_{j}=b_{i} \quad(1 \leqq i \leqq n)
$$

is $x_{j}=j$, where $1 \leqq j \leqq n$. Test the naive Gaussian algorithm on this system. Hint: You may use the function Random, which is discussed in Chapter 13, to generate the random elements of the $\left(a_{i j}\right)$ array.
9. Carry out the test described in the text for procedure Naive_Gauss but reverse the order of the equations. Hint: It suffices, in the code, to replace i by $n-i+1$ in appropriate places.
10. Solve the linear system given in the leadoff example to this chapter using Naive_Gauss.
11. Use mathematical software such as built-in routines in Matlab, Maple, or Mathematica to directly solve linear system (2).

7.2 Gaussian Elimination with Scaled Partial Pivoting Naive Gaussian Elimination Can Fail

To see why the naive Gaussian elimination algorithm is unsatisfactory, consider the following system:

$$
\left\{\begin{align*}
0 x_{1}+x_{2} & =1 \tag{1}\\
x_{1}+x_{2} & =2
\end{align*}\right.
$$

The pseudocode that we constructed in Section 7.1 would attempt to subtract some multiple of the first equation from the second to produce 0 as the coefficient for x_{1} in the second equation. This, of course, is impossible, so the algorithm fails if $a_{11}=0$.

If a numerical procedure actually fails for some values of the data, then the procedure is probably untrustworthy for values of the data near the failing values. To test this dictum, consider the system

$$
\left\{\begin{align*}
\varepsilon x_{1} & +x_{2} \tag{2}\\
x_{1}+x_{2} & =2
\end{align*}\right.
$$

in which ε is a small number different from 0 . Now the naive algorithm of Section 7.1 works, and after forward elimination it produces the system

$$
\left\{\begin{align*}
& \varepsilon x_{1}+\begin{array}{l}
x_{2}
\end{array}=1 \tag{3}\\
&\left(1-\varepsilon^{-1}\right) x_{2}=2-\varepsilon^{-1}
\end{align*}\right.
$$

In the back substitution, the arithmetic is as follows:

$$
x_{2}=\frac{2-\varepsilon^{-1}}{1-\varepsilon^{-1}} \approx 1, \quad x_{1}=\varepsilon^{-1}\left(1-x_{2}\right) \approx 0
$$

Now ε^{-1} will be large, so if this calculation is performed by a computer that has a fixed word length, then for small values of ε, both $\left(2-\varepsilon^{-1}\right)$ and $\left(1-\varepsilon^{-1}\right)$ would be computed as $-\varepsilon^{-1}$.

For example, in an 8 -digit decimal machine with a 16 -digit accumulator, when $\varepsilon=$ 10^{-9}, it follows that $\varepsilon^{-1}=10^{9}$. To subtract, the computer must interpret the numbers as

$$
\begin{aligned}
\varepsilon^{-1}=10^{9} & =0.10000000 \times 10^{10}=0.1000000000000000 \times 10^{10} \\
2 & =0.20000000 \times 10^{1}=0.0000000002000000 \times 10^{10}
\end{aligned}
$$

Thus, $\left(\varepsilon^{-1}-2\right)$ is initially computed as $0.0999999998000000 \times 10^{10}$ and then rounded to $0.10000000 \times 10^{10}=\varepsilon^{-1}$.

We conclude that for values of ε sufficiently close to 0 , the computer calculates x_{2} as 1 and then x_{1} as 0 . Since the correct solution is

$$
x_{1}=\frac{1}{1-\varepsilon} \approx 1, \quad x_{2}=\frac{1-2 \varepsilon}{1-\varepsilon} \approx 1
$$

the relative error in the computed solution for x_{1} is extremely large: 100%.

Actually, the naive Gaussian elimination algorithm works well on Systems (1) and (2) if the equations are first permuted:

$$
\left\{\begin{array}{r}
x_{1}+x_{2}=2 \\
0 x_{1}+x_{2}=1
\end{array}\right.
$$

and

$$
\left\{\begin{array}{r}
x_{1}+x_{2}=2 \\
\varepsilon x_{1}+x_{2}=1
\end{array}\right.
$$

The first system is easily solved obtaining $x_{2}=1$ and $x_{1}=2-x_{2}=1$. Moreover, the second of these systems becomes
after the forward elimination. Then from the back substitution, the solution is computed as

$$
x_{2}=\frac{1-2 \varepsilon}{1-\varepsilon} \approx 1, \quad x_{1}=2-x_{2} \approx 1
$$

Notice that we do not have to rearrange the equations in the system: it is necessary only to select a different pivot row. The difficulty in System (2) is not due simply to ε being small but rather to its being small relative to other coefficients in the same row. To verify this, consider

$$
\left\{\begin{align*}
x_{1}+\varepsilon^{-1} x_{2} & =\varepsilon^{-1} \tag{4}\\
x_{1}+x_{2} & =2
\end{align*}\right.
$$

System (4) is mathematically equivalent to (2). The naive Gaussian elimination algorithm fails here. It produces the triangular system

$$
\left\{\begin{aligned}
x_{1}+\varepsilon^{-1} x_{2} & =\varepsilon^{-1} \\
\left(1-\varepsilon^{-1}\right) x_{2} & =2-\varepsilon^{-1}
\end{aligned}\right.
$$

and then, in the back substitution, it produces the erroneous result

$$
x_{2}=\frac{2-\varepsilon^{-1}}{1-\varepsilon^{-1}} \approx 1, \quad x_{1}=\varepsilon^{-1}-\varepsilon^{-1} x_{2} \approx 0
$$

This situation can be resolved by interchanging the two equations in (4):

$$
\left\{\begin{array}{l}
x_{1}+x_{2}=2 \\
x_{1}+\varepsilon^{-1} x_{2}=\varepsilon^{-1}
\end{array}\right.
$$

Now the naive Gaussian elimination algorithm can be applied, resulting in the system

$$
\left\{\begin{aligned}
x_{1}+x_{2} & =2 \\
\left(\varepsilon^{-1}-1\right) x_{2} & =\varepsilon^{-1}-2
\end{aligned}\right.
$$

The solution is

$$
x_{2}=\frac{\varepsilon^{-1}-2}{\varepsilon^{-1}-1} \approx 1, \quad x_{1}=2-x_{2} \approx 1
$$

which is the correct solution.

Partial Pivoting and Complete Partial Pivoting

Gaussian elimination with partial pivoting selects the pivot row to be the one with the maximum pivot entry in absolute value from those in the leading column of the reduced submatrix. Two rows are interchanged to move the designated row into the pivot row position. Gaussian elimination with complete pivoting selects the pivot entry as the maximum pivot entry from all entries in the submatrix. (This complicates things because some of the unknowns are rearranged.) Two rows and two columns are interchanged to accomplish this. In practice, partial pivoting is almost as good as full pivoting and involves significantly less work. See Wilkinson [1963] for more details on this matter. Simply picking the largest number in magnitude as is done in partial pivoting may work well, but here row scaling does not play a role-the relative sizes of entries in a row are not considered. Systems with equations having coefficients of disparate sizes may cause difficulties and should be viewed with suspicion. Sometimes a scaling strategy may ameliorate these problems. In this book, we present Gaussian elimination with scaled partial pivoting, and the pseudocode contains an implicit pivoting scheme.

In certain situations, Gaussian elimination with the simple partial pivoting strategy may lead to an incorrect solution. Consider the augmented matrix

$$
\left[\begin{array}{rr|r}
2 & 2 c & 2 c \\
1 & 1 & 2
\end{array}\right]
$$

where c is a parameter that can take on very large numerical values and the variables are x and y. The first row is selected as the pivot row by choosing the larger number in the first column. Since the multiplier is $1 / 2$, one step in the row reduction process brings us to

$$
\left[\begin{array}{rr|r}
2 & 2 c & 2 c \\
0 & 1-c & 2-c
\end{array}\right]
$$

Now suppose that we are working with a computer of limited word length. So in this computer, we obtain $1-c \approx-c$ and $2-c \approx-c$. Consequently, the computer contains these numbers:

$$
\left[\begin{array}{cc|c}
2 & 2 c & 2 c \\
0 & -c & -c
\end{array}\right]
$$

Thus, as the solution, we obtain $y=1$ and $x=0$, whereas the correct solution is $x=y=1$.
On the other hand, Gaussian elimination with scaled partial pivoting selects the second row as the pivot row. The scaling constants are $(2 c, 1)$, and the larger of the two ratios for selecting the pivot row from $\{2 /(2 c), 1\}$ is the second one. Now the multiplier is 2 , and one step in the row reduction process brings us to

$$
\left[\begin{array}{rr|r}
0 & 2 c-2 & 2 c-4 \\
1 & 1 & 2
\end{array}\right]
$$

On our computer of limited word length, we find $2 c-2 \approx 2 c$ and $2 c-4 \approx 2 c$. Consequently, the computer contains these numbers:

$$
\left[\begin{array}{rr|r}
0 & 2 c & 2 c \\
1 & 1 & 2
\end{array}\right]
$$

Now we obtain the correct solution, $y=1$ and $x=1$.

Gaussian Elimination with Scaled Partial Pivoting

These simple examples should make it clear that the order in which we treat the equations significantly affects the accuracy of the elimination algorithm in the computer. In the naive Gaussian elimination algorithm, we use the first equation to eliminate x_{1} from the equations that follow it. Then we use the second equation to eliminate x_{2} from the equations that follow it, and so on. The order in which the equations are used as pivot equations is the natural order $\{1,2, \ldots, n\}$. Note that the last equation (equation number n) is not used as an operating equation in the natural ordering: At no time are multiples of it subtracted from other equations in the naive algorithm.

From the previous examples, it is clear that a strategy is needed for selecting new pivots at each stage in Gaussian elimination. Perhaps the best approach is complete pivoting, which involves searches over all entries in the submatrices for the largest entry in absolute value and then interchanges rows and columns to move it into the pivot position. This would be quite expensive, since it involves a great amount of searching and data movement. However, searching just the first column in the submatrix at each stage accomplishes most of what is needed (avoiding small or zero pivots). This is partial pivoting, and it is the most common approach. It does not involve an examination of the elements in the rows, since it looks only at column entries. We advocate a strategy that simulates a scaling of the row vectors and then selects as a pivot element the relatively largest entry in a column. Also, rather than interchanging rows to move the desired element into the pivot position, we use an indexing array to avoid the data movement. This procedure is not as expensive as complete pivoting, and it goes beyond partial pivoting to include an examination of all elements in the original matrix. Of course, other strategies for selecting pivot elements could be used.

The Gaussian elimination algorithm now to be described uses the equations in an order that is determined by the actual system being solved. For instance, if the algorithm were asked to solve System (1) or (2), the order in which the equations would be used as pivot equations would not be the natural order $\{1,2\}$ but rather $\{2,1\}$. This order is automatically determined by the computer program. The order in which the equations are employed is denoted by the row vector $\left[\ell_{1}, \ell_{2}, \ldots, \ell_{n}\right]$, where ℓ_{n} is not actually being used in the forward elimination phase. Here, the ℓ_{i} are integers from 1 to n in a possibly different order. We call $\ell=\left[\ell_{1}, \ell_{2}, \ldots, \ell_{n}\right]$ the index vector. The strategy to be described now for determining the index vector is termed scaled partial pivoting.

At the beginning, a scale factor must be computed for each equation in the system. Referring to the notation in Section 7.1, we define

$$
s_{i}=\max _{1 \leqq j \leqq n}\left|a_{i j}\right| \quad(1 \leqq i \leqq n)
$$

These n numbers are recorded in the scale vector $s=\left[s_{1}, s_{2}, \ldots, s_{n}\right]$.
In starting the forward elimination process, we do not arbitrarily use the first equation as the pivot equation. Instead, we use the equation for which the ratio $\left|a_{i, 1}\right| / s_{i}$ is greatest. Let ℓ_{1} be the first index for which this ratio is greatest. Now appropriate multiples of equation ℓ_{1} are subtracted from the other equations to create 0 's as coefficients for each x_{1} except in the pivot equation.

The best way of keeping track of the indices is as follows: At the beginning, define the index vector ℓ to be $\left[\ell_{1}, \ell_{2}, \ldots, \ell_{n}\right]=[1,2, \ldots, n]$. Select j to be the first index associated
with the largest ratio in the set:

$$
\left\{\frac{\left|a_{\ell_{i}}\right|}{s_{\ell_{i}}}: 1 \leqq i \leqq n\right\}
$$

Now interchange ℓ_{j} with ℓ_{1} in the index vector ℓ. Next, use multipliers

$$
\frac{a_{\ell_{i} 1}}{a_{\ell_{1} 1}}
$$

times row ℓ_{1}, and subtract from equations ℓ_{i} for $2 \leqq i \leqq n$. It is important to note that only entries in ℓ are being interchanged and not the equations. This eliminates the time-consuming and unnecessary process of moving the coefficients of equations around in the computer memory!

In the second step, the ratios

$$
\left\{\frac{\left|a_{\ell_{i}, 2}\right|}{s_{\ell_{i}}}: 2 \leqq i \leqq n\right\}
$$

are scanned. If j is the first index for the largest ratio, interchange ℓ_{j} with ℓ_{2} in ℓ. Then multipliers

$$
\frac{a_{\ell_{i} 2}}{a_{\ell_{2} 2}}
$$

times equation ℓ_{2} are subtracted from equations ℓ_{i} for $3 \leqq i \leqq n$.
At step k, select j to be the first index corresponding to the largest of the ratios,

$$
\left\{\frac{\left|a_{\ell_{i} k}\right|}{s_{\ell_{i}}}: k \leqq i \leqq n\right\}
$$

and interchange ℓ_{j} and ℓ_{k} in index vector ℓ. Then multipliers

$$
\frac{a_{\ell_{i} k}}{a_{\ell_{k} k}}
$$

times pivot equation ℓ_{k} are subtracted from equations ℓ_{i} for $k+1 \leqq i \leqq n$.
Notice that the scale factors are not changed after each pivot step. Intuitively, one might think that after each step in the Gaussian algorithm, the remaining (modified) coefficients should be used to recompute the scale factors instead of using the original scale vector. Of course, this could be done, but it is generally believed that the extra computations involved in this procedure are not worthwhile in the majority of linear systems. The reader is encouraged to explore this question. (See Computer Problem 7.2.16.)

EXAMPLE 1 Solve this system of linear equations:

$$
\left\{\begin{array}{r}
0.0001 x+y=1 \\
x+y=2
\end{array}\right.
$$

using no pivoting, partial pivoting, and scaled partial pivoting. Carry at most five significant digits of precision (rounding) to see how finite precision computations and roundoff errors can affect the calculations.

Solution By direct substitution, it is easy to verify that the true solution is $x=1.0001$ and $y=$ 0.99990 to five significant digits.

For no pivoting, the first equation in the original system is the pivot equation, and the multiplier is x mult $=1 / 0.0001=10000$. Multiplying the first equation by this multiplier and subtracting the result from the second equation, the necessary calculations are $(10000)(0.0001)-1=0,(10000)(1)-1=9999$, and $(10000)(1)-2=9998$. The new system of equations is

$$
\left\{\begin{aligned}
0.0001 x+y & =1 \\
9999 y & =9998
\end{aligned}\right.
$$

From the second equation, we obtain $y=9998 / 9999 \approx 0.99990$. Using this result and the first equation, we find $0.0001 x=1-y=1-0.999900=0.0001$ and $x=$ $0.0001 / 0.0001=1$. Notice that we have lost the last significant digit in the correct value of x.

We repeat the solution using partial pivoting in the original system. Examining the first column of x coefficients $(0.0001,1)$, we see that the second is larger, so the second equation is used as the pivot equation. We can interchange the two equations, obtaining

$$
\left\{\begin{array}{r}
x+y=2 \\
0.0001 x+y=1
\end{array}\right.
$$

The multiplier is xmult $=0.0001 / 1=0.0001$. This multiple of the first equation is subtracted from the second equation. The calculations are $(-0.0001)(1)+0.0001=0$, $(0.0001)(1)-1=0.99990$, and $(0.0001)(2)-1=0.99980$. The new system of equations is

$$
\left\{\begin{aligned}
x+y & =2 \\
0.99990 y & =0.99980
\end{aligned}\right.
$$

We obtain $y=0.99980 / 0.99990 \approx 0.99990$. Now, using the second equation and this value, we find $x=2-y=2-0.99990=1.0001$. Both computed values of x and y are correct to five significant digits.

We repeat the solution using scaled partial pivoting on the original system. Since the scaling constants are $s=(1,1)$ and the ratios for determining the pivot equation are $(0.0001 / 1,1 / 1)$, the second equation is now the pivot equation. We do not actually interchange the equations but can work with an index array $\ell=(2,1)$ that tells us to use the second equation as the first pivot equation. The rest of the calculations are as above for partial pivoting. The computed values of x and y are correct to five significant digits.

We cannot promise that scaled partial pivoting will be better than partial pivoting, but it clearly has some advantages. For example, suppose that someone wants to force the first equation in the original system to be the pivot equation and multiply it by a large number such as 20,000 , obtaining

$$
\left\{\begin{aligned}
2 x+20000 y & =20000 \\
x+y & =2
\end{aligned}\right.
$$

Partial pivoting ignores the fact that the coefficients in the first equation differ by orders of magnitude and selects the first equation as the pivot equation. However, scaled partial pivoting uses the scaling constants (20000,1), and the ratios for determining the pivot equations are ($2 / 20000,1 / 1$). Scaled partial pivoting continues to select the second equation as the pivot equation!

A Larger Numerical Example

We are not quite ready to write pseudocode, but let us consider what has been described in a concrete example. Consider

$$
\left[\begin{array}{rrrr}
3 & -13 & 9 & 3 \tag{5}\\
-6 & 4 & 1 & -18 \\
6 & -2 & 2 & 4 \\
12 & -8 & 6 & 10
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
-19 \\
-34 \\
16 \\
26
\end{array}\right]
$$

The index vector is $\boldsymbol{\ell}=[1,2,3,4]$ at the beginning. The scale vector does not change throughout the procedure and is $s=[13,18,6,12]$. To determine the first pivot row, we look at four ratios:

$$
\left\{\frac{\left|a_{\ell_{i}, 1}\right|}{s_{\ell_{i}}}: i=1,2,3,4\right\}=\left\{\frac{3}{13}, \frac{6}{18}, \frac{6}{6}, \frac{12}{12}\right\} \approx\{0.23,0.33,1.0,1.0\}
$$

We select the index j as the first occurrence of the largest value of these ratios. In this example, the largest of these occurs for the index $j=3$. So row three is to be the pivot equation in step $1(k=1)$ of the elimination process. In the index vector ℓ, entries ℓ_{k} and ℓ_{j} are interchanged so that the new index vector is $\ell=[3,2,1,4]$. Thus, the pivot equation is ℓ_{k}, which is $\ell_{1}=3$. Now appropriate multiples of the third equation are subtracted from the other equations so as to create 0 's as coefficients for x_{1} in each of those equations. Explicitly, $\frac{1}{2}$ times row three is subtracted from row one, -1 times row three is subtracted from row two, and 2 times row three is subtracted from row four. The result is

$$
\left[\begin{array}{rrrr}
0 & -12 & 8 & 1 \\
0 & 2 & 3 & -14 \\
6 & -2 & 2 & 4 \\
0 & -4 & 2 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
-27 \\
-18 \\
16 \\
-6
\end{array}\right]
$$

In the next step $(k=2)$, we use the index vector $\ell=[3,2,1,4]$ and scan the ratios corresponding to rows two, one, and four:

$$
\left\{\frac{\left|a_{\ell_{i}, 2}\right|}{s_{\ell_{i}}}: i=2,3,4\right\}=\left\{\frac{2}{18}, \frac{12}{13}, \frac{4}{12}\right\} \approx\{0.11,0.92,0.33\}
$$

looking for the largest value. We find that the largest is the second ratio, and we therefore set $j=3$ and interchange ℓ_{k} with ℓ_{j} in the index vector. Thus, the index vector becomes $\ell=[3,1,2,4]$. The pivot equation for step 2 in the elimination is now row one, and $\ell_{2}=1$. Next, multiples of the first equation are subtracted from the second equation and the fourth equation. The appropriate multiples are $-\frac{1}{6}$ and $\frac{1}{3}$, respectively. The result is

$$
\left[\begin{array}{rrrr}
0 & -12 & 8 & 1 \\
0 & 0 & \frac{13}{3} & -\frac{83}{6} \\
6 & -2 & 2 & 4 \\
0 & 0 & -\frac{2}{3} & \frac{5}{3}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
-27 \\
-\frac{45}{2} \\
16 \\
3
\end{array}\right]
$$

The third and final step $(k=3)$ is to examine the ratios corresponding to rows two and four:

$$
\left\{\frac{\left|a_{\ell_{i}, 3}\right|}{s_{\ell_{i}}}: i=3,4\right\}=\left\{\frac{13 / 3}{18}, \frac{2 / 3}{12}\right\} \approx\{0.24,0.06\}
$$

with the index vector $\ell=[3,1,2,4]$. The larger value is the first, so we set $j=3$. Since this is step $k=3$, interchanging ℓ_{k} with ℓ_{j} leaves the index vector unchanged, $\ell=$ $[3,1,2,4]$. The pivot equation is row two and $\ell_{3}=2$, and we subtract $-\frac{2}{13}$ times the second equation from the fourth equation. So the forward elimination phase ends with the final system

$$
\left[\begin{array}{rrrr}
0 & -12 & 8 & 1 \\
0 & 0 & \frac{13}{3} & -\frac{83}{6} \\
6 & -2 & 2 & 4 \\
0 & 0 & 0 & -\frac{6}{13}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
-27 \\
-\frac{45}{2} \\
16 \\
-\frac{6}{13}
\end{array}\right]
$$

The order in which the pivot equations were selected is displayed in the final index vector $\ell=[3,1,2,4]$.

Now, reading the entries in the index vector from the last to the first, we have the order in which the back substitution is to be performed. The solution is obtained by using equation $\ell_{4}=4$ to determine x_{4}, and then equation $\ell_{3}=2$ to find x_{3}, and so on. Carrying out the calculations, we have

$$
\begin{aligned}
& x_{4}=\frac{1}{-6 / 13}[-6 / 13]=1 \\
& x_{3}=\frac{1}{13 / 3}[(-45 / 2)+(83 / 6)(1)]=-2 \\
& x_{2}=\frac{1}{-12}[-27-8(-2)-1(1)]=1 \\
& x_{1}=\frac{1}{6}[16+2(1)-2(-2)-4(1)]=3
\end{aligned}
$$

Hence, the solution is

$$
\boldsymbol{x}=\left[\begin{array}{llll}
3 & 1 & -2 & 1
\end{array}\right]^{T}
$$

Pseudocode

The algorithm as programmed carries out the forward elimination phase on the coefficient array $\left(a_{i j}\right)$ only. The right-hand side array $\left(b_{i}\right)$ is treated in the next phase. This method is adopted because it is more efficient if several systems must be solved with the same array $\left(a_{i j}\right)$ but differing arrays $\left(b_{i}\right)$. Because we wish to treat $\left(b_{i}\right)$ later, it is necessary to store not only the index array but also the various multipliers that are used. These multipliers are conveniently stored in array $\left(a_{i j}\right)$ in the positions where the 0 entries would have been created. These multipliers are useful in constructing the $\boldsymbol{L} \boldsymbol{U}$ factorization of the matrix \boldsymbol{A}, as we explain in Section 8.1.

We are now ready to write a procedure for forward elimination with scaled partial pivoting. Our approach is to modify procedure Naive_Gauss of Section 7.1 by introducing scaling and indexing arrays. The procedure that carries out Gaussian elimination with scaled partial pivoting on the square array $\left(a_{i j}\right)$ is called Gauss. Its calling sequence is ($n,\left(a_{i j}\right),\left(\ell_{i}\right)$), where $\left(a_{i j}\right)$ is the $n \times n$ coefficient array and $\left(\ell_{i}\right)$ is the index array ℓ. In the pseudocode, $\left(s_{i}\right)$ is the scale array, \boldsymbol{s}.

```
procedure Gauss \(\left(n,\left(a_{i j}\right),\left(\ell_{i}\right)\right)\)
integer \(i, j, k, n\); real \(r\), rmax, smax, xmult
real array \(\left(a_{i j}\right)_{1: n \times 1: n},\left(\ell_{i}\right)_{1: n} ; \quad\) real array allocate \(\left(s_{i}\right)_{1: n}\)
for \(i=1\) to \(n\) do
    \(\ell_{i} \leftarrow i\)
    smax \(\leftarrow 0\)
    for \(j=1\) to \(n\) do
        \(\operatorname{smax} \leftarrow \max \left(\operatorname{smax},\left|a_{i j}\right|\right)\)
    end for
    \(s_{i} \leftarrow \operatorname{smax}\)
end for
for \(k=1\) to \(n-1\) do
    rmax \(\leftarrow 0\)
    for \(i=k\) to \(n\) do
        \(r \leftarrow\left|a_{\ell_{i}, k} / s_{\ell_{i}}\right|\)
        if \((r>r\) max \()\) then
            \(r \max \leftarrow r\)
            \(j \leftarrow i\)
        end if
    end for
    \(\ell_{j} \leftrightarrow \ell_{k}\)
    for \(i=k+1\) to \(n\) do
        xmult \(\leftarrow a_{\ell_{i}, k} / a_{\ell_{k}, k}\)
        \(a_{\ell_{i}, k} \leftarrow\) xmult
        for \(j=k+1\) to \(n\) do
            \(a_{\ell_{i}, j} \leftarrow a_{\ell_{i}, j}-(x\) mult \() a_{\ell_{k}, j}\)
        end for
    end for
end for
deallocate array \(\left(s_{i}\right)\)
end procedure Gauss
```

A detailed explanation of the above procedure is now presented. In the first loop, the initial form of the index array is being established, namely, $\ell_{i}=i$. Then the scale array $\left(s_{i}\right)$ is computed.

The statement for $k=1$ to $n-1$ do initiates the principal outer loop. The index k is the subscript of the variable whose coefficients will be made 0 in the array $\left(a_{i j}\right)$; that is, k is the index of the column in which new 0's are to be created. Remember that the 0 's in the array $\left(a_{i j}\right)$ do not actually appear because those storage locations are used for the multipliers. This fact can be seen in the line of the procedure where xmult is stored in the array $\left(a_{i j}\right)$. (See Section 8.1 on the $\boldsymbol{L} \boldsymbol{U}$ factorization of \boldsymbol{A} for why this is done.)

Once k has been set, the first task is to select the correct pivot row, which is done by computing $\left|a_{\ell_{i}}\right| / / s_{\ell_{i}}$ for $i=k, k+1, \ldots, n$. The next set of lines in the pseudocode is calculating this greatest ratio, called rmax in the routine, and the index j where it occurs. Next, ℓ_{k} and ℓ_{j} are interchanged in the array $\left(\ell_{i}\right)$.

The arithmetic modifications in the array $\left(a_{i j}\right)$ due to subtracting multiples of row ℓ_{k} from rows $\ell_{k+1}, \ell_{k+2}, \ldots, \ell_{n}$ all occur in the final lines. First the multiplier is computed and stored; then the subtraction occurs in a loop.

Caution: Values in array $\left(a_{i j}\right)$ that result as output from procedure Gauss are not the same as those in array $\left(a_{i j}\right)$ at input. If the original array must be retained, one should store a duplicate of it in another array.

In the procedure Naive_Gauss for naive Gaussian elimination from Section 7.1, the right-hand side \boldsymbol{b} was modified during the forward elimination phase; however, this was not done in the procedure Gauss. Therefore, we need to update \boldsymbol{b} before considering the back substitution phase. For simplicity, we discuss updating \boldsymbol{b} for the naive forward elimination first. Stripping out the pseudocode from Naive_Gauss that involves the $\left(b_{i}\right)$ array in the forward elimination phase, we obtain

```
for }k=1\mathrm{ to }n-1\mathrm{ do
    for }i=k+1\mathrm{ to }n\mathrm{ do
        b}=\mp@subsup{b}{i}{}-\mp@subsup{a}{ik}{}\mp@subsup{b}{k}{
    end for
end for
```

This updates the $\left(b_{i}\right)$ array based on the stored multipliers from the $\left(a_{i j}\right)$ array. When scaled partial pivoting is done in the forward elimination phase, such as in procedure Gauss, the multipliers for each step are not one below another in the $\left(a_{i j}\right)$ array but are jumbled around. To unravel this situation, all we have to do is introduce the index array $\left(\ell_{i}\right)$ into the above pseudocode:

```
for }k=1\mathrm{ to }n-1\mathrm{ do
    for }i=k+1\mathrm{ to }n\mathrm{ do
        b}\mp@subsup{\ell}{\mp@subsup{\ell}{i}{}}{}=\mp@subsup{b}{\mp@subsup{\ell}{i}{}}{}-\mp@subsup{a}{\mp@subsup{\ell}{i}{}}{}\mp@subsup{b}{\mp@subsup{\ell}{k}{}}{
    end for
end for
```

After the array b has been processed in the forward elimination, the back substitution process is carried out. It begins by solving the equation

$$
\begin{equation*}
a_{\ell_{n}, n} x_{n}=b_{\ell_{n}} \tag{6}
\end{equation*}
$$

whence

$$
x_{n}=\frac{b_{\ell_{n}}}{a_{\ell_{n}, n}}
$$

Then the equation

$$
a_{\ell_{n-1}, n-1} x_{n-1}+a_{\ell_{n-1}, n} x_{n}=b_{\ell_{n-1}}
$$

is solved for x_{n-1} :

$$
x_{n-1}=\frac{1}{a_{\ell_{n-1}, n-1}}\left(b_{\ell_{n-1}}-a_{\ell_{n-1}, n} x_{n}\right)
$$

After $x_{n}, x_{n-1}, \ldots, x_{i+1}$ have been determined, x_{i} is found from the equation

$$
a_{\ell_{i}, n} x_{i}+a_{\ell_{i}, i+1} x_{i+1}+\cdots+a_{\ell_{i}, n} x_{n}=b_{\ell_{i}}
$$

whose solution is

$$
\begin{equation*}
x_{i}=\frac{1}{a_{\ell_{i}, i}}\left(b_{\ell_{i}}-\sum_{j=i+1}^{n} a_{\ell_{i}, j} x_{j}\right) \tag{7}
\end{equation*}
$$

Except for the presence of the index array ℓ_{i}, this is similar to the back substitution formula (7) in Section 7.1 obtained for naive Gaussian elimination.

The procedure for processing the array b and performing the back substitution phase is given next:

```
procedure Solve(n, (aij),(\elli),(bi),(xi))
integer i,k,n; real sum
real array (a}\mp@subsup{a}{ij}{}\mp@subsup{)}{1:n\times1:n}{},(\mp@subsup{\ell}{i}{}\mp@subsup{)}{1:n}{},(\mp@subsup{b}{i}{}\mp@subsup{)}{1:n}{},(\mp@subsup{x}{i}{}\mp@subsup{)}{1:n}{
for }k=1\mathrm{ to }n-1\mathrm{ do
    for }i=k+1\mathrm{ to }n\mathrm{ do
        b}\mp@subsup{\ell}{i}{}\leftarrow\mp@subsup{b}{\mp@subsup{\ell}{i}{}}{}-\mp@subsup{a}{\mp@subsup{\ell}{i}{},k}{,k
    end for
end for
x
for }i=n-1 to 1 step -1 do
    sum}\leftarrow\mp@subsup{b}{\mp@subsup{\ell}{i}{}}{
    for }j=i+1 to n do
        sum}\leftarrow\operatorname{sum}-\mp@subsup{a}{\mp@subsup{\ell}{i}{},j}{}\mp@subsup{x}{j}{
    end for
    x
end for
end procedure Solve
```

Here, the first loop carries out the forward elimination process on array $\left(b_{i}\right)$, using arrays $\left(a_{i j}\right)$ and $\left(\ell_{i}\right)$ that result from procedure Gauss. The next line carries out the solution of Equation (6). The final part carries out Equation (7). The variable sum is a temporary variable for accumulating the terms in parentheses.

As with most pseudocode in this book, those in this chapter contain only the basic ingredients for good mathematical software. They are not suitable as production code for various reasons. For example, procedures for optimizing code are ignored. Furthermore, the procedures do not give warnings for difficulties that may be encountered, such as division by zero! General-purpose software should be robust; that is, it should anticipate every possible situation and deal with each in a prescribed way. (See Computer Problem 7.2.11.)

Long Operation Count

Solving large systems of linear equations can be expensive in computer time. To understand why, let us perform an operation count on the two algorithms whose codes have been given. We count only multiplications and divisions (long operations) because they are more time
consuming than addition. Furthermore, we lump multiplications and divisions together even though division is slower than multiplication. In modern computers, all floating-point operations are done in hardware, so long operations may not be as significant, but this still gives an indication of the operational cost of Gaussian elimination.

Consider first procedure Gauss. In step 1, the choice of a pivot element requires the calculation of n ratios-that is, n divisions. Then for rows $\ell_{2}, \ell_{3}, \ldots, \ell_{n}$, we first compute a multiplier and then subtract from row ℓ_{i} that multiplier times row ℓ_{1}. The zero that is being created in this process is not computed. So the elimination requires $n-1$ multiplications per row. If we include the calculation of the multiplier, there are n long operations (divisions or multiplications) per row. There are $n-1$ rows to be processed for a total of $n(n-1)$ operations. If we add the cost of computing the ratios, a total of n^{2} operations is needed for step 1.

The next step is like step 1 except that row ℓ_{1} is not affected, nor is the column of multipliers created and stored in step 1 . So step 2 will require $(n-1)^{2}$ multiplications or divisions because it operates on a system without row ℓ_{1} and without column 1 . Continuing this reasoning, we conclude that the total number of long operations for procedure Gauss is

$$
n^{2}+(n-1)^{2}+(n-2)^{2}+\cdots+4^{2}+3^{2}+2^{2}=\frac{n}{6}(n+1)(2 n+1)-1 \approx \frac{n^{3}}{3}
$$

(The derivation of this formula is outlined in Problem 7.2.16.) Note that the number of long operations in this procedure grows like $n^{3} / 3$, the dominant term.

Now consider procedure Solve. The forward processing of the array $\left(b_{i}\right)$ involves $n-1$ steps. The first step contains $n-1$ multiplications, the second contains $n-2$ multiplications, and so on. The total of the forward processing of array $\left(b_{i}\right)$ is thus

$$
(n-1)+(n-2)+\cdots+3+2+1=\frac{n}{2}(n-1)
$$

(See Problem 7.2.15.) In the back substitution procedure, one long operation is involved in the first step, two in the second step, and so on. The total is

$$
1+2+3+\cdots+n=\frac{n}{2}(n+1)
$$

Thus, procedure Solve involves altogether n^{2} long operations. To summarize:

THEOREM ON LONG OPERATIONS
The forward elimination phase of the Gaussian elimination algorithm with scaled partial pivoting, if applied only to the $n \times n$ coefficient array, involves approximately $n^{3} / 3$ long operations (multiplications or divisions). Solving for x requires an additional n^{2} long operations.

An intuitive way to think of this result is that the Gaussian elimination algorithm involves a triply nested for-loop. So an $\mathcal{O}\left(n^{3}\right)$ algorithmic structure is driving the elimination process, and the work is heavily influenced by the cube of the number of equations and unknowns.

Numerical Stability

The numerical stability of a numerical algorithm is related to the accuracy of the procedure. An algorithm can have different levels of numerical stability because many computations can be achieved in various ways that are algebraically equivalent but may produce different results. A robust numerical algorithm with a high level of numerical stability is desirable. Gaussian elimination is numerically stable for strictly diagonally dominant matrices or symmetric positive definite matrices. (These are properties we will present in Sections 7.3 and 8.1, respectively.) For matrices with a general dense structure, Gaussian elimination with partial pivoting is usually numerically stable in practice. Nevertheless, there exist unstable pathological examples in which it may fail. For additional details, see Golub and Van Loan [1996] and Highman [1996].

An early version of Gaussian elimination can be found in a Chinese mathematics text dating from 150 B.C.

Scaling

Readers should not confuse scaling in Gaussian elimination (which is not recommended) with our discussion of scaled partial pivoting in Gaussian elimination.

The word scaling has more than one meaning. It could mean actually dividing each row by its maximum element in absolute value. We certainly do not advocate that. In other words, we do not recommend scaling of the matrix at all. However, we do compute a scale array and use it in selecting the pivot element in Gaussian elimination with scaled partial pivoting. We do not actually scale the rows; we just keep a vector of the "row infinity norms," that is, the maximum element in absolute value for each row. This and the need for a vector of indices to keep track of the pivot rows make the algorithm somewhat complicated, but that is the price to be paid for some degree of robustness in the procedure.

The simple 2×2 example in Equation (4) shows that scaling does not help in choosing a good pivot row. In this example, scaling is of no use. Scaling of the rows is contemplated in Problem 7.2.23 and Computer Problem 7.2.17. Notice that this procedure requires at least n^{2} arithmetic operations. Again, we are not recommending it for a general-purpose code.

Some codes actually move the rows around in storage. Because that should not be done in practice, we do not do it in the code, since it might be misleading. Also, to avoid misleading the casual reader, we called our initial algorithm (in the preceding section) naive, hoping that nobody would mistake it for a reliable code.

Summary

(1) In performing Gaussian elimination, partial pivoting is highly recommended to avoid zero pivots and small pivots. In Gaussian elimination with scaled partial pivoting, we use a scale vector $s=\left[s_{1}, s_{2}, \ldots, s_{n}\right]^{T}$ in which

$$
s_{i}=\max _{1 \leqq j \leqq n}\left|a_{i j}\right| \quad(1 \leqq i \leqq n)
$$

and an index vector $\ell=\left[\ell_{1}, \ell_{2}, \ldots, \ell_{n}\right]^{T}$, initially set as $\ell=[1,2, \ldots, n]^{T}$. The scale vector or array is set once at the beginning of the algorithm. The elements in the index vector or array are interchanged rather than the rows of the matrix \boldsymbol{A}, which reduces the
amount of data movement considerably. The key step in the pivoting procedure is to select j to be the first index associated with the largest ratio in the set

$$
\left\{\frac{\left|a_{\ell_{i}, k}\right|}{s_{\ell_{i}}}: k \leqq i \leqq n\right\}
$$

and interchange ℓ_{j} with ℓ_{k} in the index array ℓ. Then use multipliers

$$
\frac{a_{\ell_{i}, k}}{a_{\ell_{k}, k}}
$$

times row ℓ_{k} and subtract from equations ℓ_{i} for $k+1 \leqq i \leqq n$. The forward elimination from equation ℓ_{i} for $\ell_{k+1} \leqq \ell_{i} \leqq \ell_{n}$ is

$$
\left\{\begin{array}{l}
a_{\ell_{i}, j} \leftarrow a_{\ell_{i}, j}-\left(a_{\ell_{i}, k} / a_{k k}\right) a_{k j} \quad\left(\ell_{k} \leqq \ell_{j} \leqq \ell_{n}\right) \\
b_{\ell_{i}} \leftarrow b_{\ell_{i}}-\left(a_{\ell_{i}, k} / a_{\ell_{k} k}\right) b_{\ell_{k}}
\end{array}\right.
$$

The steps involving the vector \boldsymbol{b} are usually done separately just before the back substitution phase, which we call updating the right-hand side. The back substitution is

$$
x_{i}=\frac{1}{a_{\ell_{i}, i}}\left(b_{\ell_{i}}-\sum_{j=i+1}^{n} a_{\ell_{i}, j} x_{j}\right) \quad(i=n, n-1, n-2, \ldots, 1)
$$

(2) For an $n \times n$ system of linear equations $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, the forward elimination phase of the Gaussian elimination with scaled partial pivoting involves approximately $n^{3} / 3$ long operations (multiplications or divisions), whereas the back substitution requires only n^{2} long operations.

Problems 7.2

${ }^{a}$ 1. Show how Gaussian elimination with scaled partial pivoting works on the following matrix \boldsymbol{A} :

$$
\left[\begin{array}{rrrr}
2 & 3 & -4 & 1 \\
1 & -1 & 0 & -2 \\
3 & 3 & 4 & 3 \\
4 & 1 & 0 & 4
\end{array}\right]
$$

${ }^{a}$ 2. Solve the following system using Gaussian elimination with scaled partial pivoting:

$$
\left[\begin{array}{rrr}
1 & -1 & 2 \\
-2 & 1 & -1 \\
4 & -1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
-2 \\
2 \\
-1
\end{array}\right]
$$

Show intermediate matrices at each step.
${ }^{a}$ 3. Carry out Gaussian elimination with scaled partial pivoting on the matrix

$$
\left[\begin{array}{rrrr}
1 & 0 & 3 & 0 \\
0 & 1 & 3 & -1 \\
3 & -3 & 0 & 6 \\
0 & 2 & 4 & -6
\end{array}\right]
$$

Show intermediate matrices.
4. Consider the matrix

$$
\left[\begin{array}{rrrr}
-0.0013 & 56.4972 & 123.4567 & 987.6543 \\
0.0000 & -0.0145 & 8.8990 & 833.3333 \\
0.0000 & 102.7513 & -7.6543 & 69.6869 \\
0.0000 & -1.3131 & -9876.5432 & 100.0001
\end{array}\right]
$$

Identify the entry that will be used as the next pivot element of naive Gaussian elimination, of Gaussian elimination with partial pivoting (the scale vector is [1, 1, 1, 1]), and of Gaussian elimination with scaled partial pivoting (the scale vector is [987.6543, 46.79, 256.29, 1.096]).
${ }^{a}$ 5. Without using the computer, determine the final contents of the array $\left(a_{i j}\right)$ after procedure Gauss has processed the following array. Indicate the multipliers by underlining them.

$$
\left[\begin{array}{llll}
1 & 3 & 2 & 1 \\
4 & 2 & 1 & 2 \\
2 & 1 & 2 & 3 \\
1 & 2 & 4 & 1
\end{array}\right]
$$

${ }^{a} \mathbf{6}$. If the Gaussian elimination algorithm with scaled partial pivoting is used on the matrix shown, what is the scale vector? What is the second pivot row?

$$
\left[\begin{array}{rrr}
4 & 7 & 3 \\
1 & 3 & 2 \\
2 & -4 & -1
\end{array}\right]
$$

7. If the Gaussian elimination algorithm with scaled partial pivoting is used on the example shown, which row will be selected as the third pivot row?

$$
\left[\begin{array}{rrrrr}
8 & -1 & 4 & 9 & 2 \\
1 & 0 & 3 & 9 & 7 \\
-5 & 0 & 1 & 3 & 5 \\
4 & 3 & 2 & 2 & 7 \\
3 & 0 & 0 & 0 & 9
\end{array}\right]
$$

${ }^{a}$ 8. Solve the system

$$
\left\{\begin{aligned}
2 x_{1}+4 x_{2}-2 x_{3} & =6 \\
x_{1}+3 x_{2}+4 x_{3} & =-1 \\
5 x_{1}+2 x_{2} & =2
\end{aligned}\right.
$$

using Gaussian elimination with scaled partial pivoting. Show intermediate results at each step; in particular, display the scale and index vectors.
9. Consider the linear system

$$
\left\{\begin{aligned}
2 x_{1}+3 x_{2} & =8 \\
-x_{1}+2 x_{2}-x_{3} & =0 \\
3 x_{1}+2 x_{3} & =9
\end{aligned}\right.
$$

Solve for x_{1}, x_{2}, and x_{3} using Gaussian elimination with scaled partial pivoting. Show intermediate matrices and vectors.
${ }^{a}$ 10. Consider the linear system of equations

$$
\left\{\begin{aligned}
-x_{1}+x_{2}-3 x_{4} & =4 \\
x_{1}+3 x_{3}+x_{4} & =0 \\
x_{2}-x_{3}-x_{4} & =3 \\
3 x_{1}+x_{3}+2 x_{4} & =1
\end{aligned}\right.
$$

Solve this system using Gaussian elimination with scaled partial pivoting. Show all intermediate steps, and write down the index vector at each step.
11. Consider Gaussian elimination with scaled partial pivoting applied to the coefficient matrix

$$
\left[\begin{array}{lllll}
\# & \# & \# & \# & 0 \\
\# & \# & \# & 0 & \# \\
0 & \# & \# & \# & 0 \\
0 & \# & 0 & \# & 0 \\
\# & 0 & 0 & \# & \#
\end{array}\right]
$$

where each \# denotes a different nonzero element. Circle the locations of elements in which multipliers will be stored and mark with an f those where fill-in will occur. The final index vector is $\boldsymbol{\ell}=[2,3,1,5,4]$.
12. Repeat Problem 7.1.6a using Gaussian elimination with scaled partial pivoting.
13. Solve each of the following systems using Gaussian elimination with scaled partial pivoting. Carry four significant figures. What are the contents of the index array at each step?
a. $\left\{\begin{aligned} 3 x_{1}+4 x_{2}+3 x_{3} & =10 \\ x_{1}+5 x_{2}-x_{3} & =7 \\ 6 x_{1}+3 x_{3}+7 x_{3} & =15\end{aligned}\right.$
${ }^{\text {a }}$ b. $\left\{\begin{array}{r}3 x_{1}+2 x_{2}-5 x_{3}=0 \\ 2 x_{1}-3 x_{2}+x_{3}=0 \\ x_{1}+4 x_{2}-x_{3}=4\end{array}\right.$
c. $\left[\begin{array}{rrrr}1 & -1 & 2 & 1 \\ 3 & 2 & 1 & 4 \\ 5 & 8 & 6 & 3 \\ 4 & 2 & 5 & 3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{r}1 \\ 1 \\ 1 \\ -1\end{array}\right]$
d. $\left\{\begin{aligned} 3 x_{1}+2 x_{2}-x_{3}= & 7 \\ 5 x_{1}+3 x_{2}+2 x_{3}= & 4 \\ -x_{1}+x_{2}-3 x_{3}= & -1\end{aligned}\right.$
e. $\left\{\begin{aligned} x_{1}+3 x_{2}+2 x_{3}+x_{4}= & -2 \\ 4 x_{1}+2 x_{2}+x_{3}+2 x_{4}= & 2 \\ 2 x_{1}+x_{2}+2 x_{3}+3 x_{4}= & 1 \\ x_{1}+2 x_{2}+4 x_{3}+x_{4}= & -1\end{aligned}\right.$
14. Using scaled partial pivoting, show how the computer would solve the following system of equations. Show the scale array, tell how the pivot rows are selected, and carry out the computations. Include the index array for each step. There are no fractions in the correct solution, except for certain ratios that must be looked at to select pivots. You should follow exactly the scaled-partial-pivoting code, except that you can include the right-hand side of the system in your calculations as you go along.

$$
\left\{\begin{array}{l}
2 x_{1}-x_{2}+3 x_{3}+7 x_{4}=15 \\
4 x_{1}+4 x_{2}+7 x_{4}=11 \\
2 x_{1}+x_{2}+x_{3}+3 x_{4}=7 \\
6 x_{1}+5 x_{2}+4 x_{3}+17 x_{4}=31
\end{array}\right.
$$

15. Derive the formula

$$
\sum_{k=1}^{n} k=\frac{n}{2}(n+1)
$$

Hint: Set $S=\sum_{k=1}^{n} k$; also observe that

$$
\begin{aligned}
2 S & =(1+2+\cdots+n)+[n+(n-1)+\cdots+2+1] \\
& =(n+1)+(n+1)+\cdots
\end{aligned}
$$

or use induction.
16. Derive the formula

$$
\sum_{k=1}^{n} k^{2}=\frac{n}{6}(n+1)(2 n+1)
$$

Hint: Induction is probably easiest.
${ }^{a}$ 17. Count the number of operations in the following pseudocode:

```
real array \(\left(a_{i j}\right)_{1: n \times 1: n},\left(x_{i j}\right)_{1: n \times 1: n}\)
real \(z\); integer \(i, j, n\)
for \(i=1\) to \(n\) do
    for \(j=1\) to \(i\) do
        \(z=z+a_{i j} x_{i j}\)
    end for
end for
```

${ }^{a}$ 18. Count the number of divisions in procedure Gauss. Count the number of multiplications. Count the number of additions or subtractions. Using execution times in microseconds (multiplication 1, division 2.9 , addition 0.4 , subtraction 0.4), write a function of n that represents the time used in these arithmetic operations.
${ }^{a}$ 19. Considering long operations only and assuming 1-microsecond execution time for all long operations, give the approximate execution times and costs for procedure Gauss when $n=10,10^{2}, 10^{3}, 10^{4}$. Use only the dominant term in the operation count. Estimate costs at $\$ 500$ per hour.
20. (Continuation) How much time would be used on the computer to solve 2000 equations using Gaussian elimination with scaled partial pivoting? How much would it cost? Give a rough estimate based on operation times.
${ }^{a}$ 21. After processing a matrix \boldsymbol{A} by procedure Gauss, how can the results be used to solve a system of equations of form $\boldsymbol{A}^{T} \boldsymbol{x}=\boldsymbol{b}$?
22. What modifications would make procedure Gauss more efficient if division were much slower than multiplication?
23. The matrix $\boldsymbol{A}=\left(a_{i j}\right)_{n \times n}$ is row-equilibrated if it is scaled so that

$$
\max _{1 \leqq j \leqq n}\left|a_{i j}\right|=1 \quad(1 \leqq i \leqq n)
$$

In solving a system of equations $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, we can produce an equivalent system in which the matrix is row-equilibrated by dividing the i th equation by $\max _{1 \leqq j \leqq n}\left|a_{i j}\right|$.
${ }^{a}$ a. Solve the system of equations

$$
\left[\begin{array}{rrr}
1 & 1 & 2 \times 10^{9} \\
2 & -1 & 10^{9} \\
1 & 2 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

by Gaussian elimination with scaled partial pivoting.
b. Solve by using row-equilibrated naive Gaussian elimination. Are the answers the same? Why or why not?
24. Solve each system using partial pivoting and scaled partial pivoting carrying four significant digits. Also find the true solutions.
a. $\left\{\begin{aligned} 0.004000 x+69.13 y & =69.17 \\ 4.281 x-5.230 y & =41.91\end{aligned}\right.$
b. $\left\{\begin{aligned} 40.00 x+691300 y & =691700 \\ 4.281 x-5.230 y & =41.91\end{aligned}\right.$
c. $\left\{\begin{aligned} 0.003000 x+59.14 y & =59.17 \\ 5.291 x-6.130 y & =46.78\end{aligned}\right.$
d. $\left\{\begin{aligned} 30.00 x+591400 y & =591700 \\ 5.291 x-6.130 y & =46.78\end{aligned}\right.$
e. $\left\{\begin{array}{l}0.7000 x+1725 y=1739 \\ 0.4352 x-5.433 y=5.278\end{array}\right.$
f. $\left\{\begin{aligned} 0.8000 x+1825 y & =2040 \\ 0.4321 x-5.432 y & =7.531\end{aligned}\right.$

Computer Problems 7.2

1. Test the numerical example in the text using the naive Gaussian algorithm and the Gaussian algorithm with scaled partial pivoting.
${ }^{a}$ 2. Consider the system

$$
\left[\begin{array}{llll}
0.4096 & 0.1234 & 0.3678 & 0.2943 \\
0.2246 & 0.3872 & 0.4015 & 0.1129 \\
0.3645 & 0.1920 & 0.3781 & 0.0643 \\
0.1784 & 0.4002 & 0.2786 & 0.3927
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
0.4043 \\
0.1550 \\
0.4240 \\
0.2557
\end{array}\right]
$$

Solve it by Gaussian elimination with scaled partial pivoting using procedures Gauss and Solve.
${ }^{a}$ 3. (Continuation) Assume that an error was made when the coefficient matrix in Computer Problem 7.2.2 was typed and that a single digit was mistyped—namely, 0.3645 became 0.3345 . Solve this system, and notice the effect of this small change. Explain.
${ }^{a}$ 4. The Hilbert matrix of order n is defined by $a_{i j}=(i+j-1)^{-1}$ for $1 \leqq i, j \leqq n$. It is often used for test purposes because of its ill-conditioned nature. Define $b_{i}=$ $\sum_{j=1}^{n} a_{i j}$. Then the solution of the system of equations $\sum_{j=1}^{n} a_{i j} x_{j}=b_{i}$ for $1 \leqq i \leqq n$ is $\boldsymbol{x}=[1,1, \ldots, 1]^{T}$. Verify this. Select some values of n in the range $2 \leqq n \leqq 15$, solve the system of equations for \boldsymbol{x} using procedures Gauss and Solve, and see whether the result is as predicted. Do the case $n=2$ by hand to see what difficulties occur in the computer.
${ }^{a}$ 5. Define the $n \times n$ array $\left(a_{i j}\right)$ by $a_{i j}=-1+2 \max \{i, j\}$. Set up array $\left(b_{i}\right)$ in such a way that the solution of the system $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ is $x_{i}=1$ for $1 \leqq i \leqq n$. Test procedures Gauss and Solve on this system for a moderate value of n, say, $n=30$.
${ }^{a}$ 6. Select a modest value of n, say, $5 \leqq n \leqq 20$, and let $a_{i j}=(i-1)^{j-1}$ and $b_{i}=i-1$. Solve the system $\boldsymbol{A x}=\boldsymbol{b}$ on the computer. By looking at the output, guess what the correct solution is. Establish algebraically that your guess is correct. Account for the errors in the computed solution.
7. For a fixed value of n from 2 to 4 , let

$$
a_{i j}=(i+j)^{2} \quad b_{i}=n i(i+n+1)+\frac{1}{6} n(1+n(2 n+3))
$$

Show that the vector $\boldsymbol{x}=[1,1, \ldots, 1]^{T}$ solves the system $\boldsymbol{A x}=\boldsymbol{b}$. Test whether procedures Gauss and Solve can compute \boldsymbol{x} correctly for $n=2,3,4$. Explain what happens.
8. Using each value of n from 2 to 9 , solve the $n \times n$ system $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, where \boldsymbol{A} and \boldsymbol{b} are defined by

$$
a_{i j}=(i+j-1)^{7} \quad b_{i}=p(n+i-1)-p(i-1)
$$

where

$$
p(x)=\frac{x^{2}}{24}\left(2+x^{2}\left(-7+n^{2}(14+n(12+3 n))\right)\right)
$$

Explain what happens.
9. Solve the following system using procedures Gauss and Solve and then using procedure Naive_Gauss. Compare the results and explain.

$$
\left[\begin{array}{rrrr}
0.0001 & -5.0300 & 5.8090 & 7.8320 \\
2.2660 & 1.9950 & 1.2120 & 8.0080 \\
8.8500 & 5.6810 & 4.5520 & 1.3020 \\
6.7750 & -2.2530 & 2.9080 & 3.9700
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
9.5740 \\
7.2190 \\
5.7300 \\
6.2910
\end{array}\right]
$$

10. Without changing the parameter list, rewrite and test procedure Gauss so that it does both forward elimination and back substitution. Increase the size of array $\left(a_{i j}\right)$, and store the right-hand side array $\left(b_{i}\right)$ in the $n+1$ st column of $\left(a_{i j}\right)$. Also, return the solution in this column.
11. Modify procedures Gauss and Solve so that they are more robust. Two suggested changes are as follows: (i) Skip elimination if $a_{\ell_{i}, k}=0$ and (ii) add an error parameter ierr to the parameter list and perform error checking (e.g., on division by zero or a row of zeros). Test the modified code on linear systems of varying sizes.
12. Rewrite procedures Gauss and Solve so that they are column oriented-that is, so that all inner loops vary the first index of $\left(a_{i j}\right)$. On some computer systems, this implementation may avoid paging or swapping between high-speed and secondary memory and be more efficient for large matrices.
13. Computer memory can be minimized by using a different storage mode when the coefficient matrix is symmetric. An $n \times n$ symmetric matrix $\boldsymbol{A}=\left(a_{i j}\right)$ has the property that $a_{i j}=a_{j i}$, so only the elements on and below the main diagonal need be stored in a vector of length $n(n+1) / 2$. The elements of the matrix \boldsymbol{A} are placed in a
vector $v=\left(v_{k}\right)$ in this order: $a_{11}, a_{21}, a_{22}, a_{31}, a_{32}, a_{33}, \ldots, a_{n, n}$. Storing a matrix in this way is known as symmetric storage mode and effects a savings of $n(n-1) / 2$ memory locations. Here, $a_{i j}=v_{k}$, where $k=\frac{1}{2} i(i-1)+j$ for $i \geqq j$. Verify these statements.

Write and test procedures $\operatorname{Gauss} \operatorname{Sym}\left(n,\left(v_{i}\right),\left(\ell_{i}\right)\right)$ and $\operatorname{Solve} \operatorname{Sym}\left(n,\left(v_{i}\right),\left(\ell_{i}\right)\right.$, $\left.\left(b_{i}\right)\right)$, which are analogous to procedures Gauss and Solve except that the coefficient matrix is stored in symmetric storage mode in a one-dimensional array $\left(v_{i}\right)$ and the solution is returned in array $\left(b_{i}\right)$.
14. The determinant of a square matrix can be easily computed with the help of procedure Gauss. We require three facts about determinants. First, the determinant of a triangular matrix is the product of the elements on its diagonal. Second, if a multiple of one row is added to another row, the determinant of the matrix does not change. Third, if two rows in a matrix are interchanged, the determinant changes sign. Procedure Gauss can be interpreted as a procedure for reducing a matrix to upper triangular form by interchanging rows and adding multiples of one row to another. Write a function $\operatorname{det}\left(n,\left(a_{i j}\right)\right)$ that computes the determinant of an $n \times n$ matrix. It will call procedure Gauss and utilize the arrays $\left(a_{i j}\right)$ and $\left(\ell_{i}\right)$ that result from that call. Numerically verify function det by using the following test matrices with several values of n :
a. $a_{i j}=|i-j|$
b. $a_{i j}=\left\{\begin{array}{rl}1 & j \geqq i \\ -j & j<i\end{array}\right.$

$$
\operatorname{det}(\boldsymbol{A})=(-1)^{n-1}(n-1) 2^{n-2}
$$

c. $\left\{\begin{array}{lrl}a_{i j}=a_{j 1}=n^{-1} & j \geqq 1 \\ a_{i j}=a_{i-1, j}+a_{i, j-1} & i, j \geqq 2\end{array} \quad \operatorname{det}(\boldsymbol{A})=n^{-n}\right.$
15. (Continuation) Overflow and underflow may occur in evaluating determinants by this procedure. To avoid this, one can compute $\log |\operatorname{det}(\boldsymbol{A})|$ as the sum of terms $\log \left|a_{\ell_{i}, \boldsymbol{i}}\right|$ and use the exponential function at the end. Repeat the numerical experiments in Computer Problem 7.2.14 using this idea.
16. Test a modification of procedure Gauss in which the scale array is recomputed at each step (each new value of k) of the forward elimination phase. Try to construct an example for which this procedure would produce less roundoff error than the scaled partial pivoting method given in the text with fixed scale array. It is generally believed that the extra computations that are involved in this procedure are not worthwhile for most linear systems.
17. (Continuation) Modify and test procedure Gauss so that the original system is initially row-equilibrated; that is, it is scaled so that the maximum element in every row is 1 .
18. Modify and test procedures Gauss and Solve so that they carry out scaled complete pivoting; that is, the pivot element is selected from all elements in the submatrix, not just those in the k th column. Keep track of the order of the unknowns in the solution array in another index array because they will not be determined in the order $x_{n}, x_{n-1}, \ldots, x_{1}$.
19. Compare the computed numerical solutions of the following two linear systems:

$$
\begin{aligned}
& {\left[\begin{array}{lllll}
1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\
\frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} \\
\frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} \\
\frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} & \frac{1}{9}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{lllll}
1.0 & 0.5 & 0.333333 & 0.25 & 0.2 \\
0.5 & 0.333333 & 0.25 & 0.2 & 0.166667 \\
0.333333 & 0.25 & 0.2 & 0.166667 & 0.142857 \\
0.25 & 0.2 & 0.166667 & 0.142857 & 0.125 \\
0.2 & 0.166667 & 0.142857 & 0.125 & 0.111111
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]}
\end{aligned}
$$

Solve both systems using single-precision Gaussian elimination with scaled partial pivoting. For each system, compute the ℓ_{2}-norms $\|\boldsymbol{u}\|_{2}=\sqrt{\sum_{i=1}^{n} u_{i}^{2}}$ of the residual vector $\widetilde{\boldsymbol{r}}=\boldsymbol{A} \widetilde{\boldsymbol{x}}-\boldsymbol{b}$ and of the error vector $\widetilde{\boldsymbol{e}}=\widetilde{\boldsymbol{x}}-\boldsymbol{x}$, where $\widetilde{\boldsymbol{x}}$ is the computed solution and \boldsymbol{x} is the true, or exact, solution. For the first system, the exact solution is $\boldsymbol{x}=[25,-300,1050,-1400,630]^{T}$, and for the second system, the exact solution, to six decimal digits of accuracy, is $\boldsymbol{x}=[26.9314,-336.018,1205.11,-1634.03$, $744.411]^{T}$. Do not change the input data of the second system to include more than the number of digits shown. Analyze the results. What have you learned?
20. (Continuation) Repeat the preceding computer problem, but set $a_{i j} \leftarrow 7560 a_{i j}$ and $b_{i} \leftarrow 7560 b_{i}$ for each system before solving.
21. Write complex arithmetic versions of procedures Gauss and Solve by declaring certain variables complex and making other necessary changes in the code. Test them on the complex linear systems given in Computer Problem 7.1.6.
22. (Continuation) Solve the complex linear systems given in Computer Problem 7.1.7.
23. The fact that in the previous two problems solutions of complex linear systems were asked for may lead you to think that you must have complex versions of procedures Gauss and Solve. This is not the case. A complex system $\boldsymbol{A x}=\boldsymbol{b}$ can also be written as a $2 n \times 2 n$ real system:

$$
\begin{aligned}
& \sum_{j=1}^{n}\left[\operatorname{Re}\left(a_{i j}\right) \operatorname{Re}\left(x_{j}\right)-\operatorname{Im}\left(a_{i j}\right) \operatorname{Im}\left(x_{j}\right)\right]=\operatorname{Re}\left(b_{i}\right) \quad(1 \leqq i \leqq n) \\
& \sum_{j=1}^{n}\left[\operatorname{Re}\left(a_{i j}\right) \operatorname{Im}\left(x_{j}\right)+\operatorname{Im}\left(a_{i j}\right) \operatorname{Re}\left(x_{j}\right)\right]=\operatorname{Im}\left(b_{i}\right) \quad(1 \leqq i \leqq n)
\end{aligned}
$$

Repeat these two problems using this idea and the two procedures of this section. (Here, Re denotes the real part and Im the imaginary part.)
24. (Student research project) The Gauss-Huard algorithm is a variant of the GaussJordan algorithm for solving dense linear systems. Both algorithms reduce the system to an equivalent diagonal system. However, the Gauss-Jordan method does more floating-point operations than Gaussian elimination, while the Gauss-Huard method
does not. To preserve stability, the Gauss-Huard method incorporates a pivoting strategy using column interchanges. An error analysis shows that the Gauss-Huard method is as stable as Gauss-Jordan elimination with an appropriate pivoting strategy. Read about these algorithms in papers by Dekker and Hoffmann [1989], Dekker, Hoffmann, and Potma [1997], Hoffmann [1989], and Huard [1979]. Carry out some numerical experiments by programming and testing the Gauss-Jordan and Gauss-Huard algorithms on some dense linear systems.
25. Solve System (5) using mathematical software routines based on Gaussian elimination such as found in Matlab, Maple, or Mathematica. There are a large number of computer programs and software packages for solving linear systems, each of which may use a slightly different pivoting strategy.

7.3 Tridiagonal and Banded Systems

In many applications, including several that are considered later on, extremely large linear systems that have a banded structure are encountered. Banded matrices often occur in solving ordinary and partial differential equations. It is advantageous to develop computer codes specifically designed for such linear systems, since they reduce the amount of storage used.

Of practical importance is the tridiagonal system. Here, all the nonzero elements in the coefficient matrix must be on the main diagonal or on the two diagonals just above and below the main diagonal (usually called superdiagonal and subdiagonal, respectively):

$$
\left[\begin{array}{cccccccl}
d_{1} & c_{1} & & & & & & \tag{1}\\
a_{1} & d_{2} & c_{2} & & & & & \\
& a_{2} & d_{3} & c_{3} & & & & \\
& & \ddots & \ddots & \ddots & & & \\
& & & a_{i-1} & d_{i} & c_{i} & & \\
& & & & \ddots & \ddots & \ddots & \\
& & & & & a_{n-2} & d_{n-1} & c_{n-1} \\
& & & & & & a_{n-1} & d_{n}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{i} \\
\vdots \\
x_{n-1} \\
x_{n}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
\vdots \\
b_{i} \\
\vdots \\
b_{n-1} \\
b_{n}
\end{array}\right]
$$

(All elements not in the displayed diagonals are 0's.) A tridiagonal matrix is characterized by the condition $a_{i j}=0$ if $|i-j| \geqq 2$. In general, a matrix is said to have a banded structure if there is an integer k (less than n) such that $a_{i j}=0$ whenever $|i-j| \geqq k$.

The storage requirements for a banded matrix are less than those for a general matrix of the same size. Thus, an $n \times n$ diagonal matrix requires only n memory locations in the computer, and a tridiagonal matrix requires only $3 n-2$. This fact is important if banded matrices of very large order are being used.

For banded matrices, the Gaussian elimination algorithm can be made very efficient if it is known beforehand that pivoting is unnecessary. This situation occurs often enough to justify special procedures. Here, we develop a code for the tridiagonal system and give a listing for the pentadiagonal system (in which $a_{i j}=0$ if $|i-j| \geqq 3$).

Tridiagonal Systems

The routine to be described now is called procedure Tri. It is designed to solve a system of n linear equations in n unknowns, as shown in Equation (1). Both the forward elimination phase and the back substitution phase are incorporated in the procedure, and no pivoting is used; that is, the pivot equations are those given by the natural ordering $\{1,2, \ldots, n\}$. Thus, naive Gaussian elimination is used.

In step 1 , we subtract a_{1} / d_{1} times row 1 from row 2 , thus creating a 0 in the a_{1} position. Only the entries d_{2} and b_{2} are altered. Observe that c_{2} is not altered. In step 2 , the process is repeated, using the new row 2 as the pivot row. Here is how the d_{i} 's and b_{i} 's are altered in each step:

$$
\left\{\begin{array}{l}
d_{2} \leftarrow d_{2}-\left(\frac{a_{1}}{d_{1}}\right) c_{1} \\
b_{2} \leftarrow b_{2}-\left(\frac{a_{1}}{d_{1}}\right) b_{1}
\end{array}\right.
$$

In general, we obtain

$$
\left\{\begin{array}{l}
d_{i} \leftarrow d_{i}-\left(\frac{a_{i-1}}{d_{i-1}}\right) c_{i-1} \\
b_{i} \leftarrow b_{i}-\left(\frac{a_{i-1}}{d_{i-1}}\right) b_{i-1} \quad(2 \leqq i \leqq n)
\end{array}\right.
$$

At the end of the forward elimination phase, the form of the system is as follows:

$$
\left[\begin{array}{cccccccc}
d_{1} & c_{1} & & & & & & \\
& d_{2} & c_{2} & & & & & \\
& & d_{3} & c_{3} & & & & \\
& & & \ddots & \ddots & & & \\
& & & & d_{i} & c_{i} & & \\
& & & & & \ddots & \ddots & \\
& & & & & & d_{n-1} & c_{n-1} \\
& & & & & & & d_{n}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{i} \\
\vdots \\
x_{n-1} \\
x_{n}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
\vdots \\
b_{i} \\
\vdots \\
b_{n-1} \\
b_{n}
\end{array}\right]
$$

Of course, the b_{i} 's and d_{i} 's are not as they were at the beginning of this process, but the c_{i} 's are. The back substitution phase solves for $x_{n}, x_{n-1}, \ldots, x_{1}$ as follows:

$$
\begin{aligned}
& x_{n} \leftarrow \frac{b_{n}}{d_{n}} \\
& x_{n-1} \leftarrow \frac{1}{d_{n-1}}\left(b_{n-1}-c_{n-1} x_{n}\right)
\end{aligned}
$$

Finally, we obtain

$$
x_{i} \leftarrow \frac{1}{d_{i}}\left(b_{i}-c_{i} x_{i+1}\right) \quad(i=n-1, n-2, \ldots, 1)
$$

In procedure Tri for a tridiagonal system, we use single-dimensioned arrays $\left(a_{i}\right),\left(d_{i}\right)$, and $\left(c_{i}\right)$ for the diagonals in the coefficient matrix and array $\left(b_{i}\right)$ for the right-hand side, and store the solution in array $\left(x_{i}\right)$.

```
procedure \(\operatorname{Tri}\left(n,\left(a_{i}\right),\left(d_{i}\right),\left(c_{i}\right),\left(b_{i}\right),\left(x_{i}\right)\right)\)
integer \(i, n\); real xmult
real array \(\left(a_{i}\right)_{1: n},\left(d_{i}\right)_{1: n},\left(c_{i}\right)_{1: n},\left(b_{i}\right)_{1: n},\left(x_{i}\right)_{1: n}\)
for \(i=2\) to \(n\) do
    xmult \(\leftarrow a_{i-1} / d_{i-1}\)
    \(d_{i} \leftarrow d_{i}-(\) xmult \() c_{i-1}\)
    \(b_{i} \leftarrow b_{i}-(x\) mult \() b_{i-1}\)
end for
\(x_{n} \leftarrow b_{n} / d_{n}\)
for \(i=n-1\) to 1 step -1 do
    \(x_{i} \leftarrow\left(b_{i}-c_{i} x_{i+1}\right) / d_{i}\)
end for
end procedure Tri
```

Notice that the original data in arrays $\left(d_{i}\right)$ and $\left(b_{i}\right)$ have been changed.
A symmetric tridiagonal system arises in the cubic spline development of Chapter 9 and elsewhere. A general symmetric tridiagonal system has the form

$$
\left[\begin{array}{llllllll}
d_{1} & c_{1} & & & & & & \tag{2}\\
c_{1} & d_{2} & c_{2} & & & & & \\
& c_{2} & d_{3} & c_{3} & & & & \\
& & \ddots & \ddots & \ddots & & & \\
& & & c_{i-1} & d_{i} & c_{i} & & \\
& & & & \ddots & \ddots & \ddots & \\
& & & & & c_{n-2} & d_{n-1} & c_{n-1} \\
& & & & & & c_{n-1} & d_{n}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{i} \\
\vdots \\
x_{n-1} \\
x_{n}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
\vdots \\
b_{i} \\
\vdots \\
b_{n-1} \\
b_{n}
\end{array}\right]
$$

One could overwrite the right-hand side vector \boldsymbol{b} with the solution vector \boldsymbol{x} as well. Thus, a symmetric linear system can be solved with a procedure call of the form

$$
\text { call } \operatorname{Tri}\left(n,\left(c_{i}\right),\left(d_{i}\right),\left(c_{i}\right),\left(b_{i}\right),\left(b_{i}\right)\right)
$$

which reduces the number of linear arrays from five to three.

Strictly Diagonal Dominance

Since procedure Tri does not involve pivoting, it is natural to ask whether it is likely to fail. Simple examples can be given to illustrate failure because of attempted division by zero even though the coefficient matrix in Equation (1) is nonsingular. On the other hand, it is not easy to give the weakest possible conditions on this matrix to guarantee the success of the algorithm. We content ourselves with one property that is easily checked and commonly encountered. If the tridiagonal coefficient matrix is diagonally dominant, then procedure Tri will not encounter zero divisors.

DEFINITION 1
 STRICTLY DIAGONAL DOMINANGE

A general matrix $\boldsymbol{A}=\left(a_{i j}\right)_{n \times n}$ is strictly diagonally dominant if

$$
\left|a_{i i}\right|>\sum_{\substack{j=1 \\ j \neq i}}^{n}\left|a_{i j}\right| \quad(1 \leqq i \leqq n)
$$

In the case of the tridiagonal system of Equation (1), strict diagonal dominance means simply that (with $a_{0}=a_{n}=0$)

$$
\left|d_{i}\right|>\left|a_{i-1}\right|+\left|c_{i}\right| \quad(1 \leqq i \leqq n)
$$

Let us verify that the forward elimination phase in procedure Tri preserves strictly diagonal dominance. The new coefficient matrix produced by Gaussian elimination has 0 elements where the a_{i} 's originally stood, and new diagonal elements are determined recursively by

$$
\left\{\begin{array}{l}
\widehat{d}_{1}=d_{1} \\
\widehat{d}_{i}=d_{i}-\left(\frac{a_{i-1}}{\widehat{d}_{i-1}}\right) c_{i-1} \quad(2 \leqq i \leqq n)
\end{array}\right.
$$

where \widehat{d}_{i} denotes a new diagonal element. The c_{i} elements are unaltered. Now we assume that $\left|d_{i}\right|>\left|a_{i-1}\right|+\left|c_{i}\right|$, and we want to be sure that $\left|\widehat{d}_{i}\right|>\left|c_{i}\right|$. Obviously, this is true for $i=1$ because $\widehat{d}_{1}=d_{1}$. If it is true for index $i-1$ (that is, $\left|\widehat{d}_{i-1}\right|>\left|c_{i-1}\right|$), then it is true for index i because

$$
\begin{aligned}
\left|\widehat{d}_{i}\right| & =\left|d_{i}-\left(\frac{a_{i-1}}{\widehat{d}_{i-1}}\right) c_{i-1}\right| \\
& \geqq\left|d_{i}\right|-\left|a_{i-1}\right| \frac{\left|c_{i-1}\right|}{\left|\widehat{d}_{i-1}\right|} \\
& >\left|a_{i-1}\right|+\left|c_{i}\right|-\left|a_{i-1}\right|=\left|c_{i}\right|
\end{aligned}
$$

While the number of long operations in Gaussian elimination on full matrices is $\mathcal{O}\left(n^{3}\right)$, it is only $\mathcal{O}(n)$ for tridiagonal matrices. Also, the scaled pivoting strategy is not needed on strictly diagonally dominant tridiagonal systems.

Pentadiagonal Systems

The principles illustrated by procedure Tri can be applied to matrices that have wider bands of nonzero elements. A procedure called Penta is given here to solve the
five-diagonal system:

$$
\left[\begin{array}{llllllllll}
d_{1} & c_{1} & f_{1} & & & & & & & \\
a_{1} & d_{2} & c_{2} & f_{2} & & & & & & \\
e_{1} & a_{2} & d_{3} & c_{3} & f_{3} & & & & & \\
& e_{2} & a_{3} & d_{4} & c_{4} & f_{4} & & & & \\
& & \ddots & \ddots & \ddots & \ddots & \ddots & & & \\
& & & e_{i-2} & a_{i-1} & d_{i} & c_{i} & f_{i} & & \\
& & & & \ddots & \ddots & \ddots & \ddots & \ddots & \\
& & & & & e_{n-4} & a_{n-3} & d_{n-2} & c_{n-2} & f_{n-2} \\
& & & & & & e_{n-3} & a_{n-2} & d_{n-1} & c_{n-1} \\
e_{n-2} & a_{n-1} & d_{n}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
\vdots \\
x_{i} \\
\vdots \\
x_{n-2} \\
x_{n-1} \\
x_{n}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4} \\
\vdots \\
b_{i} \\
\vdots \\
b_{n-2} \\
b_{n-1} \\
b_{n}
\end{array}\right]
$$

In the pseudocode, the solution vector is placed in array $\left(x_{i}\right)$. Also, one should not use this routine if $n \leqq 4$. (Why?)

```
procedure \(\operatorname{Penta}\left(n,\left(e_{i}\right),\left(a_{i}\right),\left(d_{i}\right),\left(c_{i}\right),\left(f_{i}\right),\left(b_{i}\right),\left(x_{i}\right)\right)\)
integer \(i, n\); real \(r, s, x m u l t\)
real array \(\left(e_{i}\right)_{1: n},\left(a_{i}\right)_{1: n},\left(d_{i}\right)_{1: n},\left(c_{i}\right)_{1: n},\left(f_{i}\right)_{1: n},\left(b_{i}\right)_{1: n},\left(x_{i}\right)_{1: n}\)
\(r \leftarrow a_{1}\)
\(s \leftarrow a_{2}\)
\(t \leftarrow e_{1}\)
for \(i=2\) to \(n-1\) do
    xmult \(\leftarrow r / d_{i-1}\)
    \(d_{i} \leftarrow d_{i}-(x m u l t) c_{i-1}\)
    \(c_{i} \leftarrow c_{i}-(\) xmult \() f_{i-1}\)
    \(b_{i} \leftarrow b_{i}-(x m u l t) b_{i-1}\)
    xmult \(\leftarrow t / d_{i-1}\)
    \(r \leftarrow s-(x\) mult \() c_{i-1}\)
    \(d_{i+1} \leftarrow d_{i+1}-(\) xmult \() f_{i-1}\)
    \(b_{i+1} \leftarrow b_{i+1}-(x m u l t) b_{i-1}\)
    \(s \leftarrow a_{i+1}\)
    \(t \leftarrow e_{i}\)
end for
xmult \(\leftarrow r / d_{n-1}\)
\(d_{n} \leftarrow d_{n}-(\) xmult \() c_{n-1}\)
\(x_{n} \leftarrow\left(b_{n}-(\right.\) xmult \(\left.) b_{n-1}\right) / d_{n}\)
\(x_{n-1} \leftarrow\left(b_{n-1}-c_{n-1} x_{n}\right) / d_{n-1}\)
for \(i=n-2\) to 1 step -1 do
    \(x_{i} \leftarrow\left(b_{i}-f_{i} x_{i+2}-c_{i} x_{i+1}\right) / d_{i}\)
end for
end procedure Penta
```

To be able to solve symmetric pentadiagonal systems with the same code and with a minimum of storage, we have used variables r, s, and t to store temporarily some information rather than overwriting into arrays. This allows us to solve a symmetric pentadiagonal
system with a procedure call of the form

$$
\text { call Penta }\left(n,\left(f_{i}\right),\left(c_{i}\right),\left(d_{i}\right),\left(c_{i}\right),\left(f_{i}\right),\left(b_{i}\right),\left(b_{i}\right)\right)
$$

which reduces the number of linear arrays from seven to four. Of course, the original data in some of these arrays will be corrupted. The computed solution will be stored in the $\left(b_{i}\right)$ array. Here, we assume that all linear arrays are padded with zeros to length n in order not to exceed the array dimensions in the pseudocode.

Block Pentadiagonal Systems

Many mathematical problems involve matrices with block structures. In many cases, there are advantages in exploiting the block structure in the numerical solution. This is particularly true in solving partial differential equations numerically.

We can consider a pentadiagonal system as a block tridiagonal system

$$
\left[\begin{array}{llllllll}
\boldsymbol{D}_{1} & \boldsymbol{C}_{1} & & & & & & \\
\boldsymbol{A}_{1} & \boldsymbol{D}_{2} & \boldsymbol{C}_{2} & & & & & \\
& \boldsymbol{A}_{2} & \boldsymbol{D}_{3} & \boldsymbol{C}_{3} & & & & \\
& & \ddots & \ddots & \ddots & & & \\
& & & \boldsymbol{A}_{i-1} & \boldsymbol{D}_{i} & \boldsymbol{C}_{i} & & \\
& & & & \ddots & \ddots & \ddots & \\
& & & & & \boldsymbol{A}_{n-2} & \boldsymbol{D}_{n-1} & \boldsymbol{C}_{n-1} \\
& & & & & & \boldsymbol{A}_{n-1} & \boldsymbol{D}_{n}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{X}_{1} \\
\boldsymbol{X}_{2} \\
\boldsymbol{X}_{3} \\
\vdots \\
\boldsymbol{X}_{i} \\
\vdots \\
\boldsymbol{X}_{n-1} \\
\boldsymbol{X}_{n}
\end{array}\right]=\left[\begin{array}{l}
\boldsymbol{B}_{1} \\
\boldsymbol{B}_{2} \\
\boldsymbol{B}_{3} \\
\vdots \\
\boldsymbol{B}_{i} \\
\vdots \\
\boldsymbol{B}_{n-1} \\
\boldsymbol{B}_{n}
\end{array}\right]
$$

where

$$
\boldsymbol{D}_{i}=\left[\begin{array}{ll}
d_{2 i-1} & c_{2 i-1} \\
a_{2 i-1} & d_{2 i}
\end{array}\right], \quad \boldsymbol{A}_{i}=\left[\begin{array}{ll}
e_{2 i-1} & c_{2 i-1} \\
0 & e_{2 i}
\end{array}\right], \quad \boldsymbol{C}_{i}=\left[\begin{array}{ll}
f_{2 i-1} & 0 \\
c_{2 i-1} & f_{2 i}
\end{array}\right]
$$

Here, we assume that n is even, say $n=2 m$. If n is not even, then the system can be padded with an extra equation $x_{n+1}=1$ so that the number of rows is even.

The algorithm for this block tridiagonal system is similar to the one for tridiagonal systems. Hence, we have the forward elimination phase

$$
\left\{\begin{array}{l}
\boldsymbol{D}_{i} \leftarrow \boldsymbol{D}_{i}-\boldsymbol{A}_{i-1} \boldsymbol{D}_{i-1}^{-1} \boldsymbol{C}_{i-1} \\
\boldsymbol{B}_{i} \leftarrow \boldsymbol{B}_{i}-\boldsymbol{A}_{i-1} \boldsymbol{D}_{i-1}^{-1} \boldsymbol{B}_{i-1}
\end{array} \quad(2 \leqq i \leqq m)\right.
$$

and the back substitution phase

$$
\left\{\begin{array}{l}
\boldsymbol{X}_{n} \leftarrow \boldsymbol{D}_{n}^{-1} \boldsymbol{B}_{n} \\
\boldsymbol{X}_{i} \leftarrow \boldsymbol{D}_{i}^{-1}\left(\boldsymbol{B}_{i}-\boldsymbol{C}_{i} \boldsymbol{X}_{i+1}\right) \quad(m-1 \leqq i \leqq 1)
\end{array}\right.
$$

Here,

$$
\boldsymbol{D}_{i}^{-1}=\frac{1}{\Delta}\left[\begin{array}{cr}
d_{2 i} & -c_{2 i-1} \\
-a_{2 i-1} & d_{2 i-1}
\end{array}\right]
$$

where $\Delta=d_{2 i} d_{2 i-1}-a_{2 i-1} c_{2 i-1}$.
Code for solving a pentadiagonal system using this block procedure is left as an exercise (Computer Problem 7.3.21). The results from the block pentadiagonal code are the same as those from the procedure Penta, except for roundoff error. Also, this procedure can be
used for symmetric pentadiagonal systems (in which the subdiagonals are the same as the superdiagonals).

In Chapter 16, we discuss two-dimensional elliptic partial differential equations. For example, the Laplace equation is defined on the unit square. A 3×3 mesh of points are placed over the unit square region, and they are ordered in the natural ordering (left-to-right and up) as shown in Figure 7.2.

FIGURE 7.2
Mesh points in natural order

In the Laplace equation, second partial derivatives are approximated by second-order centered finite difference formulas. This results in an 9×9 system of linear equations having a sparse coefficient matrix with this nonzero pattern:

Here, nonzero entries in the matrix are indicated by the \times symbol, and zero entries are a blank. This matrix is block tridiagonal, and each nonzero block is either tridiagonal or diagonal. Other orderings of the mesh points result in sparse matrices with different patterns.

Summary

(1) For banded systems, such as tridiagonal, pentadiagonal, and others, it is usual to develop special algorithms for implementing Gaussian elimination, since partial pivoting is not needed in many applications. The forward elimination procedure for a tridiagonal linear system $\boldsymbol{A}=\operatorname{tridiagonal}\left[\left(a_{i}\right),\left(d_{i}\right),\left(c_{i}\right)\right]$ is

$$
\left\{\begin{array}{l}
d_{i} \leftarrow d_{i}-\left(\frac{a_{i-1}}{d_{i-1}}\right) c_{i-1} \\
b_{i} \leftarrow b_{i}-\left(\frac{a_{i-1}}{d_{i-1}}\right) b_{i-1} \quad(2 \leqq i \leqq n)
\end{array}\right.
$$

The back substitution procedure is

$$
x_{i} \leftarrow \frac{1}{d_{i}}\left(b_{i}-c_{i} x_{i+1}\right) \quad(i=n-1, n-2, \ldots, 1)
$$

(2) A strictly diagonally dominant matrix $\boldsymbol{A}=\left(a_{i j}\right)_{n \times n}$ is one in which the magnitude of the diagonal entry is larger than the sum of the magnitudes of the off-diagonal entries in the same row and this is true for all rows, namely,

$$
\left|a_{i i}\right|>\sum_{\substack{j=1 \\ j \neq i}}^{n}\left|a_{i j}\right| \quad(1 \leqq i \leqq n)
$$

For strictly diagonally dominant tridiagonal coefficient matrices, partial pivoting is not necessary because zero divisors will not be encountered.
(3) The forward elimination and back substitution procedures for a pentadiagonal linear system $\boldsymbol{A}=$ pentadiagonal $\left[\left(e_{i}\right),\left(a_{i}\right),\left(d_{i}\right),\left(c_{i}\right),\left(f_{i}\right)\right]$ is similar to that for a tridiagonal system.

Additional References

For additional study of linear systems, see Colerman and Van Loan [1988], Dekker and Hoffmann [1989], Dekker, Hoffmann, and Potma [1997], Dongarra, Duff, Sorenson, and van der Vorst [1990], Forsythe and Moler [1967], Gallivan et al. [1990], Golub and Van Loan [1996], Hoffmann [1989], Jennings [1977], Meyer [2000], Noble and Daniel [1988], Stewart [1973, 1996, 1998a, 1998b, 2001], and Watkins [1991].

Problems 7.3

1. What happens to the tridiagonal System (1) if Gaussian elimination with partial pivoting is used to solve it? In general, what happens to a banded system?
2. Count the long arithmetic operations involved in procedures:
${ }^{a}$ a. Tri
b. Penta
${ }^{a}$ 3. How many storage locations are needed for a system of n linear equations if the coefficient matrix has banded structure in which $a_{i j}=0$ for $|i-j| \geqq k+1$?
3. Give an example of a system of linear equations in tridiagonal form that cannot be solved without pivoting.
4. What is the appearance of a matrix \boldsymbol{A} if its elements satisfy $a_{i j}=0$ when:
a. $j<i-2$
b. $j>i+1$
${ }^{a}$ 6. Consider a strictly diagonally dominant matrix \boldsymbol{A} whose elements satisfy $a_{i j}=0$ when $i>j+1$. Does Gaussian elimination without pivoting preserve the strictly diagonal dominance? Why or why not?
${ }^{a}$ 7. Let \boldsymbol{A} be a matrix of form (1) such that $a_{i} c_{i}>0$ for $1 \leqq i \leqq n-1$. Find the general form of the diagonal matrix $\boldsymbol{D}=\operatorname{diag}\left(\alpha_{i}\right)$ with $\alpha_{i} \neq 0$ such that $\boldsymbol{D}^{-1} \boldsymbol{A} \boldsymbol{D}$ is symmetric. What is the general form of $\boldsymbol{D}^{-1} \boldsymbol{A} \boldsymbol{D}$?

Computer Problems 7.3

1. Rewrite procedure Tri using only four arrays, $\left(a_{i}\right),\left(d_{i}\right),\left(c_{i}\right)$, and $\left(b_{i}\right)$, and storing the solution in the $\left(b_{i}\right)$ array. Test the code with both a nonsymmetric and a symmetric tridiagonal system.
2. Repeat the previous computer problem for procedure Penta with six arrays $\left(e_{i}\right),\left(a_{i}\right)$, $\left(d_{i}\right),\left(c_{i}\right),\left(f_{i}\right)$, and $\left(b_{i}\right)$. Use the example that begins this chapter as one of the test cases.
${ }^{a}$ 3. Write and test a special procedure to solve the tridiagonal system in which $a_{i}=c_{i}=1$ for all i.
${ }^{a}$ 4. Use procedure Tri to solve the following system of 100 equations. Compare the numerical solution to the obvious exact solution.

$$
\left\{\begin{aligned}
x_{1}+0.5 x_{2} & =1.5 \\
0.5 x_{i-1}+x_{i}+0.5 x_{i+1} & =2.0 \\
0.5 x_{99}+x_{100} & =1.5
\end{aligned} \quad(2 \leqq i \leqq 99)\right.
$$

5. Solve the system

$$
\left\{\begin{aligned}
4 x_{1}-x_{2} & =-20 \\
x_{j-1}-4 x_{j}+x_{j+1} & =40 \\
-x_{n-1}+4 x_{n} & =-20
\end{aligned} \quad(2 \leqq j \leqq n-1)\right.
$$

using procedure Tri with $n=100$.
6. Let \boldsymbol{A} be the 50×50 tridiagonal matrix

$$
\left[\begin{array}{rrrrrr}
5 & -1 & & & & \\
-1 & 5 & -1 & & & \\
& -1 & 5 & -1 & & \\
& & \ddots & \ddots & \ddots & \\
& & & -1 & 5 & -1 \\
& & & & -1 & 5
\end{array}\right]
$$

Consider the problem $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ for 50 different vectors \boldsymbol{b} of the form

$$
[1,2, \ldots, 49,50]^{T} \quad[2,3, \ldots, 50,1]^{T} \quad[3,4, \ldots, 50,1,2]^{T}
$$

Write and test an efficient code for solving this problem. Hint: Rewrite procedure Tri.
7. Rewrite and test procedure $T r i$ so that it performs Gaussian elimination with scaled partial pivoting. Hint: Additional temporary storage arrays may be needed.
8. Rewrite and test Penta so that it does Gaussian elimination with scaled partial pivoting. Is this worthwhile?
9. Using the ideas illustrated in Penta, write a procedure for solving seven-diagonal systems. Test it on several such systems.
10. Consider the system of equations $(n=7)$

$$
\left[\begin{array}{lllllll}
d_{1} & & & & & & a_{7} \\
& d_{2} & & & & a_{6} & \\
& & d_{3} & & a_{5} & & \\
& & & & d_{4} & & \\
& & a_{3} & & d_{5} & & \\
& a_{2} & & & & d_{6} & \\
a_{1} & & & & & & d_{7}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4} \\
b_{5} \\
b_{6} \\
b_{7}
\end{array}\right]
$$

For n odd, write and test
procedure X _Gauss $\left(n,\left(a_{i}\right),\left(d_{i}\right),\left(b_{i}\right)\right)$
that does the forward elimination phase of Gaussian elimination (without scaled partial pivoting) and
procedure X _Solve $\left(n,\left(a_{i}\right),\left(d_{i}\right),\left(b_{i}\right),\left(x_{i}\right)\right)$
that does the back substitution for cross-systems of this form.
11. Consider the $n \times n$ lower-triangular system $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, where $\boldsymbol{A}=\left(a_{i j}\right)$ and $a_{i j}=0$ for $i<j$.
${ }^{a}$ a. Write an algorithm (in mathematical terms) for solving for \boldsymbol{x} by forward substitution.
b. Write
procedure Forward_Sub $\left(n,\left(a_{i}\right),\left(b_{i}\right),\left(x_{i}\right)\right)$
which uses this algorithm.
c. Determine the number of divisions, multiplications, and additions (or subtractions) in using this algorithm to solve for \boldsymbol{x}.
d. Should Gaussian elimination with partial pivoting be used to solve such a system?
${ }^{a}$ 12. (Normalized tridiagonal algorithm) Construct an algorithm for handling tridiagonal systems in which the normalized Gaussian elimination procedure without pivoting is used. In this process, each pivot row is divided by the diagonal element before a multiple of the row is subtracted from the successive rows. Write the equations involved in the forward elimination phase and store the upper diagonal entries back in array $\left(c_{i}\right)$ and the right-hand side entries back in array $\left(b_{i}\right)$. Write the equations for the back substitution phase, storing the solution in array $\left(b_{i}\right)$. Code and test this procedure. What are its advantages and disadvantages?
13. For a $(2 n) \times(2 n)$ tridiagonal system, write and test a procedure that proceeds as follows: In the forward elimination phase, the routine simultaneously eliminates the elements in the subdiagonal from the top to the middle and in the superdiagonal from the bottom to the middle. In the back substitution phase, the unknowns are determined two at a time from the middle outward.
14. (Continuation) Rewrite and test the procedure in the preceding computer problem for a general $n \times n$ tridiagonal matrix.
15. Suppose
procedure $\operatorname{Tri} \operatorname{Normal}\left(n,\left(a_{i}\right),\left(d_{i}\right),\left(c_{i}\right),\left(b_{i}\right),\left(x_{i}\right)\right)$
performs the normalized Gaussian elimination algorithm of Computer Problem 7.3.12 and
procedure $\operatorname{Tri} 2 n\left(n,\left(a_{i}\right),\left(d_{i}\right),\left(c_{i}\right),\left(b_{i}\right),\left(x_{i}\right)\right)$
performs the algorithm outlined in Computer Problem 7.3.13. Using a timing routine on your computer, compare Tri, Tri_Normal, and Tri_ $2 n$ to determine which of them is fastest for the tridiagonal system

$$
\begin{aligned}
a_{i} & =i(n-i+1), & & c_{i}=(i+1)(n-i-1), \\
d_{i} & =(2 i+1) n-i-2 i, & & b_{i}=i
\end{aligned}
$$

with a large even value of n. Note: Mathematical algorithms may behave differently on parallel and vector computers. Generally speaking, parallel computations completely alter our conventional notions about what's best or most efficient.
16. Consider a special bidiagonal linear system of the following form (illustrated with $n=7$) with nonzero diagonal elements:

$$
\left[\begin{array}{lllllll}
d_{1} & & & & & & \\
a_{1} & d_{2} & & & & & \\
& a_{2} & d_{3} & & & & \\
& & a_{3} & d_{4} & a_{4} & & \\
& & & & d_{5} & a_{5} & \\
& & & & & d_{6} & a_{6} \\
& & & & & & d_{7}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4} \\
b_{5} \\
b_{6} \\
b_{7}
\end{array}\right]
$$

Write and test
procedure Bi_Diagional $\left(n,\left(a_{i}\right),\left(d_{i}\right),\left(b_{i}\right)\right)$
to solve the general system of order n (odd). Store the solution in array b, and assume that all arrays are of length n. Do not use forward elimination because the system can be solved quite easily without it.
17. Write and test
procedure Backward_Tri $\left(n,\left(a_{i}\right),\left(d_{i}\right),\left(c_{i}\right),\left(b_{i}\right),\left(x_{i}\right)\right)$
for solving a backward tridiagonal system of linear equations of the form

$$
\left[\begin{array}{llllll}
& & & & a_{1} & d_{1} \\
& & & a_{2} & d_{2} & c_{1} \\
& & a_{3} & d_{3} & c_{2} & \\
& . & . & . & . & \\
a_{n-1} & d_{n-1} & c_{n-1} & & & \\
d_{n} & c_{n-1} & & & &
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n-1} \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
\vdots \\
b_{n-1} \\
b_{n}
\end{array}\right]
$$

using Gaussian elimination without pivoting.
18. An upper Hessenberg matrix is of the form

$$
\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2 n} \\
& a_{32} & a_{33} & \cdots & a_{3 n} \\
& & \ddots & \ddots & \vdots \\
& & & a_{n, n-1} & a_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
\vdots \\
b_{n}
\end{array}\right]
$$

Write a procedure for solving such a system, and test it on a system having 10 or more equations.
19. An $n \times n$ banded coefficient matrix with ℓ subdiagonals and m superdiagonals can be stored in banded storage mode in an $n \times(\ell+m+1)$ array. The matrix is stored with the row and diagonal structure preserved with almost all 0 elements unstored. If the original $n \times n$ banded matrix had the form shown in the figure, then the $n \times(\ell+m+1)$ array in banded storage mode would be as shown. The main diagonal would be the $\ell+1$ st column of the new array. Write and test a procedure for solving a linear system with the coefficient matrix stored in banded storage mode.
20. An $n \times n$ symmetric banded coefficient matrix with m subdiagonals and m superdiagonals can be stored in symmetric banded storage mode in an $n \times(m+1)$ array. Only the main diagonal and subdiagonals are stored so that the main diagonal is the last column in the new array, shown in the figure. Write and test a procedure for solving a linear system with the coefficient matrix stored in symmetric banded storage mode.
21. Write code for solving block pentadiagonal systems and test it on the systems with block submatrices. Compare the code to Penta using symmetric and nonsymmetric systems.
22. (Nonperiodic spline filter) The filter equation for the nonperiodic spline filter is given by the $n \times n$ system

$$
\left(I+\alpha^{4} \boldsymbol{Q}\right) \boldsymbol{w}=\boldsymbol{z}
$$

where the matrix is

$$
\boldsymbol{Q}=\left[\begin{array}{rrrrrrr}
1 & -2 & 1 & & & & \\
-2 & 5 & -4 & 1 & & & \\
1 & -4 & 6 & -4 & 1 & & \\
& \ddots & \ddots & \ddots & \ddots & \ddots & \\
& & 1 & -4 & 6 & -4 & -1 \\
& & & 1 & -4 & 5 & -2 \\
& & & & 1 & -2 & 1
\end{array}\right]
$$

Here the parameter $\alpha=1 /\left[2 \sin \left(\pi \Delta x / \lambda_{c}\right)\right]$ involves measurement values of the profile, dimensions, and wavelength over a sampling interval. The solution w gives the profile values for the long wave components and $z-\boldsymbol{w}$ are those for the short wave components. Use this system to test the Penta code using various values of α. Hint: For test systems, select a simple solution vector such as $\boldsymbol{w}=[1,-1,1,-1, \ldots, 1]^{T}$ with a modest value for n, and then compute the right-hand side by matrix-vector multiplication $z=\left(I+\alpha^{4} \boldsymbol{Q}\right) \boldsymbol{w}$.
23. (Continuation, periodic spline filter) The filter equation for the periodic spline filter is given by the $n \times n$ system

$$
\left(I+\alpha^{4} \widehat{\boldsymbol{Q}}\right) \widehat{\boldsymbol{w}}=\widehat{\boldsymbol{z}}
$$

where the matrix is

$$
\widehat{\boldsymbol{Q}}=\left[\begin{array}{rrrrrrr}
6 & -4 & 1 & & & 1 & -4 \\
-4 & 6 & -4 & 1 & & & 1 \\
1 & -4 & 6 & -4 & 1 & & \\
& \ddots & \ddots & \ddots & \ddots & \ddots & \\
& & 1 & -4 & 6 & -4 & 1 \\
1 & & & 1 & -4 & 6 & -4 \\
-4 & 1 & & & 1 & -4 & 6
\end{array}\right]
$$

Periodic spline filters are used in cases of filtering closed profiles. Making use of the symmetry, modify the Penta pseudocode to handle this system and then code and test it.
24. Use mathematical software such as found in Matlab, Maple, or Mathematica to generate a tridiagonal system and solve it. For example, use the 5×5 tridiagonal system $\boldsymbol{A}=$ Band_Matrix $(-1,2,1)$ with right-hand side $\boldsymbol{b}=[1,4,9,16,25]^{T}$.

Additional Topics Concerning Systems of Linear Equations

In applications that involve partial differential equations, large linear systems arise with sparse coefficient matrices such as

$$
\boldsymbol{A}=\left[\begin{array}{rrrrrrrrr}
4 & -1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
-1 & 4 & -1 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & -1 & 4 & 0 & 0 & -1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 4 & -1 & 0 & -1 & 0 & 0 \\
0 & -1 & 0 & -1 & 4 & -1 & 0 & -1 & 0 \\
0 & 0 & -1 & 0 & -1 & 4 & 0 & 0 & -1 \\
0 & 0 & 0 & -1 & 0 & 0 & 4 & -1 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & -1 & 4 & -1 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & -1 & 4
\end{array}\right]
$$

Gaussian elimination may cause fill-in of the zero entries by nonzero values. On the other hand, iterative methods preserve its sparse structure.

8.1 Matrix Factorizations

An $n \times n$ system of linear equations can be written in matrix form

$$
\begin{equation*}
A x=b \tag{1}
\end{equation*}
$$

where the coefficient matrix \boldsymbol{A} has the form

$$
\boldsymbol{A}=\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2 n} \\
a_{31} & a_{32} & a_{33} & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & a_{n 3} & \cdots & a_{n n}
\end{array}\right]
$$

Our main objective is to show that the naive Gaussian algorithm applied to \boldsymbol{A} yields a factorization of \boldsymbol{A} into a product of two simple matrices, one unit lower triangular:

$$
\boldsymbol{L}=\left[\begin{array}{ccccc}
1 & & & & \\
\ell_{21} & 1 & & & \\
\ell_{31} & \ell_{32} & 1 & & \\
\vdots & \vdots & \vdots & \ddots & \\
\ell_{n 1} & \ell_{n 2} & \ell_{n 3} & \cdots & 1
\end{array}\right]
$$

and the other upper triangular:

$$
\boldsymbol{U}=\left[\begin{array}{ccccc}
u_{11} & u_{12} & u_{13} & \cdots & u_{1 n} \\
& u_{22} & u_{23} & \cdots & u_{2 n} \\
& & u_{33} & \cdots & u_{3 n} \\
& & & \ddots & \vdots \\
& & & & u_{n n}
\end{array}\right]
$$

In short, we refer to this as an $\boldsymbol{L} \boldsymbol{U}$ factorization of \boldsymbol{A}; that is, $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}$.

Numerical Example

The system of Equations (2) of Section 7.1 can be written succinctly in matrix form:

$$
\left[\begin{array}{rrrr}
6 & -2 & 2 & 4 \tag{2}\\
12 & -8 & 6 & 10 \\
3 & -13 & 9 & 3 \\
-6 & 4 & 1 & -18
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
16 \\
26 \\
-19 \\
-34
\end{array}\right]
$$

Furthermore, the operations that led from this system to Equation (5) of Section 7.1, that is, the system

$$
\left[\begin{array}{rrrr}
6 & -2 & 2 & 4 \tag{3}\\
0 & -4 & 2 & 2 \\
0 & 0 & 2 & -5 \\
0 & 0 & 0 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
16 \\
-6 \\
-9 \\
-3
\end{array}\right]
$$

could be effected by an appropriate matrix multiplication. The forward elimination phase can be interpreted as starting from (1) and proceeding to

$$
\begin{equation*}
M A x=M b \tag{4}
\end{equation*}
$$

where \boldsymbol{M} is a matrix chosen so that $\boldsymbol{M} \boldsymbol{A}$ is the coefficient matrix for System (3). Hence, we have

$$
\boldsymbol{M} \boldsymbol{A}=\left[\begin{array}{rrrr}
6 & -2 & 2 & 4 \\
0 & -4 & 2 & 2 \\
0 & 0 & 2 & -5 \\
0 & 0 & 0 & -3
\end{array}\right] \equiv \boldsymbol{U}
$$

which is an upper triangular matrix.

The first step of naive Gaussian elimination results in Equation (3) of Section 7.1 or the system

$$
\left[\begin{array}{rrrr}
6 & -2 & 2 & 4 \\
0 & -4 & 2 & 2 \\
0 & -12 & 8 & 1 \\
0 & 2 & 3 & -14
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
16 \\
-6 \\
-27 \\
-18
\end{array}\right]
$$

This step can be accomplished by multiplying (1) by a lower triangular matrix \boldsymbol{M}_{1} :

$$
M_{1} A x=M_{1} b
$$

where

$$
\boldsymbol{M}_{1}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
-2 & 1 & 0 & 0 \\
-\frac{1}{2} & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right]
$$

Notice the special form of \boldsymbol{M}_{1}. The diagonal elements are all 1's, and the only other nonzero elements are in the first column. These numbers are the negatives of the multipliers located in the positions where they created 0 's as coefficients in step 1 of the forward elimination phase. To continue, step 2 resulted in Equation (4) of Section 7.1 or the system

$$
\left[\begin{array}{rrrr}
6 & -2 & 2 & 4 \\
0 & -4 & 2 & 2 \\
0 & 0 & 2 & -5 \\
0 & 0 & 4 & -13
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
16 \\
-6 \\
-9 \\
-21
\end{array}\right]
$$

which is equivalent to

$$
M_{2} M_{1} A x=M_{2} M_{1} b
$$

where

$$
\boldsymbol{M}_{2}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -3 & 1 & 0 \\
0 & \frac{1}{2} & 0 & 1
\end{array}\right]
$$

Again, \boldsymbol{M}_{2} differs from an identity matrix by the presence of the negatives of the multipliers in the second column from the diagonal down. Finally, step 3 gives System (3), which is equivalent to

$$
M_{3} M_{2} M_{1} A x=M_{3} M_{2} M_{1} b
$$

where

$$
\boldsymbol{M}_{3}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -2 & 1
\end{array}\right]
$$

Now the forward elimination phase is complete, and with

$$
\begin{equation*}
M=M_{3} M_{2} M_{1} \tag{5}
\end{equation*}
$$

we have the upper triangular coefficient System (3).

Using Equations (4) and (5), we can give a different interpretation of the forward elimination phase of naive Gaussian elimination. Now we see that

$$
\begin{aligned}
\boldsymbol{A} & =\boldsymbol{M}^{-1} \boldsymbol{U} \\
& =\boldsymbol{M}_{1}^{-1} \boldsymbol{M}_{2}^{-1} \boldsymbol{M}_{3}^{-1} \boldsymbol{U} \\
& =\boldsymbol{L} \boldsymbol{U}
\end{aligned}
$$

Since each \boldsymbol{M}_{k} has such a special form, its inverse is obtained by simply changing the signs of the negative multiplier entries! Hence, we have

$$
\left.\left.\begin{array}{rl}
\boldsymbol{L} & =\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
\frac{1}{2} & 0 & 1 & 0 \\
-1 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 3 & 1 & 0 \\
0 & -\frac{1}{2} & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 \\
0 & 1 & 0 \\
0 \\
0 & 0 & 1 \\
0 & 0 & 2
\end{array} 1\right.
\end{array}\right]\right)
$$

It is somewhat amazing that \boldsymbol{L} is a unit lower triangular matrix composed of the multipliers. Notice that in forming \boldsymbol{L}, we did not determine \boldsymbol{M} first and then compute $\boldsymbol{M}^{-1}=\boldsymbol{L}$. (Why?)

It is easy to verify that

$$
\begin{aligned}
\boldsymbol{L} \boldsymbol{U} & =\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
\frac{1}{2} & 3 & 1 & 0 \\
-1 & -\frac{1}{2} & 2 & 1
\end{array}\right]\left[\begin{array}{rrrr}
6 & -2 & 2 & 4 \\
0 & -4 & 2 & 2 \\
0 & 0 & 2 & -5 \\
0 & 0 & 0 & -3
\end{array}\right] \\
& =\left[\begin{array}{rrrr}
6 & -2 & 2 & 4 \\
12 & -8 & 6 & 10 \\
3 & -13 & 9 & 3 \\
-6 & 4 & 1 & -18
\end{array}\right]=\boldsymbol{A}
\end{aligned}
$$

We see that \boldsymbol{A} is factored or decomposed into a unit lower triangular matrix \boldsymbol{L} and an upper triangular matrix \boldsymbol{U}. The matrix \boldsymbol{L} consists of the multipliers located in the positions of the elements they annihilated from \boldsymbol{A}, of unit diagonal elements, and of 0 upper triangular elements. In fact, we now know the general form of \boldsymbol{L} and can just write it down directly using the multipliers without forming the \boldsymbol{M}_{k} 's and the \boldsymbol{M}_{k}^{-1} 's. The matrix \boldsymbol{U} is upper triangular (not generally having unit diagonal) and is the final coefficient matrix after the forward elimination phase is completed.

It should be noted that the pseudocode Naive_Gauss of Section 7.1 replaces the original coefficient matrix with its $\boldsymbol{L} \boldsymbol{U}$ factorization. The elements of \boldsymbol{U} are in the upper triangular part of the $\left(a_{i j}\right)$ array including the diagonal. The entries below the main diagonal in \boldsymbol{L} (that is, the multipliers) are found below the main diagonal in the ($a_{i j}$) array. Since it is known that \boldsymbol{L} has a unit diagonal, nothing is lost by not storing the 1 's. [In fact, we have run out of room in the $\left(a_{i j}\right)$ array anyway!]

Formal Derivation

To see formally how the Gaussian elimination (in naive form) leads to an $\boldsymbol{L} \boldsymbol{U}$ factorization, it is necessary to show that each row operation used in the algorithm can be effected by
multiplying \boldsymbol{A} on the left by an elementary matrix. Specifically, if we wish to subtract λ times row p from row q, we first apply this operation to the $n \times n$ identity matrix to create an elementary matrix $\boldsymbol{M}_{q p}$. Then we form the matrix product $\boldsymbol{M}_{q p} \boldsymbol{A}$.

Before proceeding, let us verify that $\boldsymbol{M}_{q p} \boldsymbol{A}$ is obtained by subtracting λ times row p from row q in matrix \boldsymbol{A}. Assume that $p<q$ (for in the naive algorithm, this is always true). Then the elements of $\boldsymbol{M}_{q p}=\left(m_{i j}\right)$ are

$$
m_{i j}=\left\{\begin{aligned}
1 & \text { if } i=j \\
-\lambda & \text { if } i=q \text { and } j=p \\
0 & \text { in all other cases }
\end{aligned}\right.
$$

Therefore, the elements of $\boldsymbol{M}_{q p} \boldsymbol{A}$ are given by

$$
\left(\boldsymbol{M}_{q p} \boldsymbol{A}\right)_{i j}=\sum_{s=1}^{n} m_{i s} a_{s j}= \begin{cases}a_{i j} & \text { if } i \neq q \\ a_{q j}-\lambda a_{p j} & \text { if } i=q\end{cases}
$$

The q th row of $\boldsymbol{M}_{q p} \boldsymbol{A}$ is the sum of the q th row of \boldsymbol{A} and $-\lambda$ times the p th row of \boldsymbol{A}, as was to be proved.

The k th step of Gaussian elimination corresponds to the matrix \boldsymbol{M}_{k}, which is the product of $n-k$ elementary matrices:

$$
\boldsymbol{M}_{k}=\boldsymbol{M}_{n k} \boldsymbol{M}_{n-1, k} \cdots \boldsymbol{M}_{k+1, k}
$$

Notice that each elementary matrix $\boldsymbol{M}_{i k}$ here is lower triangular because $i>k$, and therefore, \boldsymbol{M}_{k} is also lower triangular. If we carry out the Gaussian forward elimination process on \boldsymbol{A}, the result will be an upper triangular matrix \boldsymbol{U}. On the other hand, the result is obtained by applying a succession of factors such as \boldsymbol{M}_{k} to the left of \boldsymbol{A}. Hence, the entire process is summarized by writing

$$
M_{n-1} \cdots M_{2} M_{1} A=U
$$

Since each \boldsymbol{M}_{k} is invertible, we have

$$
\boldsymbol{A}=\boldsymbol{M}_{1}^{-1} \boldsymbol{M}_{2}^{-1} \cdots \boldsymbol{M}_{n-1}^{-1} \boldsymbol{U}
$$

Each \boldsymbol{M}_{k} is lower triangular having 1's on its main diagonal (unit lower triangular). Each inverse \boldsymbol{M}_{k}^{-1} has the same property, and the same is true of their product. Hence, the matrix

$$
\begin{equation*}
\boldsymbol{L}=\boldsymbol{M}_{1}^{-1} \boldsymbol{M}_{2}^{-1} \cdots \boldsymbol{M}_{n-1}^{-1} \tag{6}
\end{equation*}
$$

is unit lower triangular, and we have

$$
A=L U
$$

This is the so-called $\boldsymbol{L} \boldsymbol{U}$ factorization of \boldsymbol{A}. Our construction of it depends upon not encountering any 0 divisors in the algorithm. It is easy to give examples of matrices that have no $\boldsymbol{L} \boldsymbol{U}$ factorization; one of the simplest is

$$
\boldsymbol{A}=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]
$$

(See Problem 8.1.4.)

L U FACTORIZATION THEOREM

Let $\boldsymbol{A}=\left(a_{i j}\right)$ be an $n \times n$ matrix. Assume that the forward elimination phase of the naive Gaussian algorithm is applied to \boldsymbol{A} without encountering any 0 divisors. Let the resulting matrix be denoted by $\widetilde{A}=\left(\widetilde{a}_{i j}\right)$. If

$$
\boldsymbol{L}=\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
\widetilde{a}_{21} & 1 & 0 & \cdots & 0 \\
\widetilde{a}_{31} & \widetilde{a}_{32} & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
\widetilde{a}_{n 1} & \widetilde{a}_{n 2} & \cdots & \widetilde{a}_{n, n-1} & 1
\end{array}\right]
$$

and

$$
\boldsymbol{U}=\left[\begin{array}{ccccc}
\widetilde{a}_{11} & \widetilde{a}_{12} & \widetilde{a}_{13} & \cdots & \widetilde{a}_{1 n} \\
0 & \widetilde{a}_{22} & \widetilde{a}_{23} & \cdots & \widetilde{a}_{2 n} \\
0 & 0 & \widetilde{a}_{33} & \cdots & \widetilde{a}_{3 n} \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & \widetilde{a}_{n n}
\end{array}\right]
$$

then $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}$.

Proof We define the Gaussian algorithm formally as follows. Let $\boldsymbol{A}^{(1)}=\boldsymbol{A}$. Then we compute $\boldsymbol{A}^{(2)}, \boldsymbol{A}^{(3)}, \ldots, \boldsymbol{A}^{(n)}$ recursively by the naive Gaussian algorithm, following these equations:

$$
\begin{align*}
& a_{i j}^{(k+1)}=a_{i j}^{(k)} \quad(\text { if } i \leqq k \text { or } j<k) \tag{7}\\
& a_{i j}^{(k+1)}=\frac{a_{i k}^{(k)}}{a_{k k}^{(k)}} \quad(\text { if } i>k \text { and } j=k) \tag{8}\\
& a_{i j}^{(k+1)}=a_{i j}^{(k)}-\left(\frac{a_{i k}^{(k)}}{a_{k k}^{(k)}}\right) a_{k j}^{(k)} \quad(\text { if } i>k \text { and } j>k) \tag{9}
\end{align*}
$$

These equations describe in a precise form the forward elimination phase of the naive Gaussian elimination algorithm. For example, Equation (7) states that in proceeding from $\boldsymbol{A}^{(k)}$ to $\boldsymbol{A}^{(k+1)}$, we do not alter rows $1,2, \ldots, k$ or columns $1,2, \ldots, k-1$. Equation (8) shows how the multipliers are computed and stored in passing from $\boldsymbol{A}^{(k)}$ to $\boldsymbol{A}^{(k+1)}$. Finally, Equation (9) shows how multiples of row k are subtracted from rows $k+1, k+2, \ldots, n$ to produce $\boldsymbol{A}^{(k+1)}$ from $\boldsymbol{A}^{(k)}$.

Notice that $\boldsymbol{A}^{(n)}$ is the final result of the process. (It was referred to as \widetilde{A} in the statement of the theorem.) The formal definitions of $\boldsymbol{L}=\left(\ell_{i k}\right)$ and $\boldsymbol{U}=\left(u_{k j}\right)$ are therefore

$$
\begin{array}{ll}
\ell_{i k}=1 & \\
\ell_{i k}=a_{i k}^{(n)} & \\
\ell_{i k}=0 & \\
u_{k j}=a_{k j}^{(n)} & \\
u_{k j}(k>i) \tag{14}\\
u_{k j}=0 & \\
(j \geqq k) \\
& (j<k)
\end{array}
$$

Now we draw some consequences of these equations. First, it follows immediately from Equation (7) that

$$
\begin{equation*}
a_{i j}^{(i)}=a_{i j}^{(i+1)}=\cdots=a_{i j}^{(n)} \tag{15}
\end{equation*}
$$

Likewise, we have, from Equation (7),

$$
\begin{equation*}
a_{i j}^{(j+1)}=a_{i j}^{(j+2)}=\cdots=a_{i j}^{(n)} \quad(j<n) \tag{16}
\end{equation*}
$$

From Equations (16) and (8), we now have

$$
\begin{equation*}
a_{i j}^{(n)}=a_{i j}^{(j+1)}=\frac{a_{i j}^{(j)}}{a_{j j}^{(j)}} \quad(j<n) \tag{17}
\end{equation*}
$$

From Equations (17) and (11), it follows that

$$
\begin{equation*}
\ell_{i k}=a_{i k}^{(n)}=\frac{a_{i k}^{(k)}}{a_{k k}^{(k)}} \quad(k<i) \tag{18}
\end{equation*}
$$

From Equations (13) and (15), we have

$$
\begin{equation*}
u_{k j}=a_{k j}^{(n)}=a_{k j}^{(k)} \quad(k \leqq j) \tag{19}
\end{equation*}
$$

With the aid of all these equations, we can now prove that $\boldsymbol{L} \boldsymbol{U}=\boldsymbol{A}$. First, consider the case $i \leqq j$. Then

$$
\begin{array}{rlrl}
(\boldsymbol{L} \boldsymbol{U})_{i j} & =\sum_{k=1}^{n} \ell_{i k} u_{k j} & & \text { [definition of multiplication] } \\
& =\sum_{k=1}^{i} \ell_{i k} u_{k j} & & {[\text { by Equation (12)] }} \\
& =\sum_{k=1}^{i-1} \ell_{i k} u_{k j}+u_{i j} & & {[\text { by Equation (10)] }} \\
& =\sum_{k=1}^{i-1}\left[\frac{a_{i k}^{(k)}}{a_{k k}^{(k)}}\right] a_{k j}^{(k)}+a_{i j}^{(i)} & & {[\text { by Equations (18) and (19)] }} \\
& =\sum_{k=1}^{i-1}\left[a_{i j}^{(k)}-a_{i j}^{(k+1)}\right]+a_{i j}^{(i)} & & {[\text { by Equation (9)] }} \\
& =a_{i j}^{(1)}=a_{i j} &
\end{array}
$$

In the remaining case, $i>j$, we have

$$
\begin{array}{rlrl}
(\boldsymbol{L} \boldsymbol{U})_{i j} & =\sum_{k=1}^{n} \ell_{i k} u_{k j} & & \text { [definition of multiplication] } \\
& =\sum_{k=1}^{j} \ell_{i k} u_{k j} & & {[\text { by Equation (14)] }} \\
& =\sum_{k=1}^{j}\left[\frac{a_{i k}^{(k)}}{a_{k k}^{(k)}}\right] a_{k j}^{(k)} & & \text { [by Equations (18) and (19)] } \\
& =\sum_{k=1}^{j-1}\left[\frac{a_{i k}^{(k)}}{a_{k k}^{(k)}}\right] a_{k j}^{(k)}+a_{i j}^{(j)} & \\
& =\sum_{k=1}^{j-1}\left[a_{i j}^{(k)}-a_{i j}^{(k+1)}\right]+a_{i j}^{(j)} & & {[\text { by Equation (9)] }} \\
& =a_{i j}^{(1)}=a_{i j} &
\end{array}
$$

Pseudocode

The following is the pseudocode for carrying out the $\boldsymbol{L} \boldsymbol{U}$ factorization, which is sometimes called the Doolittle factorization:

```
integer i,k,n; real array }(\mp@subsup{a}{ij}{}\mp@subsup{)}{1:n\times1:n}{},(\mp@subsup{\ell}{ij}{}\mp@subsup{)}{1:n\times1:n}{},(\mp@subsup{u}{ij}{}\mp@subsup{)}{1:n\times1:n}{
for }k=1\mathrm{ to }n\mathrm{ do
    \ell 
    for j=k to }n\mathrm{ do
        ukj}\leftarrow\mp@subsup{a}{kj}{}-\mp@subsup{\sum}{s=1}{k-1}\mp@subsup{\ell}{ks}{}\mp@subsup{u}{sj}{
    end do
    for }i=k+1\mathrm{ to }n\mathrm{ do
        \ellik}\leftarrow\leftarrow(\mp@subsup{a}{ik}{}-\mp@subsup{\sum}{s=1}{k-1}\mp@subsup{\ell}{is}{}\mp@subsup{u}{sk}{})/\mp@subsup{u}{kk}{
    end do
end do
```


Solving Linear Systems Using LU Factorization

Once the $\boldsymbol{L} \boldsymbol{U}$ factorization of \boldsymbol{A} is available, we can solve the system

$$
A x=b
$$

by writing

$$
L U x=b
$$

Then we solve two triangular systems:

$$
\begin{equation*}
L z=b \tag{20}
\end{equation*}
$$

for z and

$$
\begin{equation*}
U x=z \tag{21}
\end{equation*}
$$

for \boldsymbol{x}. This is particularly useful for problems that involve the same coefficient matrix \boldsymbol{A} and many different right-hand vectors \boldsymbol{b}.

Since L is unit lower triangular, z is obtained by the pseudocode

$$
\begin{aligned}
& \text { integer } i, n ; \quad \text { real array }\left(b_{i}\right)_{1: n},\left(\ell_{i j}\right)_{1: n \times 1: n},\left(z_{i}\right)_{1: n} \\
& z_{1} \leftarrow b_{1} \\
& \text { for } i=2 \text { to } n \text { do } \\
& \qquad z_{i} \leftarrow b_{i}-\sum_{j=1}^{i-1} \ell_{i j} z_{j} \\
& \text { end for }
\end{aligned}
$$

Likewise, \boldsymbol{x} is obtained by the pseudocode

```
integer i,n; real array ( }\mp@subsup{u}{ij}{}\mp@subsup{)}{1:n\times1:n}{},(\mp@subsup{x}{i}{}\mp@subsup{)}{1:n}{n},(\mp@subsup{z}{i}{}\mp@subsup{)}{1:n}{
xn}\leftarrow\leftarrow\mp@subsup{z}{n}{}/\mp@subsup{u}{nn}{
for i=n-1 to 1 step -1 do
    x
end for
```

The first of these two algorithms applies the forward phase of Gaussian elimination to the right-hand-side vector \boldsymbol{b}. [Recall that the $\ell_{i j}$'s are the multipliers that have been stored in the array $\left(a_{i j}\right)$.] The easiest way to verify this assertion is to use Equation (6) and to rewrite the equation

$$
L z=b
$$

in the form

$$
\boldsymbol{M}_{1}^{-1} \boldsymbol{M}_{2}^{-1} \cdots \boldsymbol{M}_{n-1}^{-1} z=\boldsymbol{b}
$$

From this, we get immediately

$$
z=\boldsymbol{M}_{n-1} \cdots \boldsymbol{M}_{2} \boldsymbol{M}_{1} \boldsymbol{b}
$$

Thus, the same operations used to reduce \boldsymbol{A} to \boldsymbol{U} are to be used on \boldsymbol{b} to produce \boldsymbol{z}.
Another way to solve Equation (20) is to note that what must be done is to form

$$
\boldsymbol{M}_{n-1} \boldsymbol{M}_{n-2} \cdots M_{2} M_{1} b
$$

This can be accomplished by using only the array $\left(b_{i}\right)$ by putting the results back into \boldsymbol{b}; that is,

$$
\boldsymbol{b} \leftarrow \boldsymbol{M}_{k} \boldsymbol{b}
$$

We know what \boldsymbol{M}_{k} looks like because it is made up of negative multipliers that have been saved in the array $\left(a_{i j}\right)$. Consequently, we have

$$
\boldsymbol{M}_{k} \boldsymbol{b}=\left[\begin{array}{ccccccc}
1 & & & & & & \\
& \ddots & & & & & \\
& & 1 & & & & \\
& & -a_{k+1, k} & 1 & & & \\
& & \vdots & & \ddots & & \\
& & -a_{i k} & & & 1 & \\
& & \vdots & & & & \ddots \\
& & -a_{n k} & & & & 1
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
\vdots \\
b_{k} \\
b_{k+1} \\
\vdots \\
b_{i} \\
\vdots \\
b_{n}
\end{array}\right]
$$

The entries b_{1} to b_{k} are not changed by this multiplication, while $b_{i}($ for $i \geqq k+1)$ is replaced by $-a_{i k} b_{k}+b_{i}$. Hence, the following pseudocode updates the array $\left(b_{i}\right)$ based on the stored multipliers in the array a :

```
integer \(i, k, n ; \quad\) real array \(\left(a_{i j}\right)_{1: n \times 1: n},\left(b_{i}\right)_{1: n}\)
for \(k=1\) to \(n-1\) do
    for \(i=k+1\) to \(n\) do
        \(b_{i} \leftarrow b_{i}-a_{i k} b_{k}\)
    end for
end for
```

This pseudocode should be familiar. It is the process for updating \boldsymbol{b} from Section 7.2.
The algorithm for solving Equation (21) is the back substitution phase of the naive Gaussian elimination process.

LDL ${ }^{T}$ Factorization

In the $\boldsymbol{L} \boldsymbol{D} \boldsymbol{L}^{T}$ factorization, \boldsymbol{L} is unit lower triangular, and \boldsymbol{D} is a diagonal matrix. This factorization can be carried out if \boldsymbol{A} is symmetric and has an ordinary $\boldsymbol{L} \boldsymbol{U}$ factorization, with L unit lower triangular. To see this, we start with

$$
\boldsymbol{L} \boldsymbol{U}=\boldsymbol{A}=\boldsymbol{A}^{T}=(\boldsymbol{L} \boldsymbol{U})^{T}=\boldsymbol{U}^{T} \boldsymbol{L}^{T}
$$

Since \boldsymbol{L} is unit lower triangular, it is invertible, and we can write $\boldsymbol{U}=\boldsymbol{L}^{-1} \boldsymbol{U}^{T} \boldsymbol{L}^{T}$. Then $\boldsymbol{U}\left(\boldsymbol{L}^{T}\right)^{-1}=\boldsymbol{L}^{-1} \boldsymbol{U}^{T}$. Since the right side of this equation is lower triangular and the left side is upper triangular, both sides are diagonal, say, \boldsymbol{D}. From the equation $\boldsymbol{U}\left(\boldsymbol{L}^{T}\right)^{-1}=\boldsymbol{D}$, we have $\boldsymbol{U}=\boldsymbol{D} \boldsymbol{L}^{T}$ and $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}=\boldsymbol{L} \boldsymbol{D} \boldsymbol{L}^{T}$.

We now derive the pseudocode for obtaining the $\boldsymbol{L} \boldsymbol{D} \boldsymbol{L}^{T}$ factorization of a symmetric matrix \boldsymbol{A} in which \boldsymbol{L} is unit lower triangular and \boldsymbol{D} is diagonal. In our analysis, we write $a_{i j}$ as generic elements of \boldsymbol{A} and $\ell_{i j}$ as generic elements of \boldsymbol{L}. The diagonal of \boldsymbol{D} has elements
$d_{i i}$, or d_{i}. From the equation $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{D} \boldsymbol{L}^{T}$, we have

$$
\begin{aligned}
a_{i j} & =\sum_{\nu=1}^{n} \sum_{\mu=1}^{n} \ell_{i \nu} d_{\nu \mu} \ell_{\mu j}^{T} \\
& =\sum_{\nu=1}^{n} \sum_{\mu=1}^{n} \ell_{i \nu} d_{\nu} \delta_{\nu \mu} \ell_{j \mu} \\
& =\sum_{\nu=1}^{n} \ell_{i \nu} d_{\nu} \ell_{j v} \quad(1 \leqq i, j \leqq n)
\end{aligned}
$$

Use the fact that $\ell_{i j}=0$ when $j>i$ and $\ell_{i i}=1$ to continue the argument

$$
a_{i j}=\sum_{\nu=1}^{\min (i, j)} \ell_{i \nu} d_{\nu} \ell_{j \nu} \quad(1 \leqq i, j \leqq n)
$$

Assume now that $j \leqq i$. Then

$$
\begin{aligned}
a_{i j} & =\sum_{\nu=1}^{j} \ell_{i \nu} d_{\nu} \ell_{j \nu} \\
& =\sum_{\nu=1}^{j-1} \ell_{i v} d_{\nu} \ell_{j \nu}+\ell_{i j} d_{j} \ell_{j j} \\
& =\sum_{\nu=1}^{j-1} \ell_{i \nu} d_{\nu} \ell_{j \nu}+\ell_{i j} d_{j} \quad(1 \leqq j \leqq i \leqq n)
\end{aligned}
$$

In particular, let $j=i$. We get

$$
a_{i i}=\sum_{\nu=1}^{i-1} \ell_{i \nu} d_{\nu} \ell_{i v}+d_{i} \quad(1 \leqq i \leqq n)
$$

Equivalently, we have

$$
d_{i}=a_{i i}-\sum_{\nu=1}^{i-1} d_{\nu} \ell_{i \nu}^{2} \quad(1 \leqq i \leqq n)
$$

Particular cases of this are

$$
\begin{aligned}
& d_{1}=a_{11} \\
& d_{2}=a_{22}-d_{1} \ell_{21}^{2} \\
& d_{3}=a_{33}-d_{1} \ell_{31}^{2}-d_{2} \ell_{32}^{2}
\end{aligned}
$$

etc.
Now we can limit our attention to the cases $1 \leqq j<i \leqq n$, where we have

$$
a_{i j}=\sum_{v=1}^{j-1} \ell_{i v} d_{\nu} \ell_{j v}+\ell_{i j} d_{j} \quad(1 \leqq j<i \leqq n)
$$

Solving for $\ell_{i j}$, we obtain

$$
\ell_{i j}=\left[a_{i j}-\sum_{v=1}^{j-1} \ell_{i v} d_{v} \ell_{j v}\right] / d_{j} \quad(1 \leqq j<i \leqq n)
$$

Taking $j=1$, we have

$$
\ell_{i 1}=a_{i 1} / d_{1} \quad(2 \leqq i \leqq n)
$$

This formula produces column one in \boldsymbol{L}. Taking $j=2$, we have

$$
\ell_{i 2}=\left(a_{i 2}-\ell_{i 1} d_{1} \ell_{21}\right) / d_{2} \quad(3 \leqq i \leqq n)
$$

This formula produces column two in \boldsymbol{L}. The formal algorithm for the $\boldsymbol{L} \boldsymbol{D} \boldsymbol{L}^{T}$ factorization is as follows:

```
integer \(i, j, n, \nu ; \quad\) real array \(\left(a_{i j}\right)_{1: n \times 1: n},\left(\ell_{i j}\right)_{1: n \times 1: n},\left(d_{i}\right)_{1: n}\)
for \(j=1\) to \(n\)
    \(\ell_{j j}=1\)
    \(d_{j}=a_{j j}-\sum_{v=1}^{j-1} d_{\nu} \ell_{j v}^{2}\)
    for \(i=j+1\) to \(n\)
        \(\ell_{j i}=0\)
        \(\ell_{i j}=\left(a_{i j}-\sum_{v=1}^{j-1} \ell_{i v} d_{\nu} \ell_{j v}\right) / d_{j}\)
    end for
end for
```

EXAMPLE 1 Determine the $\boldsymbol{L} \boldsymbol{D} \boldsymbol{L}^{T}$ factorization of the matrix

$$
\boldsymbol{A}=\left[\begin{array}{llll}
4 & 3 & 2 & 1 \\
3 & 3 & 2 & 1 \\
2 & 2 & 2 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

Solution First, we determine the $\boldsymbol{L} \boldsymbol{U}$ factorization:

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\frac{3}{4} & 1 & 0 & 0 \\
\frac{1}{2} & \frac{2}{3} & 1 & 0 \\
\frac{1}{4} & \frac{1}{3} & \frac{1}{2} & 1
\end{array}\right]\left[\begin{array}{llll}
4 & 3 & 2 & 1 \\
0 & \frac{3}{4} & \frac{1}{2} & \frac{1}{4} \\
0 & 0 & \frac{2}{3} & \frac{1}{3} \\
0 & 0 & 0 & \frac{1}{2}
\end{array}\right]=\boldsymbol{L} \boldsymbol{U}
$$

Then extract the diagonal elements from \boldsymbol{U} and place them into a diagonal matrix \boldsymbol{D}, writing

$$
\boldsymbol{U}=\left[\begin{array}{cccc}
4 & 0 & 0 & 0 \\
0 & \frac{3}{4} & 0 & 0 \\
0 & 0 & \frac{2}{3} & 0 \\
0 & 0 & 0 & \frac{1}{2}
\end{array}\right]\left[\begin{array}{llll}
1 & \frac{3}{4} & \frac{1}{2} & \frac{1}{4} \\
0 & 1 & \frac{2}{3} & \frac{1}{3} \\
0 & 0 & 1 & \frac{1}{2} \\
0 & 0 & 0 & 1
\end{array}\right]=\boldsymbol{D} \boldsymbol{L}^{T}
$$

Clearly, we have $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{D} \boldsymbol{L}^{T}$.

Cholesky Factorization

Any symmetric matrix that has an $\boldsymbol{L} \boldsymbol{U}$ factorization in which \boldsymbol{L} is unit lower triangular, has an $\boldsymbol{L} \boldsymbol{D} \boldsymbol{L}^{T}$ factorization. The Cholesky factorization $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{L}^{T}$ is a simple consequence of it for the case in which \boldsymbol{A} is symmetric and positive definite.

Suppose in the factorization $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}$ the matrix \boldsymbol{L} is lower triangular and the matrix \boldsymbol{U} is upper triangular. When \boldsymbol{L} is unit lower triangular, it is called the Doolittle factorization. When \boldsymbol{U} is unit upper triangular, it goes by the name Crout factorization. In the case in which \boldsymbol{A} is symmetric positive definite and $\boldsymbol{U}=\boldsymbol{L}^{T}$, it is called the Cholesky factorization. The mathematician André Louis Cholesky proved the following result.

THEOREM 2

CHOLESKY THEOREM ON L L ${ }^{T}$ FACTORIZATION

If \boldsymbol{A} is a real, symmetric, and positive definite matrix, then it has a unique factorization, $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{L}^{T}$, in which \boldsymbol{L} is lower triangular with a positive diagonal.

Recall that a matrix \boldsymbol{A} is symmetric and positive definite if $\boldsymbol{A}=\boldsymbol{A}^{T}$ and $x^{T} \boldsymbol{A} x>0$ for every nonzero vector x. It follows at once that \boldsymbol{A} is nonsingular because \boldsymbol{A} obviously cannot map any nonzero vector into 0 . Moreover, by considering special vectors of the form $x=\left(x_{1}, x_{2}, \ldots, x_{k}, 0,0, \ldots, 0\right)^{T}$, we see that the leading principal minors of \boldsymbol{A} are also positive definite. Theorem 1 implies that \boldsymbol{A} has an $\boldsymbol{L} \boldsymbol{U}$ decomposition. By the symmetry of \boldsymbol{A}, we then have, from the previous discussion, $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{D} \boldsymbol{L}^{T}$. It can be shown that \boldsymbol{D} is positive definite, and thus its elements $d_{i i}$ are positive. Denoting by $\boldsymbol{D}^{1 / 2}$ the diagonal matrix whose diagonal elements are $\sqrt{d_{i i}}$, we have $\boldsymbol{A}=\widetilde{\boldsymbol{L}} \widetilde{\boldsymbol{L}}^{T}$ where $\widetilde{\boldsymbol{L}} \equiv \boldsymbol{L} \boldsymbol{D}^{1 / 2}$, which is the Cholesky factorization. We leave the proof of uniqueness to the reader.

The algorithm for the Cholesky factorization is a special case of the general $\boldsymbol{L} \boldsymbol{U}$ factorization algorithm. If \boldsymbol{A} is real, symmetric, and positive definite, then by Theorem 2, it has a unique factorization of the form $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{L}^{T}$, in which \boldsymbol{L} is lower triangular and has positive diagonal. Thus, in the equation $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}, \boldsymbol{U}=\boldsymbol{L}^{T}$. In the k th step of the general algorithm, the diagonal entry is computed by

$$
\begin{equation*}
\ell_{k k}=\left(a_{k k}-\sum_{s=1}^{k-1} \ell_{k s}^{2}\right)^{1 / 2} \tag{22}
\end{equation*}
$$

The algorithm for the Cholesky factorization will then be as follows:

$$
\begin{aligned}
& \text { integer } i, k, n, s ; \quad \text { real array }\left(a_{i j}\right)_{1: n \times 1: n},\left(\ell_{i j}\right)_{1: n \times 1: n} \\
& \text { for } k=1 \text { to } n \text { do } \\
& \ell_{k k} \leftarrow\left(a_{k k}-\sum_{s=1}^{k-1} \ell_{k s}^{2}\right)^{1 / 2} \\
& \text { for } i=k+1 \text { to } n \text { do } \\
& \ell_{i k} \leftarrow\left(a_{i k}-\sum_{s=1}^{k-1} \ell_{i s} \ell_{k s}\right) / \ell_{k k} \\
& \text { end do } \\
& \text { end do }
\end{aligned}
$$

Theorem 2 guarantees that $\ell_{k k}>0$. Observe that Equation (22) gives us the following bound:

$$
a_{k k}=\sum_{s=1}^{k} \ell_{k s}^{2} \geqq \ell_{k j}^{2} \quad(j \leqq k)
$$

from which we conclude that

$$
\left|\ell_{k j}\right| \leqq \sqrt{a_{k k}} \quad(1 \leqq j \leqq k)
$$

Hence, any element of \boldsymbol{L} is bounded by the square root of a corresponding diagonal element in \boldsymbol{A}. This implies that the elements of \boldsymbol{L} do not become large relative to \boldsymbol{A} even without any pivoting. In the Cholesky algorithm (and the Doolittle algorithms), the dot products of vectors should be computed in double precision to avoid a buildup of roundoff errors.

EXAMPLE 2 Determine the Cholesky factorization of the matrix in Example 1.
Solution Using the results from Example 1, we write

$$
\boldsymbol{A}=\boldsymbol{L} \boldsymbol{D} \boldsymbol{L}^{T}=\left(\boldsymbol{L} \boldsymbol{D}^{1 / 2}\right)\left(\boldsymbol{D}^{1 / 2} \boldsymbol{L}^{T}\right)=\widetilde{L} \widetilde{L}^{T}
$$

where

$$
\begin{aligned}
\widetilde{\boldsymbol{L}} & =\boldsymbol{L} \boldsymbol{D}^{1 / 2} \\
& =\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\frac{3}{4} & 1 & 0 & 0 \\
\frac{1}{2} & \frac{2}{3} & 1 & 0 \\
\frac{1}{4} & \frac{1}{3} & \frac{1}{2} & 1
\end{array}\right]\left[\begin{array}{cccc}
2 & 0 & 0 & 0 \\
0 & \frac{1}{2} \sqrt{3} & 0 & 0 \\
0 & 0 & \sqrt{\frac{2}{3}} & 0 \\
0 & 0 & 0 & \frac{1}{\sqrt{2}}
\end{array}\right] \\
& =\left[\begin{array}{cccc}
2 & 0 & 0 & 0 \\
\frac{3}{2} & \frac{1}{2} \sqrt{3} & 0 & 0 \\
1 & \frac{1}{3} \sqrt{3} & \sqrt{\frac{2}{3}} & 0 \\
\frac{1}{2} & \frac{1}{6} \sqrt{3} & \frac{1}{2} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{2}}
\end{array}\right]=\left[\begin{array}{cccc}
2.0000 & 0 & 0 & 0 \\
1.5000 & 0.8660 & 0 & 0 \\
1.0000 & 0.5774 & 0.8165 & 0 \\
0.5000 & 0.2887 & 0.4082 & 0.7071
\end{array}\right]
\end{aligned}
$$

Clearly, $\widetilde{\boldsymbol{L}}$ is the lower triangular matrix in the Cholesky factorization $\boldsymbol{A}=\widetilde{\boldsymbol{L}} \widetilde{\boldsymbol{L}}^{T}$.

Multiple Right-Hand Sides

Many software packages for solving linear systems allow the input of multiple right-hand sides. Suppose an $n \times m$ matrix \boldsymbol{B} is

$$
\boldsymbol{B}=\left[\boldsymbol{b}^{(1)}, \boldsymbol{b}^{(2)}, \ldots, \boldsymbol{b}^{(m)}\right]
$$

in which each column corresponds to a right-hand side of the m linear systems

$$
\boldsymbol{A x}^{(j)}=\boldsymbol{b}^{(j)}
$$

for $1 \leqq j \leqq m$. Thus, we can write

$$
\boldsymbol{A}\left[\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \ldots, \boldsymbol{x}^{(m)}\right]=\left[\boldsymbol{b}^{(1)}, \boldsymbol{b}^{(2)}, \ldots, \boldsymbol{b}^{(m)}\right]
$$

or

$$
A X=B
$$

For example, procedure Gauss can be used once to produce a factorization of \boldsymbol{A}, and procedure Solve can be used m times with right-hand side vectors $\boldsymbol{b}^{(j)}$ to find the m solution vectors $\boldsymbol{x}^{(j)}$ for $1 \leqq j \leqq m$. Since the factorization phase can be done in $\frac{1}{3} n^{3}$ long operations while each of the back substitution phases requires n^{2} long operations, this entire process can be done in $\frac{1}{3} n^{3}+m n^{2}$ long operations. This is much less than $m\left(\frac{1}{3} n^{3}+n^{2}\right)$, which is what it would take if each of the m linear systems were solved separately.

Computing A^{-1}

In some applications, such as in statistics, it may be necessary to compute the inverse of a matrix \boldsymbol{A} and explicitly display it as \boldsymbol{A}^{-1}. This can be done by using procedures Gauss and Solve. If an $n \times n$ matrix \boldsymbol{A} has an inverse, it is an $n \times n$ matrix \boldsymbol{X} with the property that

$$
\begin{equation*}
A X=I \tag{23}
\end{equation*}
$$

where \boldsymbol{I} is the identity matrix. If $\boldsymbol{x}^{(j)}$ denotes the j th column of \boldsymbol{X} and $\boldsymbol{I}^{(j)}$ denotes the j th column of \boldsymbol{I}, then matrix Equation (23) can be written as

$$
\boldsymbol{A}\left[\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \ldots, \boldsymbol{x}^{(n)}\right]=\left[\boldsymbol{I}^{(1)}, \boldsymbol{I}^{(2)}, \ldots, \boldsymbol{I}^{(n)}\right]
$$

This can be written as n linear systems of equations of the form

$$
\boldsymbol{A} \boldsymbol{x}^{(j)}=\boldsymbol{I}^{(j)} \quad(1 \leqq j \leqq n)
$$

Now use procedure Gauss once to produce a factorization of \boldsymbol{A}, and use procedure Solve n times with the right-hand side vectors $\boldsymbol{I}^{(j)}$ for $1 \leqq j \leqq n$. This is equivalent to solving, one at a time, for the columns of \boldsymbol{A}^{-1}, which are $\boldsymbol{x}^{(j)}$. Hence,

$$
\boldsymbol{A}^{-1}=\left[\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \ldots, \boldsymbol{x}^{(n)}\right]
$$

A word of caution on computing the inverse of a matrix: In solving a linear system $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, it is not advisable to determine \boldsymbol{A}^{-1} and then compute the matrix-vector product $\boldsymbol{x}=\boldsymbol{A}^{-1} \boldsymbol{b}$ because this requires many unnecessary calculations, compared to directly solving $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ for \boldsymbol{x}.

Example Using Software Packages

A permutation matrix is an $n \times n$ matrix \boldsymbol{P} that arises from the identity matrix by permuting its rows. It then turns out that permuting the rows of any $n \times n$ matrix \boldsymbol{A} can be accomplished by multiplying \boldsymbol{A} on the left by \boldsymbol{P}. Every permutation matrix is nonsingular, since the rows still form a basis for \mathbb{R}^{n}. When Gaussian elimination with row pivoting is performed on a matrix \boldsymbol{A}, the result is expressible as

$$
P A=L U
$$

where \boldsymbol{L} is lower triangular and \boldsymbol{U} is upper triangular. The matrix $\boldsymbol{P} \boldsymbol{A}$ is \boldsymbol{A} with its rows rearranged. If we have the $\boldsymbol{L} \boldsymbol{U}$ factorization of $\boldsymbol{P} \boldsymbol{A}$, how do we solve the system $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$?

First, write it as

$$
P A x=P b
$$

then $\boldsymbol{L} \boldsymbol{U} \boldsymbol{x}=\boldsymbol{P} \boldsymbol{b}$. Let $\boldsymbol{y}=\boldsymbol{U} \boldsymbol{x}$, so that our problem is now

$$
\begin{aligned}
L y & =P b \\
U x & =y
\end{aligned}
$$

The first equation is easily solved for \boldsymbol{y}, and then the second equation is easily solved for \boldsymbol{x}. Mathematical software systems such as Matlab, Maple, and Mathematica produce factorizations of the form $\boldsymbol{P} \boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}$ upon command.

EXAMPLE 3 Use mathematical software systems such as Matlab, Maple, and Mathematica to find the $\boldsymbol{L} \boldsymbol{U}$ factorization of this matrix:

$$
\boldsymbol{A}=\left[\begin{array}{rrrr}
6 & -2 & 2 & 4 \tag{24}\\
12 & -8 & 6 & 10 \\
3 & -13 & 9 & 3 \\
-6 & 4 & 1 & -18
\end{array}\right]
$$

Solution First, we use Maple and find this factorization:

$$
\boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
\frac{1}{2} & 3 & 1 & 0 \\
-1 & -\frac{1}{2} & 2 & 1
\end{array}\right]\left[\begin{array}{rrrr}
6 & -2 & 2 & 4 \\
0 & -4 & 2 & 2 \\
0 & 0 & 2 & -5 \\
0 & 0 & 0 & -3
\end{array}\right]
$$

Next, we use Matlab and find a different factorization:

$$
\left.\begin{array}{c}
\boldsymbol{P A}=\widehat{\boldsymbol{L}} \widehat{\boldsymbol{U}} \\
\widehat{\boldsymbol{L}}=\left[\begin{array}{rrrr}
1.0000 & 0 & 0 & 0 \\
0.2500 & 1.0000 & 0 & 0 \\
-0.5000 & 0 & 1.0000 & 0 \\
0.5000 & -0.1818 & 0.0909 & 1.0000
\end{array}\right] \\
\widehat{\boldsymbol{U}}=\left[\begin{array}{rrrr}
12.0000 & -8.0000 & 6.0000 & 10.0000 \\
0 & -11.0000 & 7.5000 & 0.5000 \\
0 & 0 & 4.0000 & -13.0000 \\
& 0 & 0 & 0
\end{array} 0.2727\right.
\end{array}\right] .
$$

where \boldsymbol{P} is a permutation matrix corresponding to the pivoting strategy used. Finally, we use Mathematica to create this $\boldsymbol{L} \boldsymbol{U}$ decomposition:

$$
\left[\begin{array}{rrrr}
3 & -13 & 9 & 3 \\
-2 & -22 & 19 & -12 \\
2 & -\frac{12}{11} & \frac{52}{11} & -\frac{166}{11} \\
4 & -2 & \frac{22}{13} & -\frac{6}{13}
\end{array}\right]
$$

The output is in a compact store scheme that contains both the lower triangular matrix and the upper triangular matrix in a single matrix. However, the storage arrangement may be complicated because the rows are usually permuted during the factorization in an effort to make the solution process numerically stable. Verify that this factorization corresponds to the permutation of rows of matrix \boldsymbol{A} in the order 3, 4, 1, 2 .

Summary

(1) If $\boldsymbol{A}=\left(a_{i j}\right)$ is an $n \times n$ matrix such that the forward elimination phase of the naive Gaussian algorithm can be applied to \boldsymbol{A} without encountering any zero divisors, then the resulting matrix can be denoted by $\widetilde{A}=\left(\widetilde{a}_{i j}\right)$, where

$$
\boldsymbol{L}=\left[\begin{array}{lllll}
1 & 0 & 0 & \cdots & 0 \\
\widetilde{a}_{21} & 1 & 0 & \cdots & 0 \\
\widetilde{a}_{31} & \widetilde{a}_{32} & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
\widetilde{a}_{n 1} & \widetilde{a}_{n 2} & \cdots & \widetilde{a}_{n, n-1} & 1
\end{array}\right]
$$

and

$$
\boldsymbol{U}=\left[\begin{array}{lllll}
\widetilde{a}_{11} & \widetilde{a}_{12} & \widetilde{a}_{13} & \cdots & \widetilde{a}_{1 n} \\
0 & \widetilde{a}_{22} & \widetilde{a}_{23} & \cdots & \widetilde{a}_{2 n} \\
0 & 0 & \widetilde{a}_{33} & \cdots & \widetilde{a}_{3 n} \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & \widetilde{a}_{n n}
\end{array}\right]
$$

This is the $\boldsymbol{L} \boldsymbol{U}$ factorization of \boldsymbol{A}, so $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}$, where \boldsymbol{L} is a unit lower triangular and \boldsymbol{U} is upper triangular. When we carry out the Gaussian forward elimination process on \boldsymbol{A}, the result is the upper triangular matrix \boldsymbol{U}. The matrix \boldsymbol{L} is the unit lower triangular matrix whose entries are negatives of the multipliers in the locations of the elements they zero out.
(2) We can also give a formal description as follows. The matrix \boldsymbol{U} can be obtained by applying a succession of matrices \boldsymbol{M}_{k} to the left of \boldsymbol{A}. The k th step of Gaussian elimination corresponds to a unit lower triangular matrix \boldsymbol{M}_{k}, which is the product of $n-k$ elementary matrices

$$
\boldsymbol{M}_{k}=\boldsymbol{M}_{n k} \boldsymbol{M}_{n-1, k} \cdots \boldsymbol{M}_{k+1, k}
$$

where each elementary matrix $\boldsymbol{M}_{i k}$ is unit lower triangular. If $\boldsymbol{M}_{q p} \boldsymbol{A}$ is obtained by subtracting λ times row p from row q in matrix \boldsymbol{A} with $p<q$, then the elements of $\boldsymbol{M}_{q p}=\left(m_{i j}\right)$ are

$$
m_{i j}=\left\{\begin{aligned}
1 & \text { if } i=j \\
-\lambda & \text { if } i=q \text { and } j=p \\
0 & \text { in all other cases }
\end{aligned}\right.
$$

The entire Gaussian elimination process is summarized by writing

$$
\boldsymbol{M}_{n-1} \cdots \boldsymbol{M}_{2} \boldsymbol{M}_{1} A=\boldsymbol{U}
$$

Since each \boldsymbol{M}_{k} is invertible, we have

$$
\boldsymbol{A}=\boldsymbol{M}_{1}^{-1} \boldsymbol{M}_{2}^{-1} \cdots \boldsymbol{M}_{n-1}^{-1} \boldsymbol{U}
$$

Each \boldsymbol{M}_{k} is a unit lower triangular matrix, and the same is true of each inverse \boldsymbol{M}_{k}^{-1}, as well as their products. Hence, the matrix

$$
\boldsymbol{L}=\boldsymbol{M}_{1}^{-1} \boldsymbol{M}_{2}^{-1} \cdots \boldsymbol{M}_{n-1}^{-1}
$$

is unit lower triangular.
(3) For symmetric matrices, we have the $\boldsymbol{L} \boldsymbol{D} \boldsymbol{L}^{T}$ factorization, and for symmetric positive definite matrices, we have the $\boldsymbol{L} \boldsymbol{L}^{T}$ factorization, which is also known as Cholesky factorization.
(4) If the $\boldsymbol{L} \boldsymbol{U}$ factorization of \boldsymbol{A} is available, we can solve the system

$$
A x=b
$$

by solving two triangular systems:

$$
\begin{cases}L y=b & \text { for } y \\ U x=y & \text { for } x\end{cases}
$$

This is useful for problems that involve the same coefficient matrix \boldsymbol{A} and many different right-hand vectors \boldsymbol{b}. For example, let \boldsymbol{B} be an $n \times m$ matrix of the form

$$
\boldsymbol{B}=\left[\boldsymbol{b}^{(1)}, \boldsymbol{b}^{(2)}, \ldots, \boldsymbol{b}^{(m)}\right]
$$

where each column corresponds to a right-hand side of the m linear systems

$$
\boldsymbol{A} \boldsymbol{x}^{(j)}=\boldsymbol{b}^{(j)} \quad(1 \leqq j \leqq m)
$$

Thus, we can write

$$
\boldsymbol{A}\left[\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \ldots, \boldsymbol{x}^{(m)}\right]=\left[\boldsymbol{b}^{(1)}, \boldsymbol{b}^{(2)}, \ldots, \boldsymbol{b}^{(m)}\right]
$$

or

$$
A X=B
$$

A special case of this is to compute the inverse of an $n \times n$ invertible matrix \boldsymbol{A}. We write

$$
A X=I
$$

where \boldsymbol{I} is the identity matrix. If $\boldsymbol{x}^{(j)}$ denotes the j th column of \boldsymbol{X} and $\boldsymbol{I}^{(j)}$ denotes the j th column of \boldsymbol{I}, this can be written as

$$
\boldsymbol{A}\left[\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \ldots, \boldsymbol{x}^{(n)}\right]=\left[\boldsymbol{I}^{(1)}, \boldsymbol{I}^{(2)}, \ldots, \boldsymbol{I}^{(n)}\right]
$$

or as n linear systems of equations of the form

$$
\boldsymbol{A} \boldsymbol{x}^{(j)}=\boldsymbol{I}^{(j)} \quad(1 \leqq j \leqq n)
$$

We can use $\boldsymbol{L} \boldsymbol{U}$ factorization to solve these n systems efficiently, obtaining

$$
\boldsymbol{A}^{-1}=\left[\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \ldots, \boldsymbol{x}^{(n)}\right]
$$

(5) When Gaussian elimination with row pivoting is performed on a matrix \boldsymbol{A}, the result is expressible as

$$
P A=L U
$$

where \boldsymbol{P} is a permutation matrix, \boldsymbol{L} is unit lower triangular, and \boldsymbol{U} is upper triangular. Here, the matrix $\boldsymbol{P} \boldsymbol{A}$ is \boldsymbol{A} with its rows interchanged. We can solve the system $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ by solving

$$
\begin{cases}L y=P b & \text { for } y \\ U x=y & \text { for } x\end{cases}
$$

Problems 8.1

1. Using naive Gaussian elimination, factor the following matrices in the form $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}$, where \boldsymbol{L} is a unit lower triangular matrix and \boldsymbol{U} is an upper triangular matrix.
${ }^{a}$ a. $\boldsymbol{A}=\left[\begin{array}{rrr}3 & 0 & 3 \\ 0 & -1 & 3 \\ 1 & 3 & 0\end{array}\right] \quad$ b. $\boldsymbol{A}=\left[\begin{array}{rrrr}1 & 0 & \frac{1}{3} & 0 \\ 0 & 1 & 3 & -1 \\ 3 & -3 & 0 & 6 \\ 0 & 2 & 4 & -6\end{array}\right]$
c. $\boldsymbol{A}=\left[\begin{array}{rrrr}-20 & -15 & -10 & -5 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]$
2. Consider the matrix

$$
\boldsymbol{A}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 2 \\
0 & 3 & 0 & 0 \\
0 & 9 & 4 & 0 \\
5 & 0 & 8 & 10
\end{array}\right]
$$

${ }^{a}$ a. Determine a unit lower triangular matrix \boldsymbol{M} and an upper triangular matrix \boldsymbol{U} such that $\boldsymbol{M A}=\boldsymbol{U}$.
b. Determine a unit lower triangular matrix \boldsymbol{L} and an upper triangular matrix \boldsymbol{U} such that $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}$. Show that $\boldsymbol{M} \boldsymbol{L}=\boldsymbol{I}$ so that $\boldsymbol{L}=\boldsymbol{M}^{-1}$.
3. Consider the matrix

$$
\boldsymbol{A}=\left[\begin{array}{rrrrr}
25 & 0 & 0 & 0 & 1 \\
0 & 27 & 4 & 3 & 2 \\
0 & 54 & 58 & 0 & 0 \\
0 & 108 & 116 & 0 & 0 \\
100 & 0 & 0 & 0 & 24
\end{array}\right]
$$

${ }^{a}$ a. Determine the unit lower triangular matrix \boldsymbol{M} and the upper triangular matrix \boldsymbol{U} such that $\boldsymbol{M A}=\boldsymbol{U}$.
b. Determine $\boldsymbol{M}^{-1}=\boldsymbol{L}$ such that $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}$.
4. Consider the matrix

$$
\boldsymbol{A}=\left[\begin{array}{lll}
2 & 2 & 1 \\
1 & 1 & 1 \\
3 & 2 & 1
\end{array}\right]
$$

a. Show that \boldsymbol{A} cannot be factored into the product of a unit lower triangular matrix and an upper triangular matrix.
${ }^{a} \mathbf{b}$. Interchange the rows of \boldsymbol{A} so that this can be done.
5. Consider the matrix

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
a & 0 & 0 & z \\
0 & b & 0 & 0 \\
0 & x & c & 0 \\
w & 0 & y & d
\end{array}\right]
$$

${ }^{a}$ a. Determine a unit lower triangular matrix \boldsymbol{M} and an upper triangular matrix \boldsymbol{U} such that $\boldsymbol{M A}=\boldsymbol{U}$.
${ }^{a} \mathbf{b}$. Determine a lower triangular matrix \boldsymbol{L}^{\prime} and a unit upper triangular matrix \boldsymbol{U}^{\prime} such that $\boldsymbol{A}=\boldsymbol{L}^{\prime} \boldsymbol{U}^{\prime}$.
6. Consider the matrix

$$
\boldsymbol{A}=\left[\begin{array}{rrrr}
4 & -1 & -1 & 0 \\
-1 & 4 & 0 & -1 \\
-1 & 0 & 4 & -1 \\
0 & -1 & -1 & 4
\end{array}\right]
$$

Factor \boldsymbol{A} in the following ways:
${ }^{a}$ a. $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}$, where \boldsymbol{L} is unit lower triangular and \boldsymbol{U} is upper triangular.
${ }^{a}$ b. $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{D} \boldsymbol{U}^{\prime}$, where \boldsymbol{L} is unit lower triangular, \boldsymbol{D} is diagonal, and \boldsymbol{U}^{\prime} is unit upper triangular.
${ }^{a}$ c. $\boldsymbol{A}=\boldsymbol{L}^{\prime} \boldsymbol{U}^{\prime}$, where \boldsymbol{L}^{\prime} is lower triangular and \boldsymbol{U}^{\prime} is unit upper triangular.
${ }^{a}$ d. $\boldsymbol{A}=\left(\boldsymbol{L}^{\prime \prime}\right)\left(\boldsymbol{L}^{\prime \prime}\right)^{T}$, where $\boldsymbol{L}^{\prime \prime}$ is lower triangular.
${ }^{a}$ e. Evaluate the determinant of \boldsymbol{A}. $\operatorname{Hint}: \operatorname{det}(\boldsymbol{A})=\operatorname{det}(\boldsymbol{L}) \operatorname{det}(\boldsymbol{D}) \operatorname{det}\left(\boldsymbol{U}^{\prime}\right)=\operatorname{det}(\boldsymbol{D})$.
7. Consider the 3×3 Hilbert matrix

$$
\boldsymbol{A}=\left[\begin{array}{lll}
1 & \frac{1}{2} & \frac{1}{3} \\
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\
\frac{1}{3} & \frac{1}{4} & \frac{1}{5}
\end{array}\right]
$$

Repeat the preceding problem using this matrix.
${ }^{a}$. Find the $\boldsymbol{L} \boldsymbol{U}$ decomposition, where \boldsymbol{L} is unit lower triangular, for

$$
\boldsymbol{A}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 1 \\
1 & 1 & 0 & -1 \\
-1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1
\end{array}\right]
$$

9. Consider

$$
\boldsymbol{A}=\left[\begin{array}{lll}
2 & -1 & 2 \\
2 & -3 & 3 \\
6 & -1 & 8
\end{array}\right]
$$

${ }^{a}$ a. Find the matrix factorization $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{D} \boldsymbol{U}^{\prime}$, where \boldsymbol{L} is unit lower triangular, \boldsymbol{D} is diagonal, and \boldsymbol{U}^{\prime} is unit upper triangular.
${ }^{a} \mathbf{b}$. Use this decomposition of \boldsymbol{A} to solve $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, where $\boldsymbol{b}=[-2,-5,0]^{T}$.
${ }^{a}$ 10. Repeat the preceding problem for

$$
\boldsymbol{A}=\left[\begin{array}{rrr}
-2 & 1 & -2 \\
-4 & 3 & -3 \\
2 & 2 & 4
\end{array}\right], \quad \boldsymbol{b}=\left[\begin{array}{l}
1 \\
4 \\
4
\end{array}\right]
$$

11. Consider the system of equations

$$
\left\{\begin{aligned}
6 x_{1} & =12 \\
6 x_{2}+3 x_{1} & =-12 \\
7 x_{3}-2 x_{2}+4 x_{1} & =14 \\
21 x_{4}+9 x_{3}-3 x_{2}+5 x_{1} & =-2
\end{aligned}\right.
$$

a. Solve for x_{1}, x_{2}, x_{3}, and x_{4} (in order) by forward substitution.
b. Write this system in matrix notation $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, where $\boldsymbol{x}=\left[x_{1}, x_{2}, x_{3}, x_{4}\right]^{T}$. Determine the $\boldsymbol{L} \boldsymbol{U}$ factorization $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}$, where \boldsymbol{L} is unit lower triangular and \boldsymbol{U} is upper triangular.
${ }^{a}$ 12. Given

$$
\boldsymbol{A}=\left[\begin{array}{rrr}
3 & 2 & -1 \\
5 & 3 & 2 \\
-1 & 1 & -3
\end{array}\right], \quad \boldsymbol{L}^{-1}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-\frac{5}{3} & 1 & 0 \\
-8 & 5 & 1
\end{array}\right], \quad \boldsymbol{U}=\left[\begin{array}{rrr}
3 & 2 & -1 \\
0 & -\frac{1}{3} & \frac{11}{3} \\
0 & 0 & 15
\end{array}\right]
$$

obtain the inverse of \boldsymbol{A} by solving $\boldsymbol{U} \boldsymbol{X}^{(j)}=\boldsymbol{L}^{-1} \boldsymbol{I}^{(j)}$ for $j=1,2,3$.
13. Using the system of Equations (2), form $\boldsymbol{M}=\boldsymbol{M}_{3} \boldsymbol{M}_{2} \boldsymbol{M}_{1}$ and determine \boldsymbol{M}^{-1}. Verify that $\boldsymbol{M}^{-1}=\boldsymbol{L}$. Why is this, in general, not a good idea?
14. Consider the matrix $\boldsymbol{A}=\operatorname{tridiagonal}\left(a_{i, i-1}, a_{i i}, a_{i, i+1}\right)$, where $a_{i i} \neq 0$.
${ }^{a}$ a. Establish the algorithm

$$
\begin{aligned}
& \text { integer } i \\
& \text { real array }\left(a_{i j}\right)_{1: n \times 1: n},\left(\ell_{i j}\right)_{1: n \times 1: n},\left(u_{i j}\right)_{1: n \times 1: n} \\
& \ell_{11} \leftarrow a_{11} \\
& \text { for } i=2 \text { to } 4 \text { do } \\
& \quad \ell_{i, i-1} \leftarrow a_{i, i-1} \\
& \quad u_{i-1, i} \leftarrow a_{i-1, i} / \ell_{i-1, i-1} \\
& \quad \ell_{i, i} \leftarrow a_{i, i}-\ell_{i, i-1} u_{i-1, i} \\
& \text { end for }
\end{aligned}
$$

for determining the elements of a lower tridiagonal matrix $L=\left(\ell_{i j}\right)$ and a unit upper tridiagonal matrix $\boldsymbol{U}=\left(u_{i j}\right)$ such that $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}$.
b. Establish the algorithm

$$
\begin{aligned}
& \text { integer } i ; \text { real array }\left(a_{i j}\right)_{1: n \times 1: n},\left(\ell_{i, j}\right)_{1: n \times 1: n},\left(u_{i, j}\right)_{1: n \times 1: n} \\
& u_{11} \leftarrow a_{11} \\
& \text { for } i=2 \text { to } 4 \text { do } \\
& \quad u_{i-1, i} \leftarrow a_{i-1, i} \\
& \quad \ell_{i, i-1} \leftarrow a_{i, i-1} / u_{i-1, i-1} \\
& \quad u_{i, j} \leftarrow a_{i, i}-\ell_{i, i-1} u_{i-1, i} \\
& \text { end for }
\end{aligned}
$$

for determining the elements of a unit lower triangular matrix $L=\left(\ell_{i j}\right)$ and an upper tridiagonal matrix $\boldsymbol{U}=\left(u_{i j}\right)$ such that $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}$.

By extending the loops, we can generalize these algorithms to $n \times n$ tridiagonal matrices.
15. Show that the equation $\boldsymbol{A x}=\boldsymbol{B}$ can be solved by Gaussian elimination with scaled partial pivoting in $\left(n^{3} / 3\right)+m n^{2}+\mathcal{O}\left(n^{2}\right)$ multiplications and divisions, where $\boldsymbol{A}, \boldsymbol{X}$, and \boldsymbol{B} are matrices of order $n \times n, n \times m$, and $n \times m$, respectively. Thus, if \boldsymbol{B} is $n \times n$, then the $n \times n$ solution matrix \boldsymbol{X} can be found by Gaussian elimination with scaled partial pivoting in $\frac{4}{3} n^{3}+\mathcal{O}\left(n^{2}\right)$ multiplications and divisions. Hint: If $\boldsymbol{X}^{(j)}$ and $\boldsymbol{B}^{(j)}$ are the j th columns of \boldsymbol{X} and \boldsymbol{B}, respectively, then $\boldsymbol{A} \boldsymbol{X}^{(j)}=\boldsymbol{B}^{(j)}$.
16. Let \mathcal{X} be a square matrix that has the form

$$
\mathcal{X}=\left[\begin{array}{ll}
\boldsymbol{A} & \boldsymbol{B} \\
\boldsymbol{C} & \boldsymbol{D}
\end{array}\right]
$$

where \boldsymbol{A} and \boldsymbol{D} are square matrices and \boldsymbol{A}^{-1} exists. It is known that \mathcal{X}^{-1} exists if and only if $\left(\boldsymbol{D}-\boldsymbol{C} \boldsymbol{A}^{-1} \boldsymbol{B}\right)^{-1}$ exists. Verify that \mathcal{X}^{-1} is given by

$$
\mathcal{X}=\left[\begin{array}{cc}
\boldsymbol{I} & -\boldsymbol{A}^{-1} \boldsymbol{B} \\
0 & \boldsymbol{I}
\end{array}\right]\left[\begin{array}{cc}
\boldsymbol{A}^{-1} & 0 \\
0 & \left(\boldsymbol{D}-\boldsymbol{C} \boldsymbol{A}^{-1} \boldsymbol{B}\right)^{-1}
\end{array}\right]\left[\begin{array}{cc}
\boldsymbol{I} & 0 \\
-\boldsymbol{C} \boldsymbol{A}^{-1} & \boldsymbol{I}
\end{array}\right]
$$

As an application, compute the inverse of the following:

$$
{ }^{a} \mathbf{a} . \boldsymbol{\mathcal { X }}=\left[\begin{array}{cc|cc}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
\hline 1 & 0 & 1 & 2 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \text { a} \mathbf{b} \text {. } \mathcal{X}=\left[\begin{array}{ccc|c}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
\hline 1 & 1 & 1 & 2
\end{array}\right]
$$

${ }^{a}$ 17. Let \boldsymbol{A} be an $n \times n$ complex matrix such that \boldsymbol{A}^{-1} exists. Verify that

$$
\left[\begin{array}{rr}
\boldsymbol{A} & \overline{\boldsymbol{A}} \\
-\boldsymbol{A} i & -\overline{\boldsymbol{A}} i
\end{array}\right]^{-1}=\frac{1}{2}\left[\begin{array}{rr}
\boldsymbol{A}^{-1} & \boldsymbol{A}^{-1} i \\
\overline{\boldsymbol{A}}^{-1} & -\overline{\boldsymbol{A}}^{-1} i
\end{array}\right]
$$

where $\overline{\boldsymbol{A}}$ denotes the complex conjugate of \boldsymbol{A}; if $\boldsymbol{A}=\left(a_{i j}\right)$, then $\overline{\boldsymbol{A}}=\left(\bar{a}_{i j}\right)$. Recall that for a complex number $z=a+b i$, where a and b are real, and $\bar{z}=a-b i$.
18. Find the $\boldsymbol{L} \boldsymbol{U}$ factorization of this matrix:

$$
\boldsymbol{A}=\left[\begin{array}{ccc}
2 & 2 & 1 \\
4 & 7 & 2 \\
2 & 11 & 5
\end{array}\right]
$$

19. a. Prove that the product of two lower triangular matrices is lower triangular.
b. Prove that the product of two unit lower triangular matrices is unit lower triangular.
c. Prove that the inverse of a unit lower triangular matrix is unit lower triangular.
d. By using the transpose operation, prove that all of the preceding results are true for upper triangular matrices.
20. Let \boldsymbol{L} be lower triangular, \boldsymbol{U} be upper triangular, and \boldsymbol{D} be diagonal.
a. If \boldsymbol{L} and \boldsymbol{U} are both unit triangular and $\boldsymbol{L} \boldsymbol{D} \boldsymbol{U}$ is diagonal, does it follow that \boldsymbol{L} and \boldsymbol{U} are diagonal?
b. If $\boldsymbol{L} \boldsymbol{D} \boldsymbol{U}$ is nonsingular and diagonal, does it follow that \boldsymbol{L} and \boldsymbol{U} are diagonal?
c. If \boldsymbol{L} and \boldsymbol{U} are both unit triangular and if $\boldsymbol{L} \boldsymbol{D} \boldsymbol{U}$ is diagonal, does it follow that $L=U=I$?
21. Determine the $\boldsymbol{L} \boldsymbol{D} \boldsymbol{L}^{T}$ factorization for the following matrix:

$$
\boldsymbol{A}=\left[\begin{array}{rrrr}
1 & 2 & -1 & 1 \\
2 & 3 & -4 & 3 \\
-1 & -4 & -1 & 3 \\
1 & 3 & 3 & 0
\end{array}\right]
$$

22. Find the Cholesky factorization of

$$
\boldsymbol{A}=\left[\begin{array}{rrr}
4 & 6 & 10 \\
6 & 25 & 19 \\
10 & 19 & 62
\end{array}\right]
$$

23. Consider the system

$$
\left[\begin{array}{ll}
A & 0 \\
B & C
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
b \\
d
\end{array}\right]
$$

Show how to solve the system more cheaply using the submatrices rather than the overall system. Give an estimate of the computational cost of both the new and old approaches. This problem illustrates solving a block linear system with a special structure.
24. Determine the $\boldsymbol{L} \boldsymbol{D} \boldsymbol{L}^{T}$ factorization of the matrix

$$
\boldsymbol{A}=\left[\begin{array}{rrrr}
5 & 35 & -20 & 65 \\
35 & 244 & -143 & 461 \\
-20 & -143 & 73 & -232 \\
65 & 461 & -232 & 856
\end{array}\right]
$$

Can you find the Cholesky factorization?
25. (Sparse factorizations) Consider the following sparse symmetric matrices with the nonzero pattern shown where nonzero entries in the matrix are indicated by the \times symbol and zero entries are a blank. Show the nonzero pattern in the matrix \boldsymbol{L} for the Cholesky factorization by using the symbol + for the fill-in of a zero entry by a nonzero entry.
a. $A=$

$\left[\begin{array}{lll} \times & \times & \\ \times & \times & x \\ & \times & \times \end{array}\right]$	${ }^{\times} \times{ }^{\text {x }}$	
\times	$\times \times$	\times
\times	\times $\times \times$ \times \times	\times
	\times	\times
	\times	$\times \times \times$
	\times	$\times \times$

b. $A=$

c. $A=$

$\left[\begin{array}{rr} x & \times \\ \times \times \\ \times & \times \end{array}\right.$		
	$\begin{array}{rrr}\times & \times \\ \times & \times \\ \times & \times & \times\end{array}$	${ }^{\times} \times$
		\times \times \times \times \times \times

Computer Problems 8.1

1. Write and test a procedure for implementing the algorithms of Problem 8.1.14.
2. The $n \times n$ factorization $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}$, where $\boldsymbol{L}=\left(\ell_{i j}\right)$ is lower triangular and $\boldsymbol{U}=\left(u_{i j}\right)$ is upper triangular, can be computed directly by the following algorithm (provided zero divisions are not encountered): Specify either ℓ_{11} or u_{11} and compute the other such that $\ell_{11} u_{11}=a_{11}$. Compute the first column in \boldsymbol{L} by

$$
\ell_{i 1}=\frac{a_{i 1}}{u_{11}} \quad(1 \leqq i \leqq n)
$$

and compute the first row in \boldsymbol{U} by

$$
u_{1 j}=\frac{a_{1 j}}{\ell_{11}} \quad(1 \leqq j \leqq n)
$$

Now suppose that columns $1,2, \ldots, k-1$ have been computed in L and that rows $1,2, \ldots, k-1$ have been computed in \boldsymbol{U}. At the k th step, specify either $\ell_{k k}$ or $u_{k k}$, and compute the other such that

$$
\ell_{k k} u_{k k}=a_{k k}-\sum_{m=1}^{k-1} \ell_{k m} u_{m k}
$$

Compute the k th column in L by

$$
\ell_{i k}=\frac{1}{u_{k k}}\left(a_{i k}-\sum_{m=1}^{k-1} \ell_{i m} u_{m k}\right) \quad(k \leqq i \leqq n)
$$

and compute the k th row in \boldsymbol{U} by

$$
u_{k j}=\frac{1}{\ell_{k k}}\left(a_{k j}-\sum_{m=1}^{k-1} \ell_{k m} u_{m j}\right) \quad(k \leqq j \leqq n)
$$

This algorithm is continued until all elements of \boldsymbol{U} and \boldsymbol{L} are completely determined. When $\ell_{i i}=1(1 \leqq i \leqq n)$, this procedure is called the Doolittle factorization, and when $u_{j j}=1(1 \leqq j \leqq n)$, it is known as the Crout factorization.

Define the test matrix

$$
\boldsymbol{A}=\left[\begin{array}{rrrr}
5 & 7 & 6 & 5 \\
7 & 10 & 8 & 7 \\
6 & 8 & 10 & 9 \\
5 & 7 & 9 & 10
\end{array}\right]
$$

Using the algorithm above, compute and print factorizations so that the diagonal entries of \boldsymbol{L} and \boldsymbol{U} are of the following forms:

$\operatorname{diag}(\boldsymbol{L})$	$\operatorname{diag}(\boldsymbol{U})$					
$[1$,	1,	1,	1			

{[?,} \& ?, \& ?, \& ?] \& {[1,}

1, \& 1, \& 1] \& Crout

{[1,} \& ?, \& 1, \& ?] \& {[?,}

{[?,} \& ?, \& 1] \&

{[?,} \& 1, \& ?, \& 1] \& {[1,}

{[3,} \& 1, \& ?] \&

{[?,} \& ?, \& 7, \& 9\end{array}\right] \quad\left[$$
\begin{array}{llll}3, & 5, & ?, & ?]\end{array}
$$\right.\)

Here the question mark means that the entry is to be computed. Write code to check the results by multiplying \boldsymbol{L} and \boldsymbol{U} together.
3. Write
procedure $\operatorname{Poly}\left(n,\left(a_{i j}\right),\left(c_{i}\right), k,\left(y_{i j}\right)\right)$
for computing the $n \times n$ matrix $p_{k}(\boldsymbol{A})$ stored in array $\left(y_{i j}\right)$:

$$
y_{k}=p_{k}(\boldsymbol{A})=c_{0} \boldsymbol{I}+c_{1} \boldsymbol{A}+c_{2} \boldsymbol{A}^{2}+\cdots+c_{k} \boldsymbol{A}^{k}
$$

where \boldsymbol{A} is an $n \times n$ matrix and p_{k} is a k th-degree polynomial. Here $\left(c_{i}\right)$ are real constants for $0 \leqq i \leqq k$. Use nested multiplication and write efficient code. Test procedure Poly on the following data:

Case 1.

$$
\boldsymbol{A}=\boldsymbol{I}_{5}, \quad p_{3}(x)=1-5 x+10 x^{3}
$$

Case 2.

$$
\boldsymbol{A}=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right], \quad p_{2}(x)=1-2 x+x^{2}
$$

Case 3.

$$
\boldsymbol{A}=\left[\begin{array}{lll}
0 & 2 & 4 \\
0 & 0 & 8 \\
0 & 0 & 0
\end{array}\right], \quad p_{3}(x)=1+3 x-3 x^{2}+x^{3}
$$

${ }^{a}$ Case 4.

$$
\boldsymbol{A}=\left[\begin{array}{rrrr}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right], \quad p_{5}(x)=10+x-2 x^{2}+3 x^{3}-4 x^{4}+5 x^{5}
$$

Case 5.

$$
\boldsymbol{A}=\left[\begin{array}{rrrr}
-20 & -15 & -10 & -5 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right], \quad p_{4}(x)=5+10 x+15 x^{2}+20 x^{3}+x^{4}
$$

Case 6.

$$
\boldsymbol{A}=\left[\begin{array}{rrrr}
5 & 7 & 6 & 5 \\
7 & 10 & 8 & 7 \\
6 & 8 & 10 & 9 \\
5 & 7 & 9 & 10
\end{array}\right], \quad p_{4}(x)=1-100 x+146 x^{2}-35 x^{3}+x^{4}
$$

4. Write and test a procedure for determining \boldsymbol{A}^{-1} for a given square matrix \boldsymbol{A} of order n. Your procedure should use procedures Gauss and Solve.
5. Write and test a procedure to solve the system $\boldsymbol{A} \boldsymbol{X}=\boldsymbol{B}$ in which $\boldsymbol{A}, \boldsymbol{X}$, and \boldsymbol{B} are matrices of order $n \times n, n \times m$, and $n \times m$, respectively. Verify that the procedure works on several test cases, one of which has $\boldsymbol{B}=\boldsymbol{I}$ so that the solution \boldsymbol{X} is the inverse of A. Hint: See Problem 8.1.15.
6. Write and test a procedure for directly computing the inverse of a tridiagonal matrix. Assume that pivoting is not necessary.
7. (Continuation) Test the procedure of the preceding computer problem on the symmetric tridiagonal matrix \boldsymbol{A} of order 10:

$$
\boldsymbol{A}=\left[\begin{array}{rrrrrrr}
-2 & 1 & & & & & \\
1 & -2 & 1 & & & & \\
& 1 & -2 & 1 & & & \\
& & & \ddots & \ddots & \ddots & \\
& & & & 1 & -2 & 1 \\
& & & & & 1 & -2
\end{array}\right]
$$

The inverse of this matrix is known to be

$$
\left(\boldsymbol{A}^{-1}\right)_{i j}=\left(\boldsymbol{A}^{-1}\right)_{j i}=\frac{-i(n+1-j)}{(n+1)} \quad(i \leqq j)
$$

8. Investigate the numerical difficulties in inverting the following matrix:

$$
\boldsymbol{A}=\left[\begin{array}{llll}
-0.0001 & 5.096 & 5.101 & 1.853 \\
0 . & 3.737 & 3.740 & 3.392 \\
0 . & 0 . & 0.006 & 5.254 \\
0 . & 0 . & 0 . & 4.567
\end{array}\right]
$$

9. Consider the following two test matrices:

$$
\boldsymbol{A}=\left[\begin{array}{rrr}
4 & 6 & 10 \\
6 & 25 & 19 \\
10 & 19 & 62
\end{array}\right], \quad \boldsymbol{B}=\left[\begin{array}{rrr}
4 & 6 & 10 \\
6 & 13 & 19 \\
10 & 19 & 62
\end{array}\right]
$$

Show that the first Cholesky factorization has all integers in the solution, while the second one is all integers until the last step, where there is a square root.
a. Program the Cholesky algorithm.
b. Use Matlab, Maple, or Mathematica to find the Cholesky factorizations.
10. Let \boldsymbol{A} be real, symmetric, and positive definite. Is the same true for the matrix obtained by removing the first row and column of \boldsymbol{A} ?
11. Devise a code for inverting a unit lower triangular matrix. Test it on the following matrix:

$$
\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
3 & 1 & 0 & 0 \\
5 & 2 & 1 & 0 \\
7 & 4 & -3 & 1
\end{array}\right]
$$

12. Verify Example 1 using Matlab, Maple, or Mathematica.
13. In Example 3, verify the factorizations of matrix \boldsymbol{A} using Matlab, Maple, and Mathematica.
14. Find the $\boldsymbol{P A}=\boldsymbol{L} \boldsymbol{U}$ factorization of this matrix:

$$
\boldsymbol{A}=\left[\begin{array}{rrrr}
-0.05811 & -0.11696 & 0.51004 & -0.31330 \\
-0.04291 & 0.56850 & 0.07041 & 0.68747 \\
-0.01652 & 0.38953 & 0.01203 & -0.52927 \\
-0.06140 & 0.32179 & -0.22094 & 0.42448
\end{array}\right]
$$

which was studied by Wilkinson [1965, p. 640].

8.2 Iterative Solutions of Linear Systems

In this section, a completely different strategy for solving a nonsingular linear system

$$
\begin{equation*}
A x=b \tag{1}
\end{equation*}
$$

is explored. This alternative approach is often used on enormous problems that arise in solving partial differential equations numerically. In that subject, systems having hundreds of thousands of equations arise routinely.

Vector and Matrix Norms

We first present a brief overview of vector and matrix norms because they are useful in the discussion of errors and in the stopping criteria for iterative methods. Norms can be defined on any vector space, but we usually use \mathbb{R}^{n} or \mathbb{C}^{n}. A vector norm $\|\boldsymbol{x}\|$ can be thought of as
the length or magnitude of a vector $\boldsymbol{x} \in \mathbb{R}^{n}$. A vector norm is any mapping from \mathbb{R}^{n} to \mathbb{R} that obeys these three properties:

$$
\begin{aligned}
\|x\| & >0 \text { if } \boldsymbol{x} \neq \mathbf{0} \\
\|\alpha \boldsymbol{x}\| & =|\alpha|\|\boldsymbol{x}\| \\
\|\boldsymbol{x}+\boldsymbol{y}\| & \leqq\|\boldsymbol{x}\|+\|\boldsymbol{y}\| \quad \text { (triangle inequality) }
\end{aligned}
$$

for vectors $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$ and scalars $\alpha \in \mathbb{R}$. Examples of vector norms for the vector $\boldsymbol{x}=$ $\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T} \in \mathbb{R}^{n}$ are

$$
\begin{array}{ll}
\|\boldsymbol{x}\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right| & \\
\ell_{1} \text {-vector norm } \\
\|\boldsymbol{x}\|_{2}=\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2} & \\
\text { Euclidean } / \ell_{2} \text {-vector norm } \\
\|\boldsymbol{x}\|_{\infty}=\max _{1 \leqq i \leqq n}\left|x_{i}\right| & \\
\ell_{\infty} \text {-vector norm }
\end{array}
$$

For $n \times n$ matrices, we can also have matrix norms, subject to the same requirements:

$$
\begin{aligned}
& \|\boldsymbol{A}\|>0 \text { if } \boldsymbol{A} \neq 0 \\
& \|\alpha \boldsymbol{A}\|=|\alpha|\|\boldsymbol{A}\| \\
& \|\boldsymbol{A}+\boldsymbol{B}\| \leqq\|\boldsymbol{A}\|+\|\boldsymbol{B}\| \quad \text { (triangular inequality) }
\end{aligned}
$$

for matrices $\boldsymbol{A}, \boldsymbol{B}$ and scalars α.
We usually prefer matrix norms that are related to a vector norm. For a vector norm $\|\cdot\|$, the subordinate matrix norm is defined by

$$
\|\boldsymbol{A}\| \equiv \sup \left\{\|\boldsymbol{A} \boldsymbol{x}\|: \boldsymbol{x} \in \mathbb{R}^{n} \text { and }\|\boldsymbol{x}\|=1\right\}
$$

Here, \boldsymbol{A} is an $n \times n$ matrix. For a subordinate matrix norm, some additional properties are

$$
\begin{aligned}
\|\boldsymbol{I}\| & =1 \\
\|\boldsymbol{A} \boldsymbol{x}\| & \leqq\|\boldsymbol{A}\|\|\boldsymbol{x}\| \\
\|\boldsymbol{A} \boldsymbol{B}\| & \leqq\|\boldsymbol{A}\|\|\boldsymbol{B}\|
\end{aligned}
$$

There are two meanings associated with the notation $\|\cdot\|_{p}$, one for vectors and another for matrices. The context will determine which one is intended. Examples of subordinate matrix norms for an $n \times n$ matrix \boldsymbol{A} are

$$
\begin{array}{ll}
\|\boldsymbol{A}\|_{1}=\max _{1 \leqq j \leqq n} \sum_{i=1}^{n}\left|a_{i j}\right| & \ell_{1} \text {-matrix norm } \\
\|\boldsymbol{A}\|_{2}=\max _{1 \leqq i \leqq n} \sqrt{\left|\sigma_{\max }\right|} & \text { spectral } / \ell_{2} \text {-matrix norm } \\
\|\boldsymbol{A}\|_{\infty}=\max _{1 \leqq i \leqq n} \sum_{j=1}^{n}\left|a_{i j}\right| & \ell_{\infty} \text {-matrix norm }
\end{array}
$$

Here, σ_{i} are the eigenvalues of $\boldsymbol{A}^{T} \boldsymbol{A}$, which are called the singular values of \boldsymbol{A}. The largest $\sigma_{\text {max }}$ in absolute value is termed the spectral radius of \boldsymbol{A}. (See Section 8.3 for a discussion of singular values.)

Condition Number and III-Conditioning

An important quantity that has some influence in the numerical solution of a linear system $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ is the condition number, which is defined as

$$
\kappa(\boldsymbol{A})=\|\boldsymbol{A}\|_{2}\left\|\boldsymbol{A}^{-1}\right\|_{2}
$$

It turns out that it is not necessary to compute the inverse of \boldsymbol{A} to obtain an estimate of the condition number. Also, it can be shown that the condition number $\kappa(\boldsymbol{A})$ gauges the transfer of error from the matrix \boldsymbol{A} and the vector \boldsymbol{b} to the solution \boldsymbol{x}. The rule of thumb is that if $\kappa(\boldsymbol{A})=10^{k}$, then one can expect to lose at least k digits of precision in solving the system $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$. If the linear system is sensitive to perturbations in the elements of \boldsymbol{A}, or to perturbations of the components of \boldsymbol{b}, then this fact is reflected in \boldsymbol{A} having a large condition number. In such a case, the matrix \boldsymbol{A} is said to be ill-conditioned. Briefly, the larger the condition number, the more ill-conditioned the system.

Suppose we want to solve an invertible linear system of equations $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ for a given coefficient matrix \boldsymbol{A} and right-hand side \boldsymbol{b} but there may have been perturbations of the data owing to uncertainty in the measurements and roundoff errors in the calculations. Suppose that the right-hand side is perturbed by an amount assigned the symbol $\delta \boldsymbol{b}$ and the corresponding solution is perturbed an amount denoted by the symbol $\delta \boldsymbol{x}$. Then we have

$$
\boldsymbol{A}(\boldsymbol{x}+\delta \boldsymbol{x})=\boldsymbol{A} \boldsymbol{x}+\boldsymbol{A} \delta \boldsymbol{x}=\boldsymbol{b}+\delta \boldsymbol{b}
$$

where

$$
\boldsymbol{A} \delta \boldsymbol{x}=\delta \boldsymbol{b}
$$

From the original linear system $\boldsymbol{A x}=\boldsymbol{x}$ and norms, we have

$$
\|\boldsymbol{b}\|=\|\boldsymbol{A} \boldsymbol{x}\| \leqq\|\boldsymbol{A}\|\|\boldsymbol{x}\|
$$

which gives us

$$
\frac{1}{\|\boldsymbol{x}\|} \leqq \frac{\|\boldsymbol{A}\|}{\|\boldsymbol{b}\|}
$$

From the perturbed linear system $\boldsymbol{A} \delta \boldsymbol{x}=\delta \boldsymbol{b}$, we obtain $\delta \boldsymbol{x}=\boldsymbol{A}^{-1} \delta \boldsymbol{b}$ and

$$
\|\delta \boldsymbol{x}\| \leqq\left\|\boldsymbol{A}^{-1}\right\|\|\delta \boldsymbol{b}\|
$$

Combining the two inequalities above, we obtain

$$
\frac{\|\delta \boldsymbol{x}\|}{\|\boldsymbol{x}\|} \leqq \kappa(\boldsymbol{A}) \frac{\|\delta \boldsymbol{b}\|}{\|\boldsymbol{b}\|}
$$

which contains the condition number of the original matrix \boldsymbol{A}.
As an example of an ill-conditioned matrix consider the Hilbert matrix

$$
H_{3}=\left[\begin{array}{ccc}
1 & \frac{1}{2} & \frac{1}{3} \\
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\
\frac{1}{3} & \frac{1}{4} & \frac{1}{5}
\end{array}\right]
$$

We can use the Matlab commands to generate the matrix and then to compute both the condition number using the 2 -norm and the determinant of the matrix. We find the condition number to be 524.0568 and the determinant to be 4.6296×10^{-4}. In solving linear systems,
the condition number of the coefficient matrix measures the sensitivity of the system to errors in the data. When the condition number is large, the computed solution of the system may be dangerously in error! Further checks should be made before accepting the solution as being accurate. Values of the condition number near 1 indicate a well-conditioned matrix whereas large values indicate an ill-conditioned matrix. Using the determinant to check for singularity is appropriate only for matrices of modest size. Using mathematical software, one can compute the condition number to check for singular or near-singular matrices.

A goal in the study of numerical methods is to acquire an awareness of whether a numerical result can be trusted or whether it may be suspect (and therefore in need of further analysis). The condition number provides some evidence regarding this question. With the advent of sophisticated mathematical software systems such as Matlab and others, an estimate of the condition number is often available, along with an approximate solution so that one can judge the trustworthiness of the results. In fact, some solution procedures involve advanced features that depend on an estimated condition number and may switch solution techniques based on it. For example, this criterion may result in a switch of the solution technique from a variant of Gaussian elimination to a least-squares solution for an illconditioned system. Unsuspecting users may not realize that this has happened unless they look at all of the results, including the estimate of the condition number. (Condition numbers can also be associated with other numerical problems, such as locating roots of equations.)

Basic Iterative Methods

The iterative-method strategy produces a sequence of approximate solution vectors $\boldsymbol{x}^{(0)}$, $\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \ldots$ for system $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$. The numerical procedure is designed so that, in principle, the sequence of vectors converges to the actual solution. The process can be stopped when sufficient precision has been attained. This stands in contrast to the Gaussian elimination algorithm, which has no provision for stopping midway and offering up an approximate solution. A general iterative algorithm for solving System (1) goes as follows: Select a nonsingular matrix \boldsymbol{Q}, and having chosen an arbitrary starting vector $\boldsymbol{x}^{(0)}$, generate vectors $\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \ldots$ recursively from the equation

$$
\begin{equation*}
\boldsymbol{Q} \boldsymbol{x}^{(k)}=(\boldsymbol{Q}-\boldsymbol{A}) \boldsymbol{x}^{(k-1)}+\boldsymbol{b} \quad(k=1,2, \ldots) \tag{2}
\end{equation*}
$$

To see that this is sensible, suppose that the sequence $\boldsymbol{x}^{(k)}$ does converge, to a vector \boldsymbol{x}^{*}, say. Then by taking the limit as $k \rightarrow \infty$ in System (2), we get

$$
Q x^{*}=(Q-\boldsymbol{A}) x^{*}+\boldsymbol{b}
$$

This leads to $\boldsymbol{A} \boldsymbol{x}^{*}=\boldsymbol{b}$. Thus, if the sequence converges, its limit is a solution to the original System (1). For example, the Richardson iteration uses $\boldsymbol{Q}=\boldsymbol{I}$.

An outline of the pseudocode for carrying out the general iterative procedure (2) follows:

```
integer \(k\), kmax
real array \(\left(\boldsymbol{x}^{(0)}\right)_{1: n},(\boldsymbol{b})_{1: n},(\boldsymbol{c})_{1: n},(\boldsymbol{x})_{1: n},(\boldsymbol{y})_{1: n},(\boldsymbol{A})_{1: n \times 1: n},(\boldsymbol{Q})_{1: n \times 1: n}\)
\(\boldsymbol{x} \leftarrow \boldsymbol{x}^{(0)}\)
for \(k=1\) to \(k \max\) do
```

```
    \(y \leftarrow x\)
    \(c \leftarrow(Q-A) x+b\)
    solve \(Q x=c\)
    output \(k, x\)
    if \(\|\boldsymbol{x}-\boldsymbol{y}\|<\varepsilon\) then
        output "convergence"
        stop
    end if
end for
output "maximum iteration reached"
```

In choosing the nonsingular matrix \boldsymbol{Q}, we are influenced by the following considerations:

- System (2) should be easy to solve for $\boldsymbol{x}^{(k)}$, when the right-hand side is known.
- Matrix \boldsymbol{Q} should be chosen to ensure that the sequence $\boldsymbol{x}^{(k)}$ converges, no matter what initial vector is used. Ideally, this convergence will be rapid.

One should not believe that it is necessary to compute the inverse of \boldsymbol{Q} to carry out an iterative procedure. For small systems, we can easily compute the inverse of \boldsymbol{Q}, but in general, this is definitely not to be done! We want to solve a linear system in which \boldsymbol{Q} is the coefficient matrix. As was mentioned previously, we want to select \boldsymbol{Q} so that a linear system with \boldsymbol{Q} as the coefficient matrix is easy to solve. Examples of such matrices are diagonal, tridiagonal, banded, lower triangular, and upper triangular.

Now, let us view System (1) in its detailed form

$$
\begin{equation*}
\sum_{j=1}^{n} a_{i j} x_{j}=b_{i} \quad(1 \leqq i \leqq n) \tag{3}
\end{equation*}
$$

Solving the i th equation for the i th unknown term, we obtain an equation that describes the Jacobi method:

$$
\begin{equation*}
x_{i}^{(k)}=\left[-\sum_{\substack{j=1 \\ j \neq i}}^{n}\left(a_{i j} / a_{i i}\right) x_{j}^{(k-1)}+\left(b_{i} / a_{i i}\right)\right] \quad(1 \leqq i \leqq n) \tag{4}
\end{equation*}
$$

Here, we assume that all diagonal elements are nonzero. (If this is not the case, we can usually rearrange the equations so that it is.)

In the Jacobi method above, the equations are solved in order. The components $x_{j}^{(k-1)}$ and the corresponding new values $x_{j}^{(k)}$ can be used immediately in their place. If this is done, we have the Gauss-Seidel method:

$$
\begin{equation*}
x_{i}^{(k)}=\left[-\sum_{\substack{j=1 \\ j<i}}^{n}\left(a_{i j} / a_{i i}\right) x_{j}^{(k)}-\sum_{\substack{j=1 \\ j>i}}^{n}\left(a_{i j} / a_{i i}\right) x_{j}^{(k-1)}+\left(b_{i} / a_{i i}\right)\right] \tag{5}
\end{equation*}
$$

If $x^{(k-1)}$ is not saved, then we can dispense with the superscripts in the pseudocode as follows:

```
integer \(i, j, k, k m a x, n ; \quad\) real array \(\left(a_{i j}\right)_{1: n \times 1: n},\left(b_{i}\right)_{1: n},\left(x_{i}\right)_{1: n}\)
for \(k=1\) to kmax do
    for \(i=1\) to \(n\) do
        \(x_{i} \leftarrow\left[b_{i}-\sum_{\substack{j=1 \\ j \neq i}}^{n} a_{i j} x_{j}\right] / a_{i i}\)
    end for
end for
```

An acceleration of the Gauss-Seidel method is possible by the introduction of a relaxation factor ω, resulting in the successive overrelaxation (SOR) method:

$$
\begin{equation*}
x_{i}^{(k)}=\omega\left\{\left[-\sum_{\substack{j=1 \\ j<i}}^{n}\left(a_{i j} / a_{i i}\right) x_{j}^{(k)}-\sum_{\substack{j=1 \\ j>i}}^{n}\left(a_{i j} / a_{i i}\right) x_{j}^{(k-1)}+\left(b_{i} / a_{i i}\right)\right]\right\}+(1-\omega) x_{i}^{(k-1)} \tag{6}
\end{equation*}
$$

The SOR method with $\omega=1$ reduces to the Gauss-Seidel method.
We now consider numerical examples using iterative methods associated with the names Jacobi, Gauss-Seidel, and successive overrelaxation.

EXAMPLE 1 (Jacobi iteration) Let

$$
\boldsymbol{A}=\left[\begin{array}{rrr}
2 & -1 & 0 \\
-1 & 3 & -1 \\
0 & -1 & 2
\end{array}\right], \quad \boldsymbol{b}=\left[\begin{array}{r}
1 \\
8 \\
-5
\end{array}\right]
$$

Carry out a number of iterations of the Jacobi iteration, starting with the zero initial vector.
Solution Rewriting the equations, we have the Jacobi method:

$$
\begin{aligned}
x_{1}^{(k)} & =\frac{1}{2} x_{2}^{(k-1)}+\frac{1}{2} \\
x_{2}^{(k)} & =\frac{1}{3} x_{1}^{(k-1)}+\frac{1}{3} x_{3}^{(k-1)}+\frac{8}{3} \\
x_{3}^{(k)} & =\frac{1}{2} x_{2}^{(k-1)}-\frac{5}{2}
\end{aligned}
$$

Taking the initial vector to be $\boldsymbol{x}^{(0)}=[0,0,0]^{T}$, we find (with the aid of a computer program or a programmable calculator) that

$$
\begin{aligned}
\boldsymbol{x}^{(0)} & =[0,0,0]^{T} \\
\boldsymbol{x}^{(1)} & =[0.5000,2.6667,-2.5000]^{T} \\
\boldsymbol{x}^{(2)} & =[1.8333,2.0000,-1.1667]^{T} \\
& \vdots \\
\boldsymbol{x}^{(21)} & =[2.0000,3.0000,-1.0000]^{T}
\end{aligned}
$$

The actual solution (to four decimal places rounded) is obtained.

In the Jacobi iteration, \boldsymbol{Q} is taken to be the diagonal of \boldsymbol{A} :

$$
\boldsymbol{Q}=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

Now

$$
\boldsymbol{Q}^{-1}=\left[\begin{array}{ccc}
\frac{1}{2} & 0 & 0 \\
0 & \frac{1}{3} & 0 \\
0 & 0 & \frac{1}{2}
\end{array}\right], \quad \boldsymbol{Q}^{-1} \boldsymbol{A}=\left[\begin{array}{rrr}
1 & -\frac{1}{2} & 0 \\
-\frac{1}{3} & 1 & -\frac{1}{3} \\
0 & -\frac{1}{2} & 1
\end{array}\right]
$$

The Jacobi iterative matrix and constant vector are

$$
\boldsymbol{B}=\boldsymbol{I}-\boldsymbol{Q}^{-1} \boldsymbol{A}=\left[\begin{array}{ccc}
0 & \frac{1}{2} & 0 \\
\frac{1}{3} & 0 & \frac{1}{3} \\
0 & \frac{1}{2} & 0
\end{array}\right], \quad \boldsymbol{h}=\boldsymbol{Q}^{-1} \boldsymbol{b}=\left[\begin{array}{r}
\frac{1}{2} \\
\frac{8}{3} \\
-\frac{5}{2}
\end{array}\right]
$$

One can see that \boldsymbol{Q} is close to $\boldsymbol{A}, \boldsymbol{Q}^{-1} \boldsymbol{A}$ is close to \boldsymbol{I}, and $\boldsymbol{I}-\boldsymbol{Q}^{-1} \boldsymbol{A}$ is small. We write the Jacobi method as

$$
\boldsymbol{x}^{(k)}=\boldsymbol{B} \boldsymbol{x}^{(k-1)}+\boldsymbol{h}
$$

EXAMPLE 2 (Gauss-Seidel iteration) Repeat the preceding example using the Gauss-Seidel iteration.
Solution The idea of the Gauss-Seidel iteration is simply to accelerate the convergence by incorporating each vector as soon as it has been computed. Obviously, it would be more efficient in the Jacobi method to use the updated value $x_{1}^{(k)}$ in the second equation instead of the old value $x_{1}^{(k-1)}$. Similarly, $x_{2}^{(k)}$ could be used in the third equation in place of $x_{2}^{(k-1)}$. Using the new iterates as soon as they become available, we have the Gauss-Seidel method:

$$
\begin{aligned}
x_{1}^{(k)} & =\frac{1}{2} x_{2}^{(k-1)}+\frac{1}{2} \\
x_{2}^{(k)} & =\frac{1}{3} x_{1}^{(k)}+\frac{1}{3} x_{3}^{(k-1)}+\frac{8}{3} \\
x_{3}^{(k)} & =\frac{1}{2} x_{2}^{(k)}-\frac{5}{2}
\end{aligned}
$$

Starting with the initial vector zero, some of the iterates are

$$
\begin{aligned}
\boldsymbol{x}^{(0)} & =[0,0,0]^{T} \\
\boldsymbol{x}^{(1)} & =[0.5000,2.8333,-1.0833]^{T} \\
\boldsymbol{x}^{(2)} & =[1.9167,2.9444,-1.0278]^{T} \\
& \vdots \\
\boldsymbol{x}^{(9)} & =[2.0000,3.0000,-1.0000]^{T}
\end{aligned}
$$

In this example, the convergence of the Gauss-Seidel method is approximately twice as fast as that of the Jacobi method.

In the iterative algorithm that goes by the name Gauss-Seidel, \boldsymbol{Q} is chosen as the lower triangular part of \boldsymbol{A}, including the diagonal. Using the data from the previous example, we
now find that

$$
\boldsymbol{Q}=\left[\begin{array}{rrr}
2 & 0 & 0 \\
-1 & 3 & 0 \\
0 & -1 & 2
\end{array}\right]
$$

The usual row operations give us

$$
\boldsymbol{Q}^{-1}=\left[\begin{array}{ccc}
\frac{1}{2} & 0 & 0 \\
\frac{1}{6} & \frac{1}{3} & 0 \\
\frac{1}{12} & \frac{1}{6} & \frac{1}{2}
\end{array}\right], \quad \boldsymbol{Q}^{-1} \boldsymbol{A}=\left[\begin{array}{rrr}
1 & -\frac{1}{2} & 0 \\
0 & \frac{5}{6} & -\frac{1}{3} \\
0 & -\frac{1}{12} & \frac{5}{6}
\end{array}\right]
$$

Again, we emphasize that in a practical problem we would not compute Q^{-1}. The GaussSeidel iterative matrix and constant vector are

$$
\mathcal{L}=\boldsymbol{I}-\boldsymbol{Q}^{-1} \boldsymbol{A}=\left[\begin{array}{lll}
0 & \frac{1}{2} & 0 \\
0 & \frac{1}{6} & \frac{1}{3} \\
0 & \frac{1}{12} & \frac{1}{6}
\end{array}\right], \quad \boldsymbol{h}=\boldsymbol{Q}^{-1} \boldsymbol{b}=\left[\begin{array}{r}
\frac{1}{2} \\
\frac{17}{6} \\
-\frac{13}{12}
\end{array}\right]
$$

We write the Gauss-Seidel method as

$$
\boldsymbol{x}^{(k)}=\mathcal{L} \boldsymbol{x}^{(k-1)}+\boldsymbol{h}
$$

EXAMPLE 3 (SOR iteration) Repeat the preceding example using the SOR iteration with $\omega=1.1$.
Solution Introducing a relaxation factor ω into the Gauss-Seidel method, we have the SOR method:

$$
\begin{aligned}
& x_{1}^{(k)}=\omega\left[\frac{1}{2} x_{2}^{(k-1)}+\frac{1}{2}\right]+(1-\omega) x_{1}^{(k-1)} \\
& x_{2}^{(k)}=\omega\left[\frac{1}{3} x_{1}^{(k)}+\frac{1}{3} x_{3}^{(k-1)}+\frac{8}{3}\right]+(1-\omega) x_{2}^{(k-1)} \\
& x_{3}^{(k)}=\omega\left[\frac{1}{2} x_{2}^{(k)}-\frac{5}{2}\right]+(1-\omega) x_{3}^{(k-1)}
\end{aligned}
$$

Starting with the initial vector of zeros and with $\omega=1.1$, some of the iterates are

$$
\begin{aligned}
\boldsymbol{x}^{(0)} & =[0,0,0]^{T} \\
\boldsymbol{x}^{(1)} & =[0.5500,3.1350,-1.0257]^{T} \\
\boldsymbol{x}^{(2)} & =[2.2193,3.0574,-0.9658]^{T} \\
& \vdots \\
\boldsymbol{x}^{(7)} & =[2.0000,3.0000,-1.0000]^{T}
\end{aligned}
$$

In this example, the convergence of the SOR method is faster than that of the Gauss-Seidel method.

In the iterative algorithm that goes by the name successive overrelaxation (SOR), \boldsymbol{Q} is chosen as the lower triangular part of \boldsymbol{A} including the diagonal, but each diagonal element $a_{i j}$ is replaced by $a_{i j} / \omega$, where ω is the so-called relaxation factor. (Initial work on the SOR method was done by Southwell [1946] and Young [1950].) From the previous example,
this means that

$$
\boldsymbol{Q}=\left[\begin{array}{rrr}
\frac{20}{11} & 0 & 0 \\
-1 & \frac{30}{11} & 0 \\
0 & -1 & \frac{20}{11}
\end{array}\right]
$$

Now

$$
\boldsymbol{Q}^{-1}=\left[\begin{array}{ccc}
\frac{11}{20} & 0 & 0 \\
\frac{121}{600} & \frac{11}{30} & 0 \\
\frac{1331}{12000} & \frac{121}{600} & \frac{11}{20}
\end{array}\right], \quad \boldsymbol{Q}^{-1} \boldsymbol{A}=\left[\begin{array}{rrr}
\frac{11}{10} & -\frac{11}{20} & 0 \\
\frac{11}{300} & \frac{539}{600} & -\frac{11}{30} \\
\frac{121}{6000} & \frac{671}{12000} & \frac{539}{600}
\end{array}\right]
$$

The SOR iterative matrix and constant vector are

$$
\mathcal{L}_{\omega}=\boldsymbol{I}-\boldsymbol{Q}^{-1} \boldsymbol{A}=\left[\begin{array}{rcr}
-\frac{1}{10} & \frac{11}{20} & 0 \\
-\frac{11}{300} & \frac{61}{600} & \frac{11}{30} \\
-\frac{121}{6000} & -\frac{671}{12000} & \frac{61}{600}
\end{array}\right], \quad \boldsymbol{h}=\boldsymbol{Q}^{-1} \boldsymbol{b}=\left[\begin{array}{r}
\frac{11}{20} \\
\frac{627}{200} \\
-\frac{4103}{4000}
\end{array}\right]
$$

We write the SOR method as

$$
\boldsymbol{x}^{(k)}=\mathcal{L}_{\omega} \boldsymbol{x}^{(k-1)}+\boldsymbol{h}
$$

Pseudocode

We can write pseudocode for the Jacobi, Gauss-Seidel, and SOR methods assuming that the linear system (1) is stored in matrix-vector form:

```
procedure Jacobi(A, b, x)
real kmax }\leftarrow100,\delta\leftarrow1\mp@subsup{0}{}{-10},\varepsilon\leftarrow\frac{1}{2}\times1\mp@subsup{0}{}{-4
integer i, j,k, kmax, n; real diag, sum
real array (\boldsymbol{A}\mp@subsup{)}{1:n\times1:n}{n},(\boldsymbol{b}\mp@subsup{)}{1:n}{},(\boldsymbol{x}\mp@subsup{)}{1:n}{},(\boldsymbol{y}\mp@subsup{)}{1:n}{}
n}\leftarrow\operatorname{size}(A
for }k=1\mathrm{ to kmax do
    y}\leftarrow\boldsymbol{x
    for }i=1\mathrm{ to }n\mathrm{ do
        sum}\leftarrow\mp@subsup{b}{i}{
        diag}\leftarrow\mp@subsup{a}{ii}{
        if |diag| < \delta then
            output "diagonal element too small"
            return
        end if
        for }j=1\mathrm{ to }n\mathrm{ do
            if j\not=i}\mathrm{ then
                sum}\leftarrow\operatorname{sum}-\mp@subsup{a}{ij}{}\mp@subsup{y}{j}{
            end if
        end for
        xi}\leftarrowsum/dia
    end for
    output k, x
```

```
    if |\boldsymbol{x}-\boldsymbol{y}|<\varepsilon\mathrm{ then}
    output }k,\boldsymbol{x
    return
end if
end for
output "maximum iterations reached"
return
end Jacobi
```

Here, the vector \boldsymbol{y} contains the old iterate values, and the vector \boldsymbol{x} contains the updated ones. The values of $\operatorname{kmax}, \delta$, and ε are set either in a parameter statement or as global variables.

The pseudocode for the procedure $\operatorname{Gauss} \operatorname{Seidel}_{(\boldsymbol{A}, \boldsymbol{b}, \boldsymbol{x}) \text { would be the same as that }}^{\text {and }}$ for the Jacobi pseudocode above except that the innermost j-loop would be replaced by the following:

```
for }j=1\mathrm{ to }i-1\mathrm{ do
    sum}\leftarrow\operatorname{sum}-\mp@subsup{a}{ij}{}\mp@subsup{x}{j}{
end for
for }j=i+1\mathrm{ to }n\mathrm{ do
    sum}\leftarrow\operatorname{sum}-\mp@subsup{a}{ij}{}\mp@subsup{x}{j}{
end for
```

The pseudocode for procedure $\operatorname{SOR}(\boldsymbol{A}, \boldsymbol{b}, \boldsymbol{x}, \omega)$ would be the same as that for the GaussSeidel pseudocode with the statement following the j-loop replaced by the following:

$$
\begin{aligned}
x_{i} & \leftarrow \text { sum } / \text { diag } \\
x_{i} & \leftarrow \omega x_{i}+(1-\omega) y_{i}
\end{aligned}
$$

In the solution of partial differential equations, iterative methods are frequently used to solve large sparse linear systems, which often have special structures. The partial derivatives are approximated by stencils composed of relatively few points, such as 5,7 , or 9 . This leads to only a few nonzero entries per row in the linear system. In such systems, the coefficient matrix \boldsymbol{A} is usually not stored since the matrix-vector product can be written directly in the code. See Chapter 15 for additional details on this and how it is related to solving elliptic partial differential equations.

Convergence Theorems

For the analysis of the method described by System (2), we write

$$
\boldsymbol{x}^{(k)}=\boldsymbol{Q}^{-1}\left[(\boldsymbol{Q}-\boldsymbol{A}) \boldsymbol{x}^{(k-1)}+\boldsymbol{b}\right]
$$

or

$$
\begin{equation*}
\boldsymbol{x}^{(k)}=\mathcal{G} \boldsymbol{x}^{(k-1)}+\boldsymbol{h} \tag{7}
\end{equation*}
$$

where the iteration matrix and vector are

$$
\mathcal{G}=\boldsymbol{I}-\boldsymbol{Q}^{-1} \boldsymbol{A}, \quad \boldsymbol{h}=\boldsymbol{Q}^{-1} \boldsymbol{b}
$$

Notice that in the pseudocode, we do not compute \boldsymbol{Q}^{-1}. The matrix \boldsymbol{Q}^{-1} is used to facilitate the analysis. Now let \boldsymbol{x} be the solution of System (1). Since \boldsymbol{A} is nonsingular, \boldsymbol{x} exists and is unique. We have, from Equation (7),

$$
\begin{aligned}
\boldsymbol{x}^{(k)}-\boldsymbol{x} & =\left(\boldsymbol{I}-\boldsymbol{Q}^{-1} \boldsymbol{A}\right) \boldsymbol{x}^{(k-1)}-\boldsymbol{x}+\boldsymbol{Q}^{-1} \boldsymbol{b} \\
& =\left(\boldsymbol{I}-\boldsymbol{Q}^{-1} \boldsymbol{A}\right) \boldsymbol{x}^{(k-1)}-\left(\boldsymbol{I}-\boldsymbol{Q}^{-1} \boldsymbol{A}\right) \boldsymbol{x} \\
& =\left(\boldsymbol{I}-\boldsymbol{Q}^{-1} \boldsymbol{A}\right)\left(\boldsymbol{x}^{(k-1)}-\boldsymbol{x}\right)
\end{aligned}
$$

One can interpret $\boldsymbol{e}^{(k)} \equiv \boldsymbol{x}^{(k)}-\boldsymbol{x}$ as the current error vector. Thus, we have

$$
\begin{equation*}
\boldsymbol{e}^{(k)}=\left(\boldsymbol{I}-\boldsymbol{Q}^{-1} \boldsymbol{A}\right) \boldsymbol{e}^{(k-1)} \tag{8}
\end{equation*}
$$

We want $\boldsymbol{e}^{(k)}$ to become smaller as k increases. Equation (8) shows that $\boldsymbol{e}^{(k)}$ will be smaller than $\boldsymbol{e}^{(k-1)}$ if $\boldsymbol{I}-\boldsymbol{Q}^{-1} \boldsymbol{A}$ is small, in some sense. In turn, that means that $\boldsymbol{Q}^{-1} \boldsymbol{A}$ should be close to \boldsymbol{I}. Thus, \boldsymbol{Q} should be close to \boldsymbol{A}. (Norms can be used to make small and close precise.)

THEOREM 1

SPECTRAL RADIUS THEOREM

In order that the sequence generated by $\boldsymbol{Q} \boldsymbol{x}^{(k)}=(\boldsymbol{Q}-\boldsymbol{A}) \boldsymbol{x}^{(k-1)}+\boldsymbol{b}$ to converge, no matter what starting point $\boldsymbol{x}^{(0)}$ is selected, it is necessary and sufficient that all eigenvalues of $\boldsymbol{I}-\boldsymbol{Q}^{-1} \boldsymbol{A}$ lie in the open unit disc, $|z|<1$, in the complex plane.

The conclusion of this theorem can also be written as

$$
\rho\left(\boldsymbol{I}-\boldsymbol{Q}^{-1} \boldsymbol{A}\right)<1
$$

where ρ is the spectral radius function: For any $n \times n$ matrix \boldsymbol{G}, having eigenvalues $\lambda_{i}, \rho(\boldsymbol{G})=\max _{1 \leqq i \leqq n}\left|\lambda_{i}\right|$.

EXAMPLE 4 Determine whether the Jacobi, Gauss-Seidel, and SOR methods (with $\omega=1.1$) of the previous examples converge for all initial iterates.

Solution For the Jacobi method, we can easily compute the eigenvalues of the relevant matrix \boldsymbol{B}. The steps are

$$
\operatorname{det}(\boldsymbol{B}-\lambda \boldsymbol{I})=\operatorname{det}\left[\begin{array}{rrr}
-\lambda & \frac{1}{2} & 0 \\
\frac{1}{3} & -\lambda & \frac{1}{3} \\
0 & \frac{1}{2} & -\lambda
\end{array}\right]=-\lambda^{3}+\frac{1}{6} \lambda+\frac{1}{6} \lambda=0
$$

The eigenvalues are $\lambda=0, \pm \sqrt{1 / 3} \approx \pm 0.5774$. Thus, by the preceding theorem, the Jacobi iteration succeeds for any starting vector in this example.

For the Gauss-Seidel method, the eigenvalues of the iteration matrix \mathcal{L} are determined from

$$
\operatorname{det}(\mathcal{L}-\lambda \boldsymbol{I})=\operatorname{det}\left[\begin{array}{ccc}
-\lambda & \frac{11}{20} & 0 \\
0 & \frac{1}{6}-\lambda & \frac{1}{3} \\
0 & \frac{1}{12} & \frac{1}{6}-\lambda
\end{array}\right]=-\lambda\left(\frac{1}{6}-\lambda\right)^{2}+\frac{1}{36} \lambda=0
$$

The eigenvalues are $\lambda=0,0, \frac{1}{3} \approx 0.333$. Hence, the Gauss-Seidel iteration will also succeed for any initial vector in this example.

For the SOR method with $\omega=1.1$, the eigenvalues of the iteration matrix \mathcal{L}_{ω} are determined from

$$
\begin{aligned}
\operatorname{det}\left(\mathcal{L}_{\omega}-\lambda \boldsymbol{I}\right)= & \operatorname{det}\left[\begin{array}{ccc}
-\frac{1}{10}-\lambda & \frac{11}{20} & 0 \\
-\frac{11}{300} & \frac{61}{600}-\lambda & \frac{11}{30} \\
-\frac{121}{6000} & \frac{671}{12000} & \frac{61}{600}-\lambda
\end{array}\right] \\
= & \left(-\frac{1}{10}-\lambda\right)\left(\frac{61}{600}-\lambda\right)^{2}-\frac{121}{6000} \frac{11}{30} \frac{11}{20} \\
& +\frac{11}{20} \frac{11}{300}\left(\frac{61}{600}-\lambda\right)-\left(-\frac{1}{10}-\lambda\right) \frac{671}{12000} \frac{11}{30} \\
= & -\frac{1}{1000}+\frac{31}{3000} \lambda+\frac{31}{3000} \lambda^{2}-\lambda^{3}=0
\end{aligned}
$$

The eigenvalues are $\lambda \approx 0.1200,0.0833,-0.1000$. Hence, the SOR iteration will also succeed for any initial vector in this example.

A condition that is easier to verify than the inequality $\rho\left(\boldsymbol{I}-\boldsymbol{Q}^{-1} \boldsymbol{A}\right)<1$ is the dominance of the diagonal elements over the other elements in the same row. As defined in Section 7.3, we can use the property of diagonal dominance

$$
\left|a_{i i}\right|>\sum_{\substack{j=1 \\ j \neq i}}^{n}\left|a_{i j}\right|
$$

to determine whether the Jacobi and Gauss-Seidel methods converge via the following theorem.

JACOBI AND GAUSS-SEIDEL CONVERGENCE THEOREM

If \boldsymbol{A} is diagonally dominant, then the Jacobi and Gauss-Seidel methods converge for any starting vector $\boldsymbol{x}^{(0)}$.

Notice that this is a sufficient but not a necessary condition. Indeed, there are matrices that are not diagonally dominant for which these methods converge.

Another important property follows:

SYMMETRIC POSITIVE DEFINITE

Matrix \boldsymbol{A} is symmetric positive definite (SPD) if $\boldsymbol{A}=\boldsymbol{A}^{T}$ and $\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}>0$ for all nonzero real vectors \boldsymbol{x}.

For a matrix \boldsymbol{A} to be SPD, it is necessary and sufficient that $\boldsymbol{A}=\boldsymbol{A}^{T}$ and that all eigenvalues of \boldsymbol{A} are positive.

THEOREM 3

SOR CONVERGENCE THEOREM

Suppose that the matrix \boldsymbol{A} has positive diagonal elements and that $0<\omega<2$. The SOR method converges for any starting vector $\boldsymbol{x}^{(0)}$ if and only if \boldsymbol{A} is symmetric and positive definite.

Matrix Formulation

For the formal theory of iterative methods, we split the matrix \boldsymbol{A} into the sum of a nonzero diagonal matrix \boldsymbol{D}, a strictly lower triangular matrix \boldsymbol{C}_{L}, and a strictly upper triangular matrix \boldsymbol{C}_{U} such that

$$
\boldsymbol{A}=\boldsymbol{D}-\boldsymbol{C}_{L}-\boldsymbol{C}_{U}
$$

Here, $\boldsymbol{D}=\operatorname{diag}(\boldsymbol{A}), \boldsymbol{C}_{L}=\left(-a_{i j}\right)_{i>j}$, and $\boldsymbol{C}_{U}=\left(-a_{i j}\right)_{i<j}$. The linear System (3) can be written as

$$
\left(\boldsymbol{D}-\boldsymbol{C}_{L}-\boldsymbol{C}_{U}\right) \boldsymbol{x}=\boldsymbol{b}
$$

From Equation (4), the Jacobi method in matrix-vector form is

$$
\boldsymbol{D} \boldsymbol{x}^{(k)}=\left(\boldsymbol{C}_{L}+\boldsymbol{C}_{U}\right) \boldsymbol{x}^{(k-1)}+\boldsymbol{b}
$$

This corresponds to Equation (2) with $\boldsymbol{Q}=\operatorname{diag}(\boldsymbol{A})=\boldsymbol{D}$. From Equation (5), the GaussSeidel method becomes

$$
\left(\boldsymbol{D}-\boldsymbol{C}_{L}\right) \boldsymbol{x}^{(k)}=\boldsymbol{C}_{U} \boldsymbol{x}^{(k-1)}+\boldsymbol{b}
$$

This corresponds to Equation (2) with $\boldsymbol{Q}=\operatorname{diag}(\boldsymbol{A})+\operatorname{lower}$ triangular $(\boldsymbol{A})=\boldsymbol{D}-\boldsymbol{C}_{L}$. From Equation (6), the SOR method can be written as

$$
\left(\boldsymbol{D}-\omega \boldsymbol{C}_{L}\right) \boldsymbol{x}^{(k)}=\left[\omega \boldsymbol{C}_{U}+(1-\omega) \boldsymbol{D}\right] \boldsymbol{x}^{(k-1)}+\omega \boldsymbol{b}
$$

This corresponds to Equation (2) with $\boldsymbol{Q}=(1 / \omega) \operatorname{diag}(\boldsymbol{A})+$ lower $\operatorname{triangular}(\boldsymbol{A})=$ $(1 / \omega) \boldsymbol{D}-\boldsymbol{C}_{L}$.

In summary, the iteration matrix and constant vector for the basic three iterative methods (Jacobi, Gauss-Seidel, and SOR) can be written in terms of this splitting. For the Jacobi method, we have $\boldsymbol{Q}=\boldsymbol{D}$, so

$$
\begin{aligned}
\boldsymbol{B} & =\boldsymbol{I}-\boldsymbol{Q}^{-1} \boldsymbol{A}=\boldsymbol{D}^{-1}\left(\boldsymbol{C}_{L}+\boldsymbol{C}_{U}\right) \\
\boldsymbol{h} & =\boldsymbol{Q}^{-1} \boldsymbol{b}=\boldsymbol{D}^{-1} \boldsymbol{b}
\end{aligned}
$$

For the Gauss-Seidel method, we have $\boldsymbol{Q}=\boldsymbol{D}-\boldsymbol{C}_{L}$, so

$$
\begin{aligned}
\mathcal{L} & =\boldsymbol{I}-\boldsymbol{Q}^{-1} \boldsymbol{A}=\left(\boldsymbol{D}-\boldsymbol{C}_{L}\right)^{-1} \boldsymbol{C}_{U} \\
\boldsymbol{h} & =\boldsymbol{Q}^{-1} \boldsymbol{b}=\left(\boldsymbol{D}-\boldsymbol{C}_{L}\right)^{-1} \boldsymbol{b}
\end{aligned}
$$

For the SOR method, we have $\boldsymbol{Q}=1 / \omega\left(\boldsymbol{D}-\omega \boldsymbol{C}_{L}\right)$, so

$$
\begin{aligned}
\mathcal{L}_{\omega} & =\boldsymbol{I}-\boldsymbol{Q}^{-1} \boldsymbol{A}=\left(\boldsymbol{D}-\omega \boldsymbol{C}_{L}\right)^{-1}\left[\omega \boldsymbol{C}_{U}+(1-\omega) \boldsymbol{D}\right] \\
\boldsymbol{h} & =\boldsymbol{Q}^{-1} \boldsymbol{b}=\omega\left(\boldsymbol{D}-\omega \boldsymbol{C}_{L}\right)^{-1} \boldsymbol{b}
\end{aligned}
$$

Another View of Overrelaxation

In some cases, the rate of convergence of the basic iterative scheme (2) can be improved by the introduction of an auxiliary vector and an acceleration parameter ω as follows:

$$
\begin{aligned}
\boldsymbol{Q}^{(k)} & =(\boldsymbol{Q}-\boldsymbol{A}) x^{(k-1)}+\boldsymbol{b} \\
\boldsymbol{x}^{(k)} & =\omega \boldsymbol{z}^{(k)}+(1-\omega) \boldsymbol{x}^{(k-1)}
\end{aligned}
$$

or

$$
\boldsymbol{x}^{(k)}=\omega\left\{\left(\boldsymbol{I}-\boldsymbol{Q}^{-1} \boldsymbol{A}\right) \boldsymbol{x}^{(k-1)}+\boldsymbol{Q}^{-1} \boldsymbol{b}\right\}+(1-\omega) \boldsymbol{x}^{(k-1)}
$$

The parameter ω gives a weighting in favor of the updated values. When $\omega=1$, this procedure reduces to the basic iterative method, and when $1<\omega<2$, the rate of convergence may be improved, which is called overrelaxation. When $\boldsymbol{Q}=\boldsymbol{D}$, we have the Jacobi overrelaxation (JOR) method:

$$
\boldsymbol{x}^{(k)}=\omega\left\{\boldsymbol{B} \boldsymbol{x}^{(k-1)}+\boldsymbol{h}\right\}+(1-\omega) \boldsymbol{x}^{(k-1)}
$$

Overrelaxation has particular advantages when used with the Gauss-Seidel method in a slightly different way:

$$
\begin{aligned}
\boldsymbol{D} \boldsymbol{z}^{(k)} & =\boldsymbol{C}_{L} \boldsymbol{x}^{(k)}+\boldsymbol{C}_{U} \boldsymbol{x}^{(k-1)}+\boldsymbol{b} \\
\boldsymbol{x}^{(k)} & =\omega \boldsymbol{z}^{(k)}+(1-\omega) \boldsymbol{x}^{(k-1)}
\end{aligned}
$$

and we have the SOR method:

$$
\boldsymbol{x}^{(k)}=\mathcal{L}_{\omega} \boldsymbol{x}^{(k-1)}+\boldsymbol{h}
$$

Conjugate Gradient Method

The conjugate gradient method is one of the most popular iterative methods for solving sparse systems of linear equations. This is particularly true for systems that arise in the numerical solutions of partial differential equations.

We begin with a brief presentation of definitions and associated notation. (Some of them are presented more fully in Chapter 16.) Assume that the real $n \times n$ matrix \boldsymbol{A} is symmetric, meaning that $\boldsymbol{A}^{T}=\boldsymbol{A}$. The inner product of two vectors $\boldsymbol{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ and $\boldsymbol{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ can be written as $\langle\boldsymbol{u}, \boldsymbol{v}\rangle=\boldsymbol{u}^{T} \boldsymbol{v}=\sum_{i=1}^{n} u_{i} v_{i}$, which is the scalar sum. Note that $\langle\boldsymbol{u}, \boldsymbol{v}\rangle=\langle\boldsymbol{v}, \boldsymbol{u}\rangle$. If \boldsymbol{u} and \boldsymbol{v} are mutually orthogonal, then $\langle\boldsymbol{u}, \boldsymbol{v}\rangle=0$. An \boldsymbol{A}-inner product of two vectors \boldsymbol{u} and \boldsymbol{v} is defined as

$$
\langle\boldsymbol{u}, \boldsymbol{v}\rangle_{A}=\langle\boldsymbol{A} \boldsymbol{u}, \boldsymbol{v}\rangle=\boldsymbol{u}^{T} \boldsymbol{A}^{T} \boldsymbol{v}
$$

Two nonzero vectors \boldsymbol{u} and \boldsymbol{v} are \boldsymbol{A}-conjugate if $\langle\boldsymbol{u}, \boldsymbol{v}\rangle_{\boldsymbol{A}}=0$. An $n \times n$ matrix \boldsymbol{A} is positive definite if

$$
\langle\boldsymbol{x}, \boldsymbol{x}\rangle_{A}>0
$$

for all nonzero vectors $\boldsymbol{x} \in \mathbb{R}^{n}$. In general, expressions such as $\langle\boldsymbol{u}, \boldsymbol{v}\rangle$ and $\langle\boldsymbol{u}, \boldsymbol{v}\rangle_{A}$ reduce to 1×1 matrices and are treated as scalar values. A quadratic form is a scalar quadratic function of a vector of the form

$$
f(\boldsymbol{x})=\frac{1}{2}\langle\boldsymbol{x}, \boldsymbol{x}\rangle_{A}-\langle\boldsymbol{b}, \boldsymbol{x}\rangle+c
$$

Here, \boldsymbol{A} is a matrix, \boldsymbol{x} and \boldsymbol{b} are vectors, and c is a scalar constant. The gradient of a quadratic form

$$
f^{\prime}(\boldsymbol{x})=\left[\begin{array}{llll}
\partial f(\boldsymbol{x}) / \partial x_{1}, & \partial f(\boldsymbol{x}) / \partial x_{2}, & \cdots, & \partial f(\boldsymbol{x}) / \partial x_{n}
\end{array}\right]^{T}
$$

We can derive the following:

$$
f^{\prime}(\boldsymbol{x})=\frac{1}{2} \boldsymbol{A}^{T} \boldsymbol{x}+\frac{1}{2} \boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}
$$

If \boldsymbol{A} is symmetric, this reduces to

$$
f^{\prime}(\boldsymbol{x})=\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}
$$

Setting the gradient to zero, we obtain the linear system to be solved, $\boldsymbol{A x}=\boldsymbol{b}$. Therefore, the solution of $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ is a critical point of $f(\boldsymbol{x})$. If \boldsymbol{A} is symmetric and positive definite, then $f(\boldsymbol{x})$ is minimized by the solution of $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$. So an alternative way of solving the linear system $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ is by finding an \boldsymbol{x} that minimizes $f(\boldsymbol{x})$.

We want to solve the linear system

$$
A x=b
$$

where the $n \times n$ matrix \boldsymbol{A} is symmetric and positive definite.
Suppose that $\left\{\boldsymbol{p}^{(1)}, \boldsymbol{p}^{(2)}, \ldots, \boldsymbol{p}^{(k)}, \ldots, \boldsymbol{p}^{(n)}\right\}$ is a set containing a sequence of n mutually conjugate direction vectors. Then they form a basis for the space \mathbb{R}^{n}. Hence, we can expand the true solution vector \boldsymbol{x}^{*} of $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ into a linear combination of these basis vectors:

$$
\boldsymbol{x}^{*}=\alpha_{1} \boldsymbol{p}^{(1)}+\alpha_{2} \boldsymbol{p}^{(2)}+\cdots+\alpha^{(k)} \boldsymbol{p}^{(k)}+\cdots+\alpha_{n} \boldsymbol{p}^{(n)}
$$

where the coefficients are given by

$$
\alpha_{k}=\left\langle\boldsymbol{p}^{(k)}, \boldsymbol{b}\right\rangle /\left\langle\boldsymbol{p}^{(k)}, \boldsymbol{p}^{(k)}\right\rangle_{\boldsymbol{A}}
$$

This can be viewed as a direct method for solving the linear system $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$: First find the sequence of n conjugate direction vectors $\boldsymbol{p}^{(k)}$, and then compute the coefficients α_{k}. However, in practice, this approach is impractical because it would take too much computer time and storage.

On the other hand, if we view the conjugate gradient method as an iterative method, then we could solve large sparse linear systems in a reasonable amount of time and storage. The key is carefully choosing a small set of the conjugate direction vectors $\boldsymbol{p}^{(k)}$ so that we do not need them all to obtain a good approximation to the true solution vector.

Start with an initial guess $\boldsymbol{x}^{(0)}$ to the true solution \boldsymbol{x}^{*}. We can assume without loss of generality that $\boldsymbol{x}^{(0)}$ is the zero vector. The true solution \boldsymbol{x}^{*} is also the unique minimizer of

$$
f(x)=\frac{1}{2}\langle x, x\rangle_{A}-\langle x, x\rangle=\frac{1}{2} x^{T} A x-x^{T} x
$$

for $\boldsymbol{x} \in \mathbb{R}^{n}$. This suggests taking the first basis vector $\boldsymbol{p}^{(1)}$ to be the gradient of f at $\boldsymbol{x}=\boldsymbol{x}^{(0)}$, which equals $\boldsymbol{- b}$. The other vectors in the basis are now conjugate to the gradient-hence
the name conjugate gradient method. The k th residual vector is

$$
\boldsymbol{r}^{(k)}=\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}^{(k)}
$$

The gradient descent method moves in the direction $\boldsymbol{r}^{(k)}$. Take the direction closest to the gradient vector $\boldsymbol{r}^{(k)}$ by insisting that the direction vectors $\boldsymbol{p}^{(k)}$ be conjugate to each other. Putting all this together, we obtain the expression

$$
\boldsymbol{p}^{(k+1)}=\boldsymbol{r}^{(k)}-\left[\left\langle\boldsymbol{p}^{(k)}, \boldsymbol{r}^{(k)}\right\rangle_{A} /\left\langle\boldsymbol{p}^{(k)}, \boldsymbol{p}^{(k)}\right\rangle_{A}\right] \boldsymbol{p}_{k}
$$

After some simplifications, the algorithm is obtained for solving the linear system $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, where the coefficient matrix \boldsymbol{A} is real, symmetric, and positive definite. The input vector $\boldsymbol{x}^{(0)}$ is an initial approximation to the solution or the zero vector.

In theory, the conjugate gradient iterative method solves a system of n linear equations in at most n steps, if the matrix \boldsymbol{A} is symmetric and positive definite. Moreover, the nth iterative vector $\boldsymbol{x}^{(n)}$ is the unique minimizer of the quadratic function $q(\boldsymbol{x})=\frac{1}{2} \boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}-\boldsymbol{x}^{T} \boldsymbol{b}$. When the conjugate gradient method was introduced by Hestenes and Stiefel [1952], the initial interest in it waned once it was discovered that this finite-termination property was not obtained in practice. But two decades later, there was renewed interest in this method when it was viewed as an iterative process by Reid [1971] and others. In practice, the solution of a system of linear equations can often be found with satisfactory precision in a number of steps considerably less than the order of the system.

Here is a pseudocode for the conjugate gradient algorithm:

```
k}\leftarrow0;\boldsymbol{x}\leftarrow\mathbf{0};\boldsymbol{r}\leftarrow\boldsymbol{b}-\boldsymbol{A}\boldsymbol{x};\delta\leftarrow\langle\boldsymbol{r},\boldsymbol{r}
while}(\sqrt{}{\delta}>\varepsilon\sqrt{}{\langle\boldsymbol{b},\boldsymbol{b}\rangle})\mathrm{ and (k<k}\mp@subsup{k}{\operatorname{max}}{}
    k}\leftarrowk+
    if }k=1\mathrm{ then
        p}\leftarrow
    else
            \beta\leftarrow\delta/\mp@subsup{\delta}{\mathrm{ old }}{}
            p}\leftarrow\boldsymbol{r}+\beta\boldsymbol{p
    end if
    w}\leftarrowA
    \alpha\leftarrow\delta/\langle\boldsymbol{p},\boldsymbol{w}\rangle
    x}\leftarrow\boldsymbol{x}+\alpha\boldsymbol{p
    r}\leftarrow\boldsymbol{r}-\alpha\boldsymbol{w
    \delta old }\leftarrow
    \delta}\leftarrow\langle\boldsymbol{r},\boldsymbol{r}
end while
```

Here, ε is a parameter used in the convergence criterion (such as $\varepsilon=10^{-5}$), and $k_{\max }$ is the maximum number of iterations allowed. Usually, the number of iterations needed is much less than the size of the linear system. We save the previous value of δ in the variable $\delta_{\text {old }}$. If a good guess for the solution vector \boldsymbol{x} is known, then it should be used as an initial vector instead of zero. The variable ε is the desired convergence tolerance. The algorithm produces not only a sequence of vectors $\boldsymbol{x}^{(i)}$ that converges to the solution but an orthogonal sequence of residual vectors $\boldsymbol{r}^{(i)}=\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}^{(i)}$ and an \boldsymbol{A}-orthogonal sequence of
search direction vectors $\boldsymbol{p}^{(i)}$, namely, $\left\langle\boldsymbol{r}^{(i)}, \boldsymbol{r}^{(j)}\right\rangle=0$ if $i \neq j$ and $\left\langle\boldsymbol{p}^{(i)}, \boldsymbol{A} \boldsymbol{p}^{(j)}\right\rangle=0$ if $i \neq j$. (The main computational features of the conjugate gradient algorithm are complicated to derive, but the final conclusion is that in each step, only one matrix-vector multiplication is required and only a few dot-products are computed. These are extremely desirable attributes in solving large and sparse linear systems. Also, unlike Gaussian elimination, there is no fill-in, so only the nonzero entries in \boldsymbol{A} need to be stored in the computer memory. For some partial differential equation problems, the equations in the linear system can be represented by stencils that describe the nonzero structure within the coefficient matrix. Sometimes these stencils are used in a computer program rather than storing the nonzero entries in the coefficient matrix.

EXAMPLE 5 Use the conjugate gradient method to solve this linear system:

$$
\left[\begin{array}{rrr}
2 & -1 & 0 \\
-1 & 3 & -1 \\
0 & -1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
1 \\
8 \\
-5
\end{array}\right]
$$

Solution Programming the pseudocode, we obtain the iterates

$$
\begin{aligned}
\boldsymbol{x}^{(0)} & =[0.00000,0.00000,0.00000]^{T} \\
\boldsymbol{x}^{(1)} & =[0.29221,2.33766,-1.46108]^{T} \\
\boldsymbol{x}^{(2)} & =[1.82254,2.60772,-1.55106]^{T} \\
\boldsymbol{x}^{(3)} & =[2.00000,3.00000,-1.00000]^{T}
\end{aligned}
$$

In only three iterations, we have the answer accurate to full machine precision, which illustrates the finite termination property. The matrix \boldsymbol{A} is symmetric positive definite and the eigenvalues of \boldsymbol{A} are 1,2,4. This simple example may be a bit misleading because one cannot expect such rapid convergence in realistic applications. (The rate of convergence depends on various properties of the linear system.) In fact, the above example is too small to illustrate the power of advanced iterative methods on very large and sparse systems.

The conjugate gradient method may converge slowly when the matrix \boldsymbol{A} is illconditioned; however, the convergence can be accelerated by a technique called preconditioning. This involves a matrix \boldsymbol{M}^{-1} that approximates \boldsymbol{A} so that $\boldsymbol{M}^{-1} \boldsymbol{A}$ is well-conditioned and $\boldsymbol{M x}=\boldsymbol{y}$ is easily solved. For many very large and sparse linear systems, preconditioned conjugate gradient methods have now become the iterative methods of choice! For additional details, see Golub and Van Loan [1996] as well as many other standard textbooks and references.

Summary

(1) For the linear system

$$
A x=b
$$

the general form of an iterative method is

$$
\boldsymbol{x}^{(k)}=\mathcal{G} \boldsymbol{x}^{(k-1)}+\boldsymbol{h}
$$

where the iteration matrix and vector are

$$
\mathcal{G}=\boldsymbol{I}-\boldsymbol{Q}^{-1} \boldsymbol{A} \quad \boldsymbol{h}=\boldsymbol{Q}^{-1} \boldsymbol{b}
$$

The error vector is

$$
\boldsymbol{e}^{(k)}=\left(\boldsymbol{I}-\boldsymbol{Q}^{-1} \boldsymbol{A}\right) \boldsymbol{e}^{(k-1)}
$$

(2) In detail, we consider the linear system in the form

$$
\sum_{j=1}^{n} a_{i j} x_{j}=b_{i} \quad(1 \leqq i \leqq n)
$$

The Jacobi method is

$$
x_{i}^{(k)}=\sum_{\substack{j=1 \\ j \neq i}}^{n}\left(-a_{i j} / a_{i i}\right) x_{j}^{(k-1)}-\left(b_{i} / a_{i i}\right) \quad(1 \leqq i \leqq n)
$$

assuming that $a_{i i} \neq 0$. The Gauss-Seidel method is

$$
x_{i}^{(k)}=\sum_{\substack{j=1 \\ j<i}}^{n}\left(-a_{i j} / a_{i i}\right) x_{i}^{(k)}+\sum_{\substack{j=1 \\ j>i}}^{n}\left(-a_{i j} / a_{i i}\right) x_{j}^{(k-1)}-\left(b_{i} / a_{i i}\right)
$$

The SOR method is

$$
x_{i}^{(k)}=\omega\left\{\sum_{\substack{j=1 \\ j<i}}^{n}\left(-a_{i j} / a_{i i}\right) x_{i}^{(k)}+\sum_{\substack{j=1 \\ j>i}}^{n}\left(-a_{i j} / a_{i i}\right) x_{j}^{(k-1)}-\left(b_{i} / a_{i i}\right)\right\}+(1-\omega) x_{i}^{(k-1)}
$$

The SOR method reduces to the Gauss-Seidel method when $\omega=1$.
(3) For a matrix formulation, we split the matrix \boldsymbol{A} :

$$
\boldsymbol{A}=\boldsymbol{D}-\boldsymbol{C}_{L}-\boldsymbol{C}_{U}
$$

where \boldsymbol{D} is a nonzero diagonal matrix, \boldsymbol{C}_{L} is a strictly lower triangular matrix, and \boldsymbol{C}_{U} is a strictly upper triangular matrix. Here, $\boldsymbol{D}=\operatorname{diag}(\boldsymbol{A}), \boldsymbol{C}_{L}=\left(-a_{i j}\right)_{i>j}$, and $\boldsymbol{C}_{U}=\left(-a_{i j}\right)_{i<j}$. The Jacobi method in matrix-vector form is

$$
\boldsymbol{D} \boldsymbol{x}^{(k)}=\left(\boldsymbol{C}_{L}+\boldsymbol{C}_{U}\right) \boldsymbol{x}^{(k-1)}+\boldsymbol{b}
$$

since $\boldsymbol{Q}=\boldsymbol{D}$. The Gauss-Seidel method is

$$
\left(\boldsymbol{D}-\boldsymbol{C}_{L}\right) \boldsymbol{x}^{(k)}=\boldsymbol{C}_{U} \boldsymbol{x}^{(k-1)}+\boldsymbol{b}
$$

since $\boldsymbol{Q}=\boldsymbol{D}-\boldsymbol{C}_{L}$. The SOR method is

$$
\left(\boldsymbol{D}-\omega \boldsymbol{C}_{L}\right) \boldsymbol{x}^{(k)}=\left[\omega \boldsymbol{C}_{U}+(1-\omega) \boldsymbol{D}\right] \boldsymbol{x}^{(k-1)}+\omega \boldsymbol{b}
$$

since $\boldsymbol{Q}=(1 / \omega) \boldsymbol{D}-\boldsymbol{C}_{L}$. The splitting matrices, iteration matrices, and constant vectors are as follows: For the Jacobi method, we have

$$
\begin{aligned}
\boldsymbol{Q} & =\boldsymbol{D} \\
\boldsymbol{B} & =\boldsymbol{D}^{-1}\left(\boldsymbol{C}_{L}+\boldsymbol{C}_{U}\right) \\
\boldsymbol{h} & =\boldsymbol{D}^{-1} \boldsymbol{b}
\end{aligned}
$$

For the Gauss-Seidel method, we have

$$
\begin{aligned}
\boldsymbol{Q} & =\boldsymbol{D}-\boldsymbol{C}_{L} \\
\mathcal{L} & =\left(\boldsymbol{D}-\boldsymbol{C}_{L}\right)^{-1} \boldsymbol{C}_{U} \\
\boldsymbol{h} & =\left(\boldsymbol{D}-\boldsymbol{C}_{L}\right)^{-1} \boldsymbol{b}
\end{aligned}
$$

For the SOR method, we have

$$
\begin{aligned}
\boldsymbol{Q} & =\frac{1}{\omega}\left(\boldsymbol{D}-\omega \boldsymbol{C}_{L}\right) \\
\mathcal{L}_{\omega} & =\left(\boldsymbol{D}-\omega \boldsymbol{C}_{L}\right)^{-1}\left[\omega \boldsymbol{C}_{U}+(1-\omega) \boldsymbol{D}\right] \\
\boldsymbol{h} & =\omega\left(\boldsymbol{D}-\omega \boldsymbol{C}_{L}\right)^{-1} \boldsymbol{b}
\end{aligned}
$$

(4) An iterative method converges for a specific matrix \boldsymbol{A} if and only if

$$
\rho\left(\boldsymbol{I}-\boldsymbol{Q}^{-1} \boldsymbol{A}\right)<1
$$

If \boldsymbol{A} is diagonally dominant, then the Jacobi and Gauss-Seidel methods converge for any $\boldsymbol{x}^{(0)}$. The SOR method converges, for $0<\omega<2$ and any $\boldsymbol{x}^{(0)}$, if and only if \boldsymbol{A} is symmetric and positive definite with positive diagonal elements.

Problems 8.2

1. Give an alternative solution to Example 4.
2. Write the matrix formula for the Gauss-Seidel overrelaxation method.
${ }^{a}$ 3. (Multiple choice) In solving a system of equations $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, it is often convenient to use an iterative method, which generates a sequence of $\boldsymbol{x}^{(k)}$ vectors that should converge to a solution. The process is stopped when sufficient accuracy has been attained. A general procedure is to obtain $\boldsymbol{x}^{(k)}$ by solving $\boldsymbol{Q} \boldsymbol{x}^{(k)}=(\boldsymbol{Q}-\boldsymbol{A}) \boldsymbol{x}^{(k-1)}+\boldsymbol{b}$. Here, \boldsymbol{Q} is a certain matrix that is usually connected somehow to \boldsymbol{A}. The process is repeated, starting with any available guess, $\boldsymbol{x}^{(0)}$. What hypothesis guarantees that the method works, no matter what starting point is selected?
a. $\|\boldsymbol{Q}\|<1$
b. $\|\boldsymbol{Q} \boldsymbol{A}\|<1$
c. $\|\boldsymbol{I}-\boldsymbol{Q} \boldsymbol{A}\|<1$
d. $\left\|\boldsymbol{I}-\boldsymbol{Q}^{-1} \boldsymbol{A}\right\|<1$
e. None of these.

Hint: The spectral radius is less than or equal to the norm.
4. (Multiple choice) From a vector norm, we can create a subordinate matrix norm. Which relation is satisfied by every subordinate matrix norm?
a. $\|A x\| \geqq\|A\|\|x\|$
b. $\|\boldsymbol{I}\|=1$
c. $\|\boldsymbol{A B}\| \geqq\|\boldsymbol{A}\|\|\boldsymbol{B}\|$
d. $\|A+B\| \geqq\|A\|+\|B\|$
e. None of these.
${ }^{a}$ 5. (Multiple choice) The condition for diagonal dominance of a matrix \boldsymbol{A} is:
a. $\left|a_{i i}\right|<\sum_{\substack{j=1 \\ j \neq i}}^{n}\left|a_{i j}\right|$
b. $\left|a_{i i}\right| \geqq \sum_{\substack{j=1 \\ j \neq i}}^{n}\left|a_{i j}\right|$
c. $\left|a_{i i}\right|<\sum_{j=1}^{n}\left|a_{i j}\right|$
d. $\left|a_{i i}\right|>\sum_{j=1}^{n}\left|a_{i j}\right|$
e. None of these.
6. (Multiple choice) A necessary and sufficient condition for the standard iteration formula $\boldsymbol{x}^{(k)}=\mathcal{G} \boldsymbol{x}^{(k-1)}+\boldsymbol{h}$ to produce a sequence $\boldsymbol{x}^{(k)}$ that converges to a solution of the equation $(\boldsymbol{I}-\mathcal{G}) \boldsymbol{x}=\boldsymbol{h}$ is that:
a. The spectral radius of \mathcal{G} is greater than 1 .
b. The matrix \mathcal{G} is diagonally dominant.
c. The spectral radius of \mathcal{G} is less than 1 .
d. \mathcal{G} is nonsingular.
e. None of these.
7. (Multiple choice) A sufficient condition for the Jacobi method to converge for the linear system $\boldsymbol{A x}=\boldsymbol{b}$.
a. $\boldsymbol{A}-\boldsymbol{I}$ is diagonally dominant.
b. \boldsymbol{A} is diagonally dominant.
c. \mathcal{G} is nonsingular.
d. The spectral radius of \mathcal{G} is less than 1 .
e. None of these.
8. (Multiple choice) A sufficient condition for the Gauss-Seidel method to work on the linear system $\boldsymbol{A x}=\boldsymbol{b}$.
a. \boldsymbol{A} is diagonally dominant.
b. $\boldsymbol{A}-\boldsymbol{I}$ is diagonally dominant.
c. The spectral radius of \boldsymbol{A} is less than 1 .
d. \mathcal{G} is nonsingular.
e. None of these.
${ }^{a}$ 9. (Multiple choice) Necessary and sufficient conditions for the SOR method, where $0<\omega<2$, to work on the linear system $\boldsymbol{A x}=\boldsymbol{b}$.
a. \boldsymbol{A} is diagonally dominant.
b. $\rho(A)<1$.
c. \boldsymbol{A} is symmetric positive definite.
d. $\boldsymbol{x}^{(0)}=0$.
e. None of these.
10. The Frobenius norm is given by $\|\boldsymbol{A}\|_{F}=\sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n}\left|a_{i j}^{2}\right|}$ which is frequently used because it is so easy to compute. Find the value of this norm for these matrices:
a. $\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 5 & 4 \\ 2 & 1 & 3\end{array}\right]$
b. $\left[\begin{array}{llll}0 & 0 & 1 & 2 \\ 3 & 0 & 5 & 4 \\ 1 & 1 & 1 & 2 \\ 1 & 3 & 2 & 2\end{array}\right]$
c. $\left[\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 2 & 3 & 4 & 5 & 6 \\ 0 & 1 & 0 & 1 & 0 \\ 3 & 4 & 3 & 4 & 3 \\ 5 & 5 & 5 & 5 & 5\end{array}\right]$
11. Determine the condition numbers $\kappa(\boldsymbol{A})$ of these matrices:
a. $\left[\begin{array}{ccc}-2 & 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 & -2\end{array}\right]$
b. $\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1\end{array}\right]$
c. $\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]$
d. $\left[\begin{array}{rrrr}-2 & -1 & 2 & -1 \\ 1 & 2 & 1 & -2 \\ 2 & -1 & 2 & 1 \\ 0 & 2 & 0 & 1\end{array}\right]$

Computer Problems 8.2

1. Redo several or all of Examples $1-5$ using the linear system involving one of the following coefficient matrix and right-hand side vector pairs:
a. $\boldsymbol{A}=\left[\begin{array}{rr}5 & -1 \\ -1 & 3\end{array}\right], \quad \boldsymbol{b}=\left[\begin{array}{l}7 \\ 4\end{array}\right]$
b. $\boldsymbol{A}=\left[\begin{array}{rrr}5 & -1 & 0 \\ -1 & 3 & -1 \\ 0 & -1 & 2\end{array}\right], \quad \boldsymbol{b}=\left[\begin{array}{l}7 \\ 4 \\ 5\end{array}\right]$
c. $\boldsymbol{A}=\left[\begin{array}{rrr}2 & -1 & 0 \\ -1 & 6 & -2 \\ 4 & -3 & 8\end{array}\right], \quad \boldsymbol{b}=\left[\begin{array}{l}1 \\ 3 \\ 9\end{array}\right]$
d. $\boldsymbol{A}=\left[\begin{array}{rrr}7 & 3 & -1 \\ 3 & 8 & 1 \\ -1 & 1 & 4\end{array}\right], \quad \boldsymbol{b}=\left[\begin{array}{r}3 \\ -4 \\ 2\end{array}\right]$
2. Using the Jacobi, Gauss-Seidel, and SOR $(\omega=1.1)$ iterative methods, write and execute a computer program to solve the following linear system to four decimal places (rounded) of accuracy:

$$
\left[\begin{array}{rrrr}
7 & 1 & -1 & 2 \\
1 & 8 & 0 & -2 \\
-1 & 0 & 4 & -1 \\
2 & -2 & -1 & 6
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
3 \\
-5 \\
4 \\
-3
\end{array}\right]
$$

Compare the number of iterations needed in each case. Hint: The exact solution is $\boldsymbol{x}=(1,-1,1,-1)^{T}$.
3. Using the Jacobi, Gauss-Seidel, and the SOR ($\omega=1.4$) iterative methods, write and run code to solve the following linear system to four decimal places of accuracy:

$$
\left[\begin{array}{rrrr}
7 & 3 & -1 & 2 \\
3 & 8 & 1 & -4 \\
-1 & 1 & 4 & -1 \\
2 & -4 & -1 & 6
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
-1 \\
0 \\
-3 \\
1
\end{array}\right]
$$

Compare the number of iterations in each case. Hint: Here, the exact solution is $\boldsymbol{x}=$ $(-1,1,-1,1)^{T}$.
4. (Continuation) Solve the system using the SOR iterative method with values of $\omega=$ $1(0.1) 2$. Plot the number of iterations for convergence versus the values of ω. Which value of ω results in the fastest convergence?
5. Program and run the Jacobi, Gauss-Seidel, and SOR methods for the system of Example 1
a. using equations involving the splitting matrix \boldsymbol{Q}.
b. using the equation formulations in Example 4.
c. using the pseudocode involving matrix-vector multiplication.
6. (Continuation) Select one or more of the systems in Computer Problem 1, and rerun these programs.
7. Consider the linear system

$$
\left[\begin{array}{rr}
9 & -3 \\
-2 & 8
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{r}
6 \\
-4
\end{array}\right]
$$

Using Maple or Matlab, compare solving it by using the Jacobi method and the GaussSeidel method starting with $\boldsymbol{x}^{(0)}=(0,0)^{T}$.
8. (Continuation)
a. Change the $(1,1)$ entry from 9 to 1 so that the coefficient matrix is no longer diagonally dominant and see whether the Gauss-Seidel method still works. Explain why or why not.
b. Then change the $(2,2)$ entry from 8 to 1 as well and test. Again explain the results.
9. Use the conjugate gradient method to solve this linear system:

$$
\left[\begin{array}{rrr}
2.0 & -0.3 & -0.2 \\
-0.3 & 2.0 & -0.1 \\
-0.2 & -0.1 & 2.0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
7 \\
5 \\
3
\end{array}\right]
$$

10. (Euler-Bernoulli beam) A simple model for a bending beam under stress involves the Euler-Bernoulli differential equation. A finite difference discretization converts it into a system of linear equations. As the size of the discretization decreases, the linear system becomes larger and more ill-conditioned.
a. For a beam pinned at both ends, we obtain the following banded system of linear equations with a bandwidth of five:

$$
\left[\begin{array}{rrrrrrrrr}
12 & -6 & \frac{4}{3} & & & & & & \\
-4 & 6 & -4 & 1 & & & & & \\
1 & -4 & 6 & -4 & 1 & & & & \\
& 1 & -4 & 6 & -4 & 1 & & & \\
& & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \\
& & & 1 & -4 & 6 & -4 & 1 & \\
& & & & 1 & -4 & 6 & -4 & 1 \\
& & & & & 1 & -4 & 6 & -4 \\
& & & & & & \frac{4}{3} & 6 & -12
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
\vdots \\
y_{n-3} \\
y_{n-2} \\
y_{n-1} \\
y_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4} \\
\vdots \\
b_{n-3} \\
b_{n-2} \\
b_{n-1} \\
b_{n}
\end{array}\right]
$$

The right-hand side represents forces on the beam. Set the right-hand side so that there is a known solution, such as a sag in the middle of the beam. Using an iterative
method, repeatedly solve the system by allowing n to increase. Does the error in the solution increase when n increases? Use mathematical software that computes the condition number of the coefficient matrix to explain what is happening.
b. The linear system of equations for a cantilever beam with a free boundary condition at only one end is

$$
\left[\begin{array}{rrrrrrrrr}
12 & -6 & \frac{4}{3} & & & & & & \\
-4 & 6 & -4 & 1 & & & & & \\
1 & -4 & 6 & -4 & 1 & & & & \\
& 1 & -4 & 6 & -4 & 1 & & & \\
& & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \\
& & & 1 & -4 & 6 & -4 & 1 & \\
& & & & 1 & -4 & 6 & -4 & 1 \\
& & & & & 1 & -\frac{93}{25} & \frac{111}{25} & -\frac{43}{25} \\
& & & & & & \frac{12}{25} & \frac{24}{25} & \frac{12}{25}
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
\vdots \\
y_{n-3} \\
y_{n-2} \\
y_{n-1} \\
y_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4} \\
\vdots \\
b_{n-3} \\
b_{n-2} \\
b_{n-1} \\
b_{n}
\end{array}\right]
$$

Repeat the numerical experiment for this system. See Sauer [2006] for additional details.
11. Consider this sparse linear system:

$$
\left[\begin{array}{rrrrrrrrr}
3 & -1 & & & & & & & \frac{1}{2} \\
-1 & 3 & -1 & & & & & \frac{1}{2} & \\
& -1 & 3 & -1 & & & \frac{1}{2} & & \\
& & \ddots & \ddots & \ddots & . & & & \\
& & & -1 & 3 & -1 & & & \\
& & & . & \ddots & \ddots & \ddots & & \\
& & \frac{1}{2} & & & -1 & 3 & -1 & \\
& \frac{1}{2} & & & & & -1 & 3 & -1 \\
\frac{1}{2} & & & & & & & -1 & 3
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
\vdots \\
\vdots \\
x_{n-2} \\
x_{n-1} \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
2.5 \\
1.5 \\
1.5 \\
\vdots \\
1.0 \\
\vdots \\
1.5 \\
1.5 \\
1.5
\end{array}\right]
$$

The true solution is $x=[1,1,1, \ldots, 1,1,1]^{T}$. Use an iterative method to solve this system for increasing values of n.
12. Consider the sample two-dimensional linear system $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, where $\boldsymbol{A}=\left[\begin{array}{ll}3 & 2 \\ 2 & 6\end{array}\right]$, $\boldsymbol{b}=\left[\begin{array}{c}2 \\ -8\end{array}\right]$, and $\boldsymbol{c}=0$. Plot graphs to show the following:
a. The solution lies at the intersection of two lines.
b. Graph of the quadratic form $\boldsymbol{F}(\boldsymbol{x})=c+b^{T} x+\frac{1}{2} \boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}$ showing that the minimum point of this surface is the solution of $\boldsymbol{A x}=\boldsymbol{b}$.
c. Contours of the quadratic form so each ellipsoidal curve has a constant value.
d. Gradient $F^{\prime}(\boldsymbol{x})$ of the quadratic form. Show that for every \boldsymbol{x}, the gradient points in the direction of the steepest increase of $F(\boldsymbol{x})$ and is orthogonal to the contour lines. (See Section 16.2.)

8.3 Eigenvalues and Eigenvectors

Let \boldsymbol{A} be an $n \times n$ matrix. We ask the following natural question about \boldsymbol{A} : Are there nonzero vectors \boldsymbol{v} for which $\boldsymbol{A} \boldsymbol{v}$ is a scalar multiple of \boldsymbol{v} ? Although we pose this question in the spirit of pure curiosity, there are many situations in scientific computation in which this question arises.

The answer to our question is a qualified Yes! We must be willing to consider complex scalars, as well as vectors with complex components. With that broadening of our viewpoint, such vectors always exist. Here are two examples. In the first, we need not bring in complex numbers to illustrate the situation, while in the second, the vectors and scalar factors must be complex.

EXAMPLE 1 Let $\boldsymbol{A}=\left[\begin{array}{rr}3 & 2 \\ 7 & -2\end{array}\right]$. Find a nonzero vector \boldsymbol{v} for which $\boldsymbol{A} \boldsymbol{v}$ is a multiple of \boldsymbol{v}.
Solution One easily verifies that

$$
\begin{aligned}
\boldsymbol{A}\left[\begin{array}{l}
1 \\
1
\end{array}\right] & =\left[\begin{array}{l}
5 \\
5
\end{array}\right]=5\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
\boldsymbol{A}\left[\begin{array}{r}
2 \\
-7
\end{array}\right] & =\left[\begin{array}{r}
-8 \\
28
\end{array}\right]=-4\left[\begin{array}{r}
2 \\
-7
\end{array}\right]
\end{aligned}
$$

We have two different answers (but we have not revealed how to find them).
EXAMPLE 2 Repeat the preceding example with the matrix $\boldsymbol{A}=\left[\begin{array}{rr}1 & 1 \\ -2 & 3\end{array}\right]$.
Solution As in Example 1, it can be verified that

$$
\begin{aligned}
& \boldsymbol{A}\left[\begin{array}{c}
1 \\
1+i
\end{array}\right]=(2+i)\left[\begin{array}{c}
1 \\
1+i
\end{array}\right] \\
& \boldsymbol{A}\left[\begin{array}{c}
1 \\
1-i
\end{array}\right]=(2-i)\left[\begin{array}{c}
1 \\
1-i
\end{array}\right]
\end{aligned}
$$

In these equations, $i=\sqrt{-1}$. Surprisingly, we find answers involving complex numbers even though the matrix does not contain any complex entries!

When the equation $\boldsymbol{A x}=\lambda \boldsymbol{x}$ is valid and \boldsymbol{x} is not zero, we say that λ is an eigenvalue of \boldsymbol{A} and \boldsymbol{x} is an accompanying eigenvector. Thus, in Example 1, the matrix has 5 as an eigenvalue with accompanying eigenvector $[1,1]^{T}$, and -4 is another eigenvalue with accompanying eigenvector $[2,-7]^{T}$. Example 2 emphasizes that a real matrix may have complex eigenvalues and complex eigenvectors. Notice that an equation $\boldsymbol{A 0}=\lambda \mathbf{0}$ and an equation $\boldsymbol{A 0}=\mathbf{0 x}$ say nothing useful about eigenvalues and eigenvectors of \boldsymbol{A}.

Many problems in science lead to eigenvalue problems in which the principal question usually is: What are the eigenvalues of a given matrix, and what are the accompanying eigenvectors? An outstanding application of this theory is to systems of linear differential equations, about which more will be said later.

Notice that if $\boldsymbol{A} \boldsymbol{x}=\lambda \boldsymbol{x}$ and $\boldsymbol{x} \neq 0$, then every nonzero multiple of \boldsymbol{x} is an eigenvector (with the same eigenvalue). If λ is an eigenvalue of an $n \times n$ matrix \boldsymbol{A}, then the set $\{\boldsymbol{x}: \boldsymbol{A x}=\lambda \boldsymbol{x}\}$ is a subspace of \mathbb{R}^{n} called an eigenspace. It is necessarily of dimension at least 1 .

Calculating Eigenvalues and Eigenvectors

Given a square matrix \boldsymbol{A}, how does one discover its eigenvalues? Begin by observing that the equation $\boldsymbol{A} \boldsymbol{x}=\lambda \boldsymbol{x}$ is equivalent to $(\boldsymbol{A}-\lambda \boldsymbol{I}) \boldsymbol{x}=\mathbf{0}$. Since we are interested in nonzero solutions to this equation, the matrix $\boldsymbol{A}-\lambda \boldsymbol{I}$ must be singular (noninvertible), and therefore, $\operatorname{Det}(\boldsymbol{A}-\boldsymbol{\lambda} \boldsymbol{I})=0$. This is how (in principle) we can find all the eigenvalues of \boldsymbol{A}. Specifically, form the function p by the definition $p(\lambda)=\operatorname{Det}(\boldsymbol{A}-\lambda \boldsymbol{I})$, and find the zeros of p. It turns out that p is a polynomial of degree n and must have n zeros, provided that we allow complex zeros and count each zero a number of times equal to its multiplicity. Even if the matrix \boldsymbol{A} is real, we must be prepared for complex eigenvalues. The polynomial just described is called the characteristic polynomial of the matrix \boldsymbol{A}. If this polynomial has a repeated factor, such as $(\lambda-3)^{k}$, then we say that 3 is a root of multiplicity k. Such roots are still eigenvalues, but they can be troublesome when $k>1$.

To illustrate the calculation of eigenvalues, let us use the matrix in Example 1, namely,

$$
\boldsymbol{A}=\left[\begin{array}{rr}
3 & 2 \\
7 & -2
\end{array}\right]
$$

The characteristic polynomial is

$$
\begin{aligned}
p(\lambda)=\operatorname{Det}(\boldsymbol{A}-\lambda \boldsymbol{I}) & =\operatorname{Det}\left[\begin{array}{cc}
3-\lambda & 2 \\
7 & -2-\lambda
\end{array}\right]=(3-\lambda)(-2-\lambda)-14 \\
& =\lambda^{2}-\lambda-20=(\lambda-5)(\lambda+4)
\end{aligned}
$$

The eigenvalues are 5 and -4 .
We can carry out this calculation with one or two commands in Matlab, Maple, or Mathematica. We can determine the characteristic polynomial and subsequently compute its zeros. This gives us the two roots of of the characteristic polynomial, which are the eigenvalues 5 and -4 . These mathematical software systems also have single commands to produce a list of eigenvalues, computed in the best possible way, which is usually not to determine the characteristic polynomial and subsequently compute its zeros!

In general, an $n \times n$ matrix will have a characteristic polynomial of degree n, and its roots are the eigenvalues of \boldsymbol{A}. Since the calculation of zeros of a polynomial is numerically challenging if not unstable, this straightforward procedure is not recommended. (See Computer Problem 8.3.2 for an experiment pertaining to this situation.) For small values of n, it may be quite satisfactory, however. It is called the direct method for computing eigenvalues.

Once an eigenvalue λ has been determined for a matrix \boldsymbol{A}, an eigenvector can be computed by solving the system $(\boldsymbol{A}-\lambda \boldsymbol{I}) \boldsymbol{x}=\mathbf{0}$. Thus, in Example 1, we must solve $(\boldsymbol{A}-5 \boldsymbol{I}) \boldsymbol{x}=\mathbf{0}$, or

$$
\left[\begin{array}{rr}
-2 & 2 \\
7 & -7
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Of course, this matrix is singular, and the homogeneous equation has nontrivial solutions, such as $[1,1]^{T}$. The other eigenvalue is treated in the same way, leading to an eigenvector $[2,-7]^{T}$. Any scalar multiple of an eigenvector is also an eigenvector.

This work can be done by using mathematical software to find an eigenvector for each eigenvalue λ via the null space of the matrix $\boldsymbol{A}-\lambda \boldsymbol{I}$. Also, we can use a single command to compute all the eigenvalues directly or request the calculation of all the eigenvalues and eigenvectors at once. The Matlab command [V,D] = eig(A) produces two arrays, V and D . The array V has eigenvectors of \boldsymbol{A} as its columns, and the array D contains all the eigenvalues of \boldsymbol{A} on its diagonal. The program returns a vector of unit length such as [0.7071, 0.7071] ${ }^{T}$. That vector by itself provides a basis for the null space of $\boldsymbol{A}-5 \boldsymbol{I}$.

Notice that the eigenvalue-eigenvector problem is nonlinear. The equation $\boldsymbol{A x}=\lambda \boldsymbol{x}$ has two unknowns, λ and \boldsymbol{x}. They appear in the equation multiplied together. If either \boldsymbol{x} or λ were known, finding the other would be a linear problem and very easy.

Mathematical Software

A typical, mundane use of mathematical software such as Matlab might be to compute the eigenvalues and eigenvalues of a matrix with a command such as $[V, D]=\operatorname{eig}(A)$ for the matrix

$$
\boldsymbol{A}=\left[\begin{array}{rrr}
1 & 3 & -7 \\
-3 & 4 & 1 \\
2 & -5 & 3
\end{array}\right]
$$

Matlab responds instantly with the eigenvectors in the array V and the eigenvalues in the diagonal array D. The real eigenvalue is 0.0214 and the complex pair of eigenvalues are $3.9893 \pm 5.5601 i$. Behind the scenes, much complicated computing may be taking place. The general procedure has these components: First, by means of similarity transformations, \boldsymbol{A} is put into lower Hessenberg form. This means that all elements below the first subdiagonal are zero. Thus, the new $\boldsymbol{A}=\left(a_{i j}\right)$ satisfies $a_{i j}=0$ when $i>j+1$. Similarity transformations ensure that the eigenvalues are not disturbed. If \boldsymbol{A} is real, further similarity transformations put \boldsymbol{A} into a near-diagonal form in which each diagonal element is either a single real number or a 2×2 real matrix whose eigenvalues are a pair of conjugate complex numbers. Creating the additional zeros just below the diagonal requires some iterative process, because after all, we are in effect computing the zeros of a polynomial. The iterative process is reminiscent of the power method that will be described in Section 8.4.

Maple can be used to compute the eigenvalues and eigenvectors. The quantities are computed in exact arithmetic and then converted to floating-point. In some versions of Maple and Matlab, one can use some of the commands from one of these packages in the other. In Mathematica, we can use commands to obtain similar results.

The best advice for anyone who is confronted with challenging eigenvalue problems is to use the software in the package LAPACK. Special eigenvalue algorithms for various types of matrices are available there. For example, if the matrix in question is real and symmetric, one should use an algorithm tailored for that case. There are about a dozen categories available to choose from in LAPACK. Matlab itself employs some of the programs in LAPACK.

Properties of Eigenvalues

A theorem that summarizes the special properties of a matrix that impinge on the computing of its eigenvalues follows.

THEOREM 1

MATRIX EIGENVALUE PROPERTIES

The following statements are true for any square matrix \boldsymbol{A} :

1. If $\boldsymbol{\lambda}$ is an eigenvalue of \boldsymbol{A}, then $p(\lambda)$ is an eigenvalue of $p(\boldsymbol{A})$, for any polynomial p. In particular, λ^{k} is an eigenvalue of \boldsymbol{A}^{k}.
2. If \boldsymbol{A} is nonsingular and λ is an eigenvalue of \boldsymbol{A}, then $p(1 / \lambda)$ is an eigenvalue of $p\left(\boldsymbol{A}^{-1}\right)$, for any polynomial p. In particular, λ^{-1} is an eigenvalue of \boldsymbol{A}^{-1}.
3. If \boldsymbol{A} is real and symmetric, then its eigenvalues are real.
4. If \boldsymbol{A} is complex and Hermitian, then its eigenvalues are real.
5. If \boldsymbol{A} is Hermitian and positive definite, then its eigenvalues are positive.
6. If \boldsymbol{P} is nonsingular, then \boldsymbol{A} and $\boldsymbol{P} \boldsymbol{A} \boldsymbol{P}^{-1}$ have the same characteristic polynomial (and the same eigenvalues).

Recall that a matrix \boldsymbol{A} is symmetric if $\boldsymbol{A}=\boldsymbol{A}^{T}$, where $\boldsymbol{A}^{T}=\left(a_{j i}\right)$ is the transpose of $\boldsymbol{A}=\left(a_{i j}\right)$. On the other hand, a complex matrix \boldsymbol{A} is Hermitian if $\boldsymbol{A}=\boldsymbol{A}^{*}$, where $\boldsymbol{A}^{*}=\overline{\boldsymbol{A}}^{T}=\left(\bar{a}_{j i}\right)$. Here \boldsymbol{A}^{*} is the conjugate transpose of the matrix \boldsymbol{A}. Using the syntax of programming, we can write $\boldsymbol{A}^{T}(i, j)=\boldsymbol{A}(j, i)$ and $\boldsymbol{A}^{*}(i, j)=\overline{\boldsymbol{A}}(j, i)$. Recall also that \boldsymbol{A} is positive definite if $\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}>0$ for all nonzero vectors \boldsymbol{x}.

Two matrices \boldsymbol{A} and \boldsymbol{B} are similar to each other if there exists a nonsingular matrix \boldsymbol{P} such that $\boldsymbol{B}=\boldsymbol{P} \boldsymbol{A} \boldsymbol{P}^{-1}$. Similar matrices have the same characteristic polynomial

$$
\begin{aligned}
\operatorname{Det}(\boldsymbol{B}-\lambda \boldsymbol{I}) & =\operatorname{Det}\left(\boldsymbol{P} \boldsymbol{A} \boldsymbol{P}^{-1}-\lambda \boldsymbol{I}\right) \\
& =\operatorname{Det}\left(\boldsymbol{P}(\boldsymbol{A}-\lambda \boldsymbol{I}) \boldsymbol{P}^{-1}\right) \\
& =\operatorname{Det}(\boldsymbol{P}) \cdot \operatorname{Det}(\boldsymbol{A}-\lambda \boldsymbol{I}) \cdot \operatorname{Det}\left(\boldsymbol{P}^{-1}\right) \\
& =\operatorname{Det}(\boldsymbol{A}-\lambda \boldsymbol{I})
\end{aligned}
$$

Thus, we have an important theorem.

THEOREM 2

EIGENVALUES OF SIMILAR MATRICES

Similar matrices have the same eigenvalues.

This theorem suggests a strategy for finding eigenvalues of \boldsymbol{A}. Transform the matrix \boldsymbol{A} to a matrix \boldsymbol{B} using a similarity transformation $\boldsymbol{B}=\boldsymbol{P} \boldsymbol{A} \boldsymbol{P}^{-1}$ in which \boldsymbol{B} has a special structure, and then find the eigenvalues of matrix \boldsymbol{B}. Specifically, if \boldsymbol{B} is triangular or diagonal, the eigenvalues of \boldsymbol{B} (and those of \boldsymbol{A}) are simply the diagonal elements of \boldsymbol{B}.

Matrices \boldsymbol{A} and \boldsymbol{B} are said to be unitarily similar to each other if $\boldsymbol{B}=\boldsymbol{U}^{*} \boldsymbol{A} \boldsymbol{U}$ for some unitary matrix \boldsymbol{U}. Recall that a matrix \boldsymbol{U} is unitary if $\boldsymbol{U} \boldsymbol{U}^{*}=\boldsymbol{I}$. This brings us naturally to another important theorem and two corollaries.

SCHUR'S THEOREM

Every square matrix is unitarily similar to a triangular matrix.

In this theorem, an arbitrary complex $n \times n$ matrix \boldsymbol{A} is given, and the assertion made is that a unitary matrix \boldsymbol{U} exists such that:

$$
U A U^{*}=T
$$

where $\boldsymbol{U} \boldsymbol{U}^{*}=\boldsymbol{I}$ and \boldsymbol{T} is a triangular matrix.
The proof of Schur's Theorem can be found in Kincaid and Cheney [2002] and Golub and Van Loan [1996].

COROLLARY 1

MATRIX SIMILAR TO A TRIANGULAR MATRIX

Every square real matrix is similar to a triangular matrix.

Thus the factorization

$$
\boldsymbol{P} \boldsymbol{A} \boldsymbol{P}^{-1}=\boldsymbol{T}
$$

is possible, where \boldsymbol{T} is triangular, \boldsymbol{P} is invertible, and \boldsymbol{A} is real.
EXAMPLE 3 We illustrate Schur's Theorem by finding the decomposition of this 2×2 matrix:

$$
\boldsymbol{A}=\left[\begin{array}{rr}
3 & -2 \\
8 & 3
\end{array}\right]
$$

Solution From the characteristic equation $\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I})=\lambda^{2}-6 \lambda+25=0$, the eigenvalues are $3 \pm 4 i$. By solving $\boldsymbol{A}-\lambda \boldsymbol{I}=\mathbf{0}$ with each of these eigenvalues, the corresponding eigenvectors are $\boldsymbol{v}_{1}=[i, 2]^{T}$ and $\boldsymbol{v}_{2}=[-i, 2]^{T}$. Using the Gram-Schmidt orthogonalization process, we obtain $\boldsymbol{u}_{1}=\boldsymbol{v}_{1}$ and $\boldsymbol{u}_{2}=\boldsymbol{v}_{2}-\left[\boldsymbol{v}_{2}^{*} \boldsymbol{u}_{1} / \boldsymbol{u}_{1}^{*} \boldsymbol{u}_{1}\right] \boldsymbol{u}_{1}=[-2,-i]^{T}$. After normalizing these vectors, we obtain the unitary matrix

$$
\boldsymbol{U}=\frac{1}{\sqrt{5}}\left[\begin{array}{ll}
i & -2 \\
2 & -i
\end{array}\right]
$$

which satisfies the property $\boldsymbol{U} \boldsymbol{U}^{*}=\boldsymbol{I}$, Finally, we obtain the Schur form

$$
\boldsymbol{U} \boldsymbol{A} \boldsymbol{U}^{*}=\left[\begin{array}{cc}
3+4 i & -6 \\
0 & 3-4 i
\end{array}\right]
$$

which is an upper triangular matrix with the eigenvalues on the diagonal.

COROLLARY 2

HERMITIAN MATRIX UNITARILY SIMILAR TO A DIAGONAL MATRIX

Every square Hermitian matrix is unitarily similar to a diagonal matrix.

In the second corollary, a Hermitian matrix, \boldsymbol{A}, is factored as

$$
\boldsymbol{A}=\boldsymbol{U}^{*} \boldsymbol{D} \boldsymbol{U}
$$

where \boldsymbol{D} is diagonal and \boldsymbol{U} is unitary.
Furthermore, $\boldsymbol{U}^{*} \boldsymbol{A} \boldsymbol{U}=\boldsymbol{T}$ and $\boldsymbol{U}^{*} \boldsymbol{A}^{*} \boldsymbol{U}=\boldsymbol{T}^{*}$ and $\boldsymbol{A}=\boldsymbol{A}^{*}$, so $\boldsymbol{T}=\boldsymbol{T}^{*}$, which must be a diagonal matrix.

Most numerical methods for finding eigenvalues of an $n \times n$ matrix \boldsymbol{A} proceed by determining such similarity transformations. Then one eigenvalue at a time, say, λ, is computed, and a deflation process is used to produce an $(n-1) \times(n-1)$ matrix $\widetilde{\boldsymbol{A}}$ whose eigenvalues are the same as those of \boldsymbol{A}, except for λ. Any such procedure can be repeated with the matrix $\widetilde{\boldsymbol{A}}$ to find as many eigenvalues of the matrix \boldsymbol{A} as desired. In practice, this strategy must be used cautiously because the successive eigenvalues may be infected with roundoff error.

Gershgorin's Theorem

Sometimes it is necessary to determine in a coarse manner where the eigenvalues of a matrix are situated in the complex plane \mathbb{C}. The most famous of these so-called localization theorems is the following.

THEOREM 4

GERSHGORIN'S THEOREM

All eigenvalues of an $n \times n$ matrix $\boldsymbol{A}=\left(a_{i i}\right)$ are contained in the union of the n discs $C_{i}=C_{i}\left(a_{i i}, r_{i}\right)$ in the complex plane with center $a_{i i}$ and radii r_{i} given by the sum of the magnitudes of the off-diagonal entries in the i th row.

The matrix \boldsymbol{A} can have either real or complex entires. The region containing the eigenvalues of \boldsymbol{A} can be written

$$
\bigcup_{i=1}^{n} C_{i}=\bigcup_{i=1}^{n}\left\{z \in \mathbb{C}:\left|z-a_{i i}\right| \leqq r_{i}\right\}
$$

where the radii are $r_{i}=\sum_{\substack{j=1 \\ j \neq i}}^{n}\left|a_{i j}\right|$.
The eigenvalues of \boldsymbol{A} and \boldsymbol{A}^{T} are the same because the characteristic equation involves the determinant, which is the same for a matrix and its transpose. Therefore, we can apply the Gershgorin Theorem to \boldsymbol{A}^{T} and obtain the following useful result.

MORE GERSHGORIN DISCS

All eigenvalues of an $n \times n$ matrix $\boldsymbol{A}=\left(a_{i i}\right)$ are contained in the union of the n discs $D_{i}=D_{i}\left(a_{i i}, s_{i}\right)$ in the complex plane having center at $a_{i i}$ and radii s_{i} given by the sum of the magnitudes of the columns of \boldsymbol{A}.

Consequently, the region containing the eigenvalues of \boldsymbol{A} can be written as

$$
\bigcup_{i=1}^{n} D_{i}=\bigcup_{i=1}^{n}\left\{z \in \mathbb{C}:\left|z-a_{i i}\right| \leqq s_{i}\right\}
$$

where the radii are $s_{i}=\sum_{\substack{i=1 \\ i \neq j}}^{n}\left|a_{i j}\right|$. Finally, the region containing the eigenvalues of \boldsymbol{A} is

$$
\left(\bigcup_{i=1}^{n} C_{i}\right) \cap\left(\bigcup_{i=1}^{n} D_{i}\right)
$$

This may contain tighter bounds on the eigenvalues in some case. Also, a useful localization result is

COROLLARY 4

For a matrix \boldsymbol{A}, the union of any k Gerschgorin discs that do not intersect the remaining $n-k$ circles contains exactly k (counting multiplicities) of the eigenvalues of \boldsymbol{A}.

For a strictly diagonally dominant matrix, zero cannot lie in any of its Gershgorin discs, so it must be invertible. Consequently, we obtain the following results.

COROLLARY 5

Every strictly diagonally dominant matrix is nonsingular.

EXAMPLE 4 Consider the matrix

$$
\boldsymbol{A}=\left[\begin{array}{ccc}
4-i & 2 & i \\
-1 & 2 i & 2 \\
1 & -1 & -5
\end{array}\right]
$$

Draw the Gershgorin discs.
Solution Using the rows of \boldsymbol{A}, we find that the Gershgorin discs are $C_{1}(4-i, 3), C_{2}(2 i, 3)$, and $C_{3}(-5,2)$. By using the columns of \boldsymbol{A}, we obtain more Gershgorin discs: $D_{1}(4-i, 2)$, $D_{2}(2 i, 3)$, and $D_{3}(-5,3)$. Consequently, all the eigenvalues of \boldsymbol{A} are in the three discs D_{1}, C_{2}, and C_{3}, as shown in Figure 8.1. By other means, we compute the eigenvalues of \boldsymbol{A} as $\lambda_{1}=3.7208-1.05461 i, \lambda_{2}=4.5602+-0.2849 i$, and $\lambda_{3}=-0.1605+2.3395 i$. In Figure 8.1, the center of the discs are designated by dots \bullet and the eigenvalues by $*$.

Singular Value Decomposition

This subsection requires of the reader some further knowledge of linear algebra, in particular the diagonalization of symmetric matrices, eigenvalues, eigenvectors, rank, column space,

FIGURE 8.1
Gershorgin discs

and norms. See Appendix D for a brief review of these topics. (In the discussion below, we assume that the Euclidean norm is being used.)

The singular value decomposition is a general-purpose tool that has many uses, particularly in least-squares problems (Chapter 12). It can be applied to any matrix, whether square or not. We begin by stating that the singular values of a matrix \boldsymbol{A} are the nonnegative square roots of the eigenvalues of $\boldsymbol{A}^{T} \boldsymbol{A}$.

THEOREM 5

MATRIX SPECTRAL THEOREM

Let \boldsymbol{A} be $m \times n$. Then $\boldsymbol{A}^{T} \boldsymbol{A}$ is an $n \times n$ symmetric matrix and it can be diagonalized by an orthogonal matrix, say, \boldsymbol{Q} :

$$
\boldsymbol{A}^{T} \boldsymbol{A}=\boldsymbol{Q} \boldsymbol{D} \boldsymbol{Q}^{-1}
$$

where $\boldsymbol{Q} \boldsymbol{Q}^{T}=\boldsymbol{Q}^{T} \boldsymbol{Q}=\boldsymbol{I}$ and \boldsymbol{D} is a diagonal $n \times n$ matrix.

Furthermore, the diagonal matrix \boldsymbol{D} contains the eigenvalues of $\boldsymbol{A}^{T} \boldsymbol{A}$ on its diagonal. This follows from the fact that $\boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{Q}=\boldsymbol{Q} \boldsymbol{D}$, so the columns of \boldsymbol{Q} are eigenvectors of $\boldsymbol{A}^{T} \boldsymbol{A}$. If λ is an eigenvalue of $\boldsymbol{A}^{T} \boldsymbol{A}$ and if \boldsymbol{x} is a corresponding eigenvector, then $\boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{x}=\lambda \boldsymbol{x}$ whence

$$
\|\boldsymbol{A} \boldsymbol{x}\|^{2}=(\boldsymbol{A} \boldsymbol{x})^{T}(\boldsymbol{A} \boldsymbol{x})=\boldsymbol{x}^{T} \boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{x}^{T} \lambda \boldsymbol{x}=\lambda\|\boldsymbol{x}\|^{2}
$$

This equation shows that λ is real and nonnegative. We can order the eigenvalues as $\lambda_{1} \geqq \lambda_{2} \geqq \cdots \geqq \lambda_{n} \geqq 0$. (Reordering the eigenvalues requires reordering the columns of \boldsymbol{Q}.) The numbers $\sigma_{j}=+\sqrt{\lambda_{j}}$ are the singular values of \boldsymbol{A}.

Since \boldsymbol{Q} is an orthogonal matrix, its columns form an orthonormal base for \mathbb{R}^{n}. They are unit eigenvectors of $\boldsymbol{A}^{T} \boldsymbol{A}$, so if \boldsymbol{v}_{j} is the j th column of \boldsymbol{Q}, then $\boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{v}_{j}=\lambda_{j} \boldsymbol{v}_{j}$. Some of the eigenvalues of $\boldsymbol{A}^{T} \boldsymbol{A}$ can be zero. Define r by the condition

$$
\lambda_{1} \geqq \lambda_{2} \geqq \cdots \geqq \lambda_{r}>0=\lambda_{r+1}=\cdots=\lambda_{n}
$$

For a review of concepts such as rank, orthogonal basis, orthonormal basis, column space, null space, and so on, see Appendix D.

- THEOREM 6

ORTHOGONAL BASIS THEOREM

If the rank of \boldsymbol{A} is r, then an orthogonal basis for the column space of \boldsymbol{A} is $\left\{\boldsymbol{A} \boldsymbol{v}_{j}\right.$: $1 \leqq j \leqq r\}$.

Proof Observe that

$$
\left(\boldsymbol{A} \boldsymbol{v}_{k}\right)^{T}\left(\boldsymbol{A} \boldsymbol{v}_{j}\right)=\boldsymbol{v}_{k}^{T} \boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{v}_{j}=\boldsymbol{v}_{k}^{T} \lambda_{j} \boldsymbol{v}_{j}=\lambda_{j} \delta_{k j}
$$

This establishes the orthogonality of the set $\left\{\boldsymbol{A} \boldsymbol{v}_{j}: 1 \leqq j \leqq n\right\}$. By letting $k=j$, we get $\left\|\boldsymbol{A} \boldsymbol{v}_{j}\right\|^{2}=\lambda_{j}$. Hence, $\boldsymbol{A} \boldsymbol{v}_{j} \neq 0$ if and only if $1 \leqq j \leqq r$. If \boldsymbol{w} is any vector in the column space of \boldsymbol{A}, then $\boldsymbol{w}=\boldsymbol{A} \boldsymbol{x}$ for some \boldsymbol{x} in \mathbb{R}^{n}. Putting $\boldsymbol{x}=\sum_{j=1}^{n} c_{j} \boldsymbol{v}_{j}$, we get

$$
\boldsymbol{w}=\boldsymbol{A} \boldsymbol{x}=\sum_{j=1}^{n} c_{j} \boldsymbol{A} \boldsymbol{v}_{j}=\sum_{j=1}^{r} c_{j} \boldsymbol{A} \boldsymbol{v}_{j}
$$

and therefore, \boldsymbol{w} is in the span of $\left\{\boldsymbol{A} \boldsymbol{v}_{1}, \boldsymbol{A} \boldsymbol{v}_{2}, \ldots, \boldsymbol{A} \boldsymbol{v}_{r}\right\}$.

The preceding theorem gives a reasonable way of computing the rank of a numerical matrix. First, compute its singular values. Any that are very small can be assumed to be zero. The remaining ones are strongly positive, and if there are r of them, we take r to be the numerically computed rank of \boldsymbol{A}.

A singular value decomposition of an $m \times n$ matrix \boldsymbol{A} is any representation of \boldsymbol{A} in the form

$$
\boldsymbol{A}=\boldsymbol{U} \boldsymbol{D} \boldsymbol{V}^{T}
$$

where \boldsymbol{U} and \boldsymbol{V} are orthogonal matrices and \boldsymbol{D} is an $m \times n$ diagonal matrix having nonnegative diagonal entries that are ordered $d_{11} \geqq d_{22} \geqq \cdots \geqq 0$. Then from Problem 4, it follows that the diagonal elements $d_{i i}$ are necessarily the singular values of \boldsymbol{A}. Note that the matrix \boldsymbol{U} is $m \times m$ and \boldsymbol{V} is $n \times n$. A nonsquare matrix \boldsymbol{D} is nevertheless said to be diagonal if the only elements that are not zero are among those whose two indices are equal.

One singular value decomposition of \boldsymbol{A} (there are many of them) can be obtained from the work described above. Start with the vectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r}$. Normalize the vectors $\boldsymbol{A} \boldsymbol{v}_{j}$ to get vectors \boldsymbol{u}_{j}. Thus, we have

$$
\boldsymbol{u}_{j}=\boldsymbol{A} \boldsymbol{v}_{j} /\left\|\boldsymbol{A} \boldsymbol{v}_{j}\right\| \quad(1 \leqq j \leqq r)
$$

Extend this set to an orthonormal base for \mathbb{R}^{m}. Let \boldsymbol{U} be the $m \times m$ matrix whose columns are $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{m}$. Define \boldsymbol{D} to be the $m \times n$ matrix consisting of zeros except for $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{r}$ on its diagonal. Let $\boldsymbol{V}=\boldsymbol{Q}$, where \boldsymbol{Q} is as above.

To verify the equation $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{D} \boldsymbol{V}^{T}$, first note that $\sigma_{j}=\left\|\boldsymbol{A} \boldsymbol{v}_{j}\right\|_{2}$ and that $\sigma_{j} \boldsymbol{u}_{j}=\boldsymbol{A} \boldsymbol{v}_{j}$. Then compute $\boldsymbol{U} \boldsymbol{D}$. Since \boldsymbol{D} is diagonal, this is easy. We get

$$
\begin{aligned}
\boldsymbol{U} \boldsymbol{D} & =\left[\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{m}\right] \boldsymbol{D}=\left[\sigma_{1} \boldsymbol{u}_{1}, \sigma_{2} \boldsymbol{u}_{2}, \ldots, \sigma_{r} \boldsymbol{u}_{r}, 0, \ldots, 0\right] \\
& =\left[\boldsymbol{A} \boldsymbol{v}_{1}, \boldsymbol{A} \boldsymbol{v}_{2}, \ldots, \boldsymbol{A} \boldsymbol{v}_{r}, \ldots, \boldsymbol{A} \boldsymbol{v}_{n}\right]=\boldsymbol{A} \boldsymbol{Q}=\boldsymbol{A} \boldsymbol{V}
\end{aligned}
$$

This implies that

$$
\boldsymbol{A}=\boldsymbol{U} \boldsymbol{D} \boldsymbol{V}^{T}
$$

The condition number of a matrix can be expressed in terms of its singular values

$$
\kappa(\boldsymbol{A})=\sqrt{\frac{\sigma_{\max }}{\sigma_{\min }}}
$$

since $\|\boldsymbol{A}\|_{2}^{2}=\rho\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)=\sigma_{\max }(\boldsymbol{A})$ and $\left\|\boldsymbol{A}^{-1}\right\|_{2}^{2}=\rho\left(\boldsymbol{A}^{-T} \boldsymbol{A}^{-1} \|=\sigma_{\min }(\boldsymbol{A})\right.$.

Numerical Examples of Singular Value Decomposition

The numerical determination of a singular value decomposition is best left to the available high-quality software. Such programs can be found in Matlab, Maple, LAPACK, and other software packages. The high-quality programs do not form $\boldsymbol{A}^{T} \boldsymbol{A}$ and seek its eigenvalues. One wishes to avoid using $\boldsymbol{A}^{T} \boldsymbol{A}$ in numerical work because its condition number may be much worse than that of \boldsymbol{A}. This phenomenon is easily illustrated by the matrices

$$
\boldsymbol{A}=\left[\begin{array}{lll}
1 & 1 & 1 \\
\varepsilon & 0 & 0 \\
0 & \varepsilon & 0 \\
0 & 0 & \varepsilon
\end{array}\right], \quad \boldsymbol{A}^{T} \boldsymbol{A}=\left[\begin{array}{ccc}
1+\varepsilon^{2} & 1 & 1 \\
1 & 1+\varepsilon^{2} & 1 \\
1 & 1 & 1+\varepsilon^{2}
\end{array}\right]
$$

There will be certain small values of ε for which \boldsymbol{A} has rank 3 and $\boldsymbol{A}^{T} \boldsymbol{A}$ has rank 1 (in the computer).

EXAMPLE 5 In an example in Section 1.1 (p. 4), we encountered this matrix:

$$
\boldsymbol{A}=\left[\begin{array}{ll}
0.1036 & 0.2122 \\
0.2081 & 0.4247
\end{array}\right]
$$

Determine its eigenvalues, singular values, and condition number.
Solution By using mathematical software, it is easy to find the eigenvalues $\lambda_{1}(\boldsymbol{A}) \approx-0.0003$ and $\lambda_{2}(\boldsymbol{A}) \approx 0.5286$. We can form the matrix

$$
\boldsymbol{A}^{T} \boldsymbol{A}=\left[\begin{array}{ll}
0.0540 & 01104 \\
0.1104 & 0.2254
\end{array}\right]
$$

and find its eigenvalues $\lambda_{1}\left(\boldsymbol{A}^{T} \boldsymbol{A}\right) \approx 0.3025 \times 10^{-4}$ and $\lambda_{2}\left(\boldsymbol{A}^{T} \boldsymbol{A}\right) \approx 0.2794$. Therefore, the singular values are $\sigma_{1}(\boldsymbol{A})=\sqrt{\left|\lambda_{1}\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)\right|} \approx 0.0003$ and $\sigma_{2}(\boldsymbol{A})=\sqrt{\left|\lambda_{2}\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)\right|} \approx 0.5286$. Also, we can obtain the singular values directly as $\sigma_{1} \approx 0.0003$ and $\sigma_{2} \approx 0.5286$ using mathematical software. Consequently, the condition number is $\kappa(\boldsymbol{A})=\sigma_{2} / \sigma_{1} \approx 1747.6$. Because of this large condition number, we now understand why there was difficultly in solving a linear system of equations with this coefficient matrix!

EXAMPLE 6 Calculate the singular value decomposition of the matrix

$$
\boldsymbol{A}=\left[\begin{array}{ll}
1 & 1 \tag{1}\\
0 & 1 \\
1 & 0
\end{array}\right]
$$

Solution Here, the matrix \boldsymbol{A} is $m \times n$ and $m=3$ and $n=2$. First, we find that the eigenvalues of the matrix

$$
\boldsymbol{A}^{T} \boldsymbol{A}=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
$$

arranged in descending order are $\lambda_{1}=3$ and $\lambda_{1}=1$. The number of nonzero eigenvalues of the matrix $\boldsymbol{A}^{T} \boldsymbol{A}$ is 2 . Next, we determine that the eigenvectors of the matrix $\boldsymbol{A}^{T} \boldsymbol{A}$ are $[1,1]^{T}$ for $\lambda_{1}=3$ and $[1,-1]^{T}$ for $\lambda_{2}=1$. Consequently, the orthonormal set of eigenvectors of $\boldsymbol{A}^{T} \boldsymbol{A}$ are $\left[\frac{1}{2} \sqrt{2}, \frac{1}{2} \sqrt{2}\right]^{T}$ for $\lambda_{1}=3$ and $\left[\frac{1}{2} \sqrt{2},-\frac{1}{2} \sqrt{2}\right]^{T}$. Then we arrange them in the same order as the eigenvalues to form the column vectors of the $n \times n$ matrix \boldsymbol{V} :

$$
\boldsymbol{V}=\left[\begin{array}{ll}
\boldsymbol{v}_{1} & \boldsymbol{v}_{2}
\end{array}\right]=\left[\begin{array}{rr}
\frac{1}{2} \sqrt{2} & \frac{1}{2} \sqrt{2} \\
\frac{1}{2} \sqrt{2} & -\frac{1}{2} \sqrt{2}
\end{array}\right]
$$

Now we form a diagonal matrix \boldsymbol{D}, placing on the leading diagonal the singular values: $\sigma_{i}=\sqrt{\lambda_{i}}$. Since $\sigma_{1}=\sqrt{3}$ and $\sigma_{2}=1$, the $m \times n$ singular value matrix is

$$
\boldsymbol{D}=\left[\begin{array}{rr}
\sqrt{3} & 0 \\
0 & \sqrt{1} \\
0 & 0
\end{array}\right]
$$

Here, on the leading diagonal are the square roots of the eigenvalues of $\boldsymbol{A}^{T} \boldsymbol{A}$ in descending order, and the rest of the entries of the matrix \boldsymbol{D} are zeros. Next, we compute vectors $\boldsymbol{u}_{i}=\sigma_{i}^{-1} \boldsymbol{A} \boldsymbol{v}_{i}$ for $i=1$ and form the column vectors of the $m \times m$ matrix \boldsymbol{U}. In this case, we find

$$
\boldsymbol{u}_{1}=\sigma_{1}^{-1} \boldsymbol{A} \boldsymbol{v}_{1}=\frac{1}{3} \sqrt{3}\left[\begin{array}{ll}
1 & 1 \\
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
\frac{1}{2} \sqrt{2} \\
\frac{1}{2} \sqrt{2}
\end{array}\right]=\left[\begin{array}{l}
\frac{1}{3} \sqrt{6} \\
\frac{1}{6} \sqrt{6} \\
\frac{1}{6} \sqrt{6}
\end{array}\right]
$$

and

$$
\boldsymbol{u}_{2}=\sigma_{2}^{-1} \boldsymbol{A} \boldsymbol{v}_{2}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{r}
\frac{1}{2} \sqrt{2} \\
-\frac{1}{2} \sqrt{2}
\end{array}\right]=\left[\begin{array}{r}
0 \\
-\frac{1}{2} \sqrt{2} \\
\frac{1}{2} \sqrt{2}
\end{array}\right]
$$

Finally, we add to the matrix \boldsymbol{U} the rest of the $m-r$ vectors using the Gram-Schmidt orthogonalization process. So we make the vector \boldsymbol{u}_{3} perpendicular to \boldsymbol{u}_{1} and \boldsymbol{u}_{2} :

$$
\widetilde{\boldsymbol{u}}_{3}=\boldsymbol{e}_{1}-\left(\boldsymbol{u}_{1}^{T} \boldsymbol{e}_{1}\right) \boldsymbol{u}_{1}-\left(\boldsymbol{u}_{1}^{T} \boldsymbol{e}_{2}\right) \boldsymbol{u}_{2}=\left[\begin{array}{r}
\frac{1}{3} \\
-\frac{1}{3} \\
-\frac{1}{3}
\end{array}\right]
$$

Normalizing the vector \boldsymbol{u}_{3}, we get

$$
\boldsymbol{u}_{3}=\left[\begin{array}{r}
\frac{1}{3} \sqrt{3} \\
-\frac{1}{3} \sqrt{3} \\
-\frac{1}{3} \sqrt{3}
\end{array}\right]
$$

So we have the matrix

$$
\boldsymbol{U}=\left[\begin{array}{lll}
\boldsymbol{u}_{1} & \boldsymbol{u}_{2} & \boldsymbol{u}_{3}^{\prime}
\end{array}\right]=\left[\begin{array}{rrr}
\frac{1}{3} \sqrt{6} & 0 & \frac{1}{3} \sqrt{3} \\
\frac{1}{6} \sqrt{6} & \frac{1}{2} \sqrt{2} & -\frac{1}{3} \sqrt{3} \\
\frac{1}{6} \sqrt{6} & -\frac{1}{2} \sqrt{2} & -\frac{1}{3} \sqrt{3}
\end{array}\right]
$$

The singular value decomposition of the matrix \boldsymbol{A} is

$$
\begin{aligned}
\boldsymbol{A} & =\boldsymbol{U} \boldsymbol{D} \boldsymbol{V}^{T} \\
{\left[\begin{array}{ll}
1 & 1 \\
0 & 1 \\
1 & 0
\end{array}\right] } & =\left[\begin{array}{lrr}
\frac{1}{3} \sqrt{6} & 0 & \frac{1}{3} \sqrt{3} \\
\frac{1}{6} \sqrt{6} & \frac{1}{2} \sqrt{2} & -\frac{1}{3} \sqrt{3} \\
\frac{1}{6} \sqrt{6} & -\frac{1}{2} \sqrt{2} & -\frac{1}{3} \sqrt{3}
\end{array}\right]\left[\begin{array}{rr}
\sqrt{3} & 0 \\
0 & \sqrt{1} \\
0 & 0
\end{array}\right]\left[\begin{array}{rr}
\frac{1}{2} \sqrt{2} & \frac{1}{2} \sqrt{2} \\
\frac{1}{2} \sqrt{2} & -\frac{1}{2} \sqrt{2}
\end{array}\right]
\end{aligned}
$$

So there we have it! Fortunately, there is mathematical software for doing all of this instantly! We can verify the results by computing the diagonal matrix and the matrix \boldsymbol{A} from the factorization.

See Chapters 12 and 16, for some important applications of the singular value decomposition. Further examples are given there and in the problems of those chapters.

Application: Linear Differential Equations

The application of eigenvalue theory to systems of linear differential equations will be briefly explained here. Let us start with a single linear differential equation with one dependent variable x. The independent variable is t and often represents time. We write $x^{\prime}=a x$, or in more detail $(d / d t) x(t)=a x(t)$. There is a family of solutions, namely, $x(t)=c e^{a t}$, where c is an arbitrary real parameter. If an initial value $x(0)$ is prescribed, we shall need parameter c to get the initial value right.

A pair of linear differential equations with two dependent variables, x_{1} and x_{2} will look like this:

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=a_{11} x_{1}+a_{12} x_{2} \\
x_{2}^{\prime}=a_{21} x_{1}+a_{22} x_{2}
\end{array}\right.
$$

The general form of a system of n linear first-order differential equations, with constant coefficients, is simply $\boldsymbol{x}^{\prime}=\boldsymbol{A} \boldsymbol{x}$. Here, \boldsymbol{A} is an $n \times n$ numerical matrix, and the vector \boldsymbol{x} has n components, x_{j}, each being a function of t. Differentiation is with respect to t. To solve this, we are guided by the easy case of $n=1$, discussed above. Here, we try $\boldsymbol{x}(t)=e^{\lambda t} \boldsymbol{v}$, where \boldsymbol{v} is a constant vector. Taking the derivative of \boldsymbol{x}, we have $\boldsymbol{x}^{\prime}=\lambda e^{\lambda t} \boldsymbol{v}$. Now the system of equations has become $\lambda e^{\lambda t} \boldsymbol{v}=\boldsymbol{A} e^{\lambda t} v$, or $\lambda \boldsymbol{v}=\boldsymbol{A} \boldsymbol{v}$. This is how eigenvalues come into the process. We have proved the following result.

LINEAR DIFFERENTIAL EOUATIONS

If λ is an eigenvalue of the matrix \boldsymbol{A} and if \boldsymbol{v} is an accompanying eigenvector, then one solution of the differential equation $\boldsymbol{x}^{\prime}=\boldsymbol{A} \boldsymbol{x}$ is $\boldsymbol{x}(t)=e^{\lambda t} \boldsymbol{v}$.

Application: A Vibration Problem

Eigenvalue-eigenvector analysis can be utilized for a variety of differential equations. Consider the system of two masses and three springs shown in Figure 8.2. Here, the masses are constrained to move only in the horizontal direction.

FIGURE 8.2
Two-mass vibration problem

From this situation, we write the equations of motion in matrix-vector form:

$$
\left[\begin{array}{l}
x_{1}^{\prime \prime} \\
x_{2}^{\prime \prime}
\end{array}\right]=\left[\begin{array}{rr}
-\beta & \alpha \\
\alpha & -\beta
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \quad \boldsymbol{x}^{\prime \prime}=\boldsymbol{A} \boldsymbol{x}
$$

By assuming that the solution is purely oscillatory (no damping), we have

$$
x=v e^{i \omega t}
$$

In matrix form, we get

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] e^{i \omega t}
$$

By differentiation, we obtain

$$
\boldsymbol{x}^{\prime \prime}=-\omega^{2} \boldsymbol{v} \boldsymbol{e}^{i \omega t}=-\omega^{2} \boldsymbol{x}
$$

and

$$
\left[\begin{array}{rr}
-\beta & \alpha \\
\alpha & -\beta
\end{array}\right] \boldsymbol{x}=-\omega^{2} \boldsymbol{x}
$$

This is the eigenvalue problem

$$
A x=\lambda x
$$

where $\lambda=-\omega^{2}$. Eigenvalues can be found from the characteristic equation:

$$
\operatorname{det}\left(\boldsymbol{A}+\omega^{2} \boldsymbol{I}\right)=\operatorname{det}\left[\begin{array}{rr}
\omega^{2}-\beta & \alpha \\
\alpha & \omega^{2}-\beta
\end{array}\right]=0
$$

This is $\left(\omega^{2}-\beta\right)^{2}-\alpha^{2}=\omega^{4}-2 \beta \omega^{2}+\left(\beta^{2}-\alpha^{2}\right)=0$, and

$$
\omega^{2}=\frac{1}{2}\left[2 \beta \pm \sqrt{4 \beta^{2}-4\left(\beta^{2}-\alpha^{2}\right)}\right]=\beta \pm \alpha
$$

For simplicity, we now assume unit masses and unit springs so that $\beta=2$ and $\alpha=1$. Then we obtain

$$
\boldsymbol{A}=\left[\begin{array}{rr}
-2 & 1 \\
1 & -2
\end{array}\right]
$$

Then the roots of the characteristic equations are $\omega_{1}^{2}=\beta+\alpha=3$ and $\omega_{2}^{2}=\beta-\alpha=1$. Next, we can find the eigenvectors. For the first eigenvalue, we obtain

$$
\left(\boldsymbol{A}+\omega_{1}^{2} \boldsymbol{I}\right) \boldsymbol{v}_{1}=\mathbf{0} \quad\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
v_{11} \\
v_{12}
\end{array}\right]=\mathbf{0}
$$

Since $v_{11}=-v_{12}$, we obtain the first eigenvector

$$
\boldsymbol{v}_{1}=\left[\begin{array}{r}
1 \\
-1
\end{array}\right]
$$

For the second eigenvector, we have

$$
\left(\boldsymbol{A}+\omega_{2}^{2} \boldsymbol{I}\right) \boldsymbol{v}_{2}=\mathbf{0} \quad\left[\begin{array}{rr}
-1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
v_{21} \\
v_{22}
\end{array}\right]=\mathbf{0}
$$

Since $v_{21}=-v_{22}$, we obtain the first eigenvector

$$
\boldsymbol{v}_{2}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

The general solution for the equations of motion for the two-mass system is

$$
\boldsymbol{x}(t)=c_{1} \boldsymbol{v}_{1} e^{i \omega_{1} t}+c_{2} \boldsymbol{v}_{1} e^{-i \omega_{1} t}+c_{3} \boldsymbol{v}_{2} e^{i \omega_{2} t}+c_{4} \boldsymbol{v}_{2} e^{-i \omega_{2} t}
$$

Because the solution was for the square of the frequency, each frequency is used twice (one positive and one negative). We can use initial conditions to solve for the unknown coefficients.

Summary

(1) An eigenvalue λ and eigenvector \boldsymbol{x} satisfy the equation $\boldsymbol{A x}=\lambda \boldsymbol{x}$. The direct method to compute the eigenvalues is to find the roots of the characteristic equation $p(\lambda)=$ $\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I})=0$. Then, for each eigenvalue λ, the eigenvectors can be found by solving the homogeneous system $(\boldsymbol{A}-\lambda \boldsymbol{I}) \boldsymbol{x}=\mathbf{0}$. There are software packages for finding the eigenvalue-eigenvector pairs using more sophisticated methods.
(2) There are many useful properties for matrices that influence their eigenvalues. For example, the eigenvalues are real when \boldsymbol{A} is symmetric or Hermitian. The eigenvalues are positive when \boldsymbol{A} is symmetric or Hermitian positive definite.
(3) Many eigenvalue procedures involve similarity or unitary transformations to produce triangular or diagonal matrices.
(4) Gershgorin's discs can be used to localize the eigenvalues by finding coarse estimates of them.
(5) The singular value decomposition of an $m \times n$ matrix \boldsymbol{A} is

$$
\boldsymbol{A}=\boldsymbol{U} \boldsymbol{D} \boldsymbol{V}^{T}
$$

where \boldsymbol{D} is an $m \times n$ diagonal matrix whose diagonal entries are the singular values, \boldsymbol{U} is an $m \times m$ orthogonal matrix, and \boldsymbol{V} is an $n \times n$ orthogonal matrix. The singular values of \boldsymbol{A} are the nonnegative square roots of the eigenvalues of $\boldsymbol{A}^{T} \boldsymbol{A}$.

Problems 8.3

1. Are $[i,-1+i]^{T}$ and $[-i,-1-i]^{T}$ eigenvectors of the matrix in Example 2?
2. Prove that if λ is an eigenvalue of a real matrix with eigenvector \boldsymbol{x}, then $\bar{\lambda}$ is also an eigenvalue with eigenvector $\overline{\boldsymbol{x}}$. (For a complex number $z=x+i y$, the conjugate is defined by $\bar{z}=x-i y$.)
3. Let

$$
\boldsymbol{A}=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

Account for the fact that the matrix \boldsymbol{A} has the effect of rotating vectors counterclockwise through an angle θ and thus cannot map any vector into a multiple of itself.
4. Let \boldsymbol{A} be an $m \times n$ matrix such that $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{D} \boldsymbol{V}^{T}$, where \boldsymbol{U} and \boldsymbol{V} are orthogonal and \boldsymbol{D} is diagonal and nonnegative. Prove that the diagonal elements of \boldsymbol{D} are the singular values of \boldsymbol{A}.
5. Let $\boldsymbol{A}, \boldsymbol{U}, \boldsymbol{D}$, and \boldsymbol{V} be as in the singular value decomposition: $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{D} \boldsymbol{V}^{T}$. Let r be as described in the text. Define \boldsymbol{U}_{r} to consist of the first r columns of \boldsymbol{U}. Let \boldsymbol{V}_{r} consist of the first r columns of \boldsymbol{V}, and let \boldsymbol{D}_{r} be the $r \times r$ matrix having the same diagonal as \boldsymbol{D}. Prove that $\boldsymbol{A}=\boldsymbol{U}_{r} \boldsymbol{D}_{r} \boldsymbol{V}_{r}^{T}$. (This factorization is called the economical version of the singular value decomposition.)
6. A linear map P is a projection if $P^{2}=P$. We can use the same terminology for an $n \times n$ matrix: $\boldsymbol{A}^{2}=\boldsymbol{A}$ is the projection property. Use the Pierce decomposition, $I=A+(I-A)$, to show that every point in \mathbb{R}^{n} is the sum of a vector in the range of \boldsymbol{A} and a vector in the null space of \boldsymbol{A}. What are the eigenvalues of a projection?
7. Find all of the Gershgorin discs for the following matrices. Indicate the smallest region(s) containing all of the eigenvalues:
a. $\left[\begin{array}{rrr}3 & -1 & 1 \\ 2 & 4 & -2 \\ 3 & -1 & 9\end{array}\right]$
b. $\left[\begin{array}{crr}3 & 1 & 2 \\ -1 & 4 & -1 \\ 1 & -2 & 9\end{array}\right]$
c. $\left[\begin{array}{crc}1-i & 1 & i \\ 0 & 2 i & 2 \\ 1 & 0 & 2\end{array}\right]$
8. (Multiple choice) Let \boldsymbol{A} be an $n \times n$ invertible (nonsingular) matrix. Let \boldsymbol{x} be a nonzero vector. Suppose that $\boldsymbol{A x}=\lambda \boldsymbol{x}$. Which equation does not follow from these hypotheses?
a. $\boldsymbol{A}^{k} \boldsymbol{x}=\lambda^{k} \boldsymbol{x}$
b. $\lambda^{-k} \boldsymbol{x}=\left(\boldsymbol{A}^{-1}\right)^{k} \boldsymbol{x}$ for $k \geqq 0$
c. $p(\boldsymbol{A}) \boldsymbol{x}=p(\lambda) \boldsymbol{x}$ for any polynomial p
d. $\boldsymbol{A}^{k} \boldsymbol{x}=(1-\lambda)^{k} \boldsymbol{x}$
e. None of these.
${ }^{a} 9$. (Multiple choice) For what values of s will the matrix $\boldsymbol{I}-s \boldsymbol{v} \boldsymbol{v}^{*}$ be unitary, where \boldsymbol{v} is a column vector of unit length?
a. 0,1
b. 0,2
c. 1,2
d. $0, \sqrt{2}$
e. None of these.
10. (Multiple choice) Let \boldsymbol{U} and \boldsymbol{V} be unitary $n \times n$ matrices, possibly complex. Which conclusion is not justified?
a. $\boldsymbol{U}+\boldsymbol{V}$ is unitary.
b. \boldsymbol{U}^{*} is unitary.
c. $\boldsymbol{U} \boldsymbol{V}$ is unitary.
d. $\boldsymbol{U}-\boldsymbol{v} \boldsymbol{v}^{*}$ is unitary when $\|\boldsymbol{v}\|=\sqrt{2}$ and \boldsymbol{v} is a column vector.
e. None of these.
${ }^{a}$ 11. (Multiple choice) Which assertion is true?
a. Every $n \times n$ matrix has n distinct (different) eigenvalues.
b. The eigenvalues of a real matrix are real.
c. If \boldsymbol{U} is a unitary matrix, then $\boldsymbol{U}^{*}=\boldsymbol{U}^{T}$
d. A square matrix and its transpose have the same eigenvalues.
e. None of these.
12. (Multiple choice) Consider the symmetric matrix

$$
\boldsymbol{A}=\left[\begin{array}{rrrr}
1 & 3 & 4 & -1 \\
3 & 7 & -6 & 1 \\
4 & -6 & 3 & 0 \\
-1 & 1 & 0 & 5
\end{array}\right]
$$

What is the smallest interval derived from Gershgorin's Theorem such that all eigenvalues of the matrix \boldsymbol{A} lie in that interval?
a. $[-7,9]$
b. $[-7,13]$
c. $[3,7]$
d. $[-3,17]$
e. None of these.
13. (True or false) Gershgorin's Theorem asserts that every eigenvalue λ of an $n \times n$ matrix \boldsymbol{A} must satisfy one of these inequalities:

$$
\left|\lambda-a_{i i}\right| \leqq \sum_{\substack{j=1 \\ j \neq i}}^{n}\left|a_{i j}\right| \quad \text { for } \quad 1 \leqq i \leqq n .
$$

14. (True or false) A consequence of Schur's Theorem is that every square matrix \boldsymbol{A} can be factored as $\boldsymbol{A}=\boldsymbol{P} \boldsymbol{T} \boldsymbol{P}^{-1}$, where \boldsymbol{P} is a nonsingular matrix and \boldsymbol{T} is upper triangular.
15. (True or false) A consequence of Schur's Theorem is that every (real) symmetric matrix \boldsymbol{A} can be factored in the form $\boldsymbol{A}=\boldsymbol{P} \boldsymbol{D} \boldsymbol{P}^{-1}$, where \boldsymbol{P} is unitary and \boldsymbol{D} is diagonal.
16. Explain why $\|\boldsymbol{U} \boldsymbol{B}\|_{2}=\|\boldsymbol{B}\|_{2}$ for any matrix \boldsymbol{B} when $\boldsymbol{U}^{T} \boldsymbol{U}=\boldsymbol{I}$.
17. Consider the matrix $\boldsymbol{A}=\left[\begin{array}{rrr}4 & -\frac{1}{2} & 0 \\ \frac{3}{5} & 5 & -\frac{3}{5} \\ 0 & \frac{1}{2} & 3\end{array}\right]$. Plot the Gershgorin discs in the complex plane for \boldsymbol{A} and \boldsymbol{A}^{T} as well as indicate the locations of the eigenvalues.
18. (Continuation) Let \boldsymbol{B} be the matrix obtained by changing the negative entries in \boldsymbol{A} to positive numbers. Repeat the process for \boldsymbol{B}.
19. (Continuation) Repeat for $\boldsymbol{C}=\left[\begin{array}{rrr}4 & 0 & -2 \\ 1 & 2 & 0 \\ 1 & 1 & 9\end{array}\right]$.
20. Find the Schur decomposition of $\boldsymbol{A}=\left[\begin{array}{rr}5 & 7 \\ -2 & -4\end{array}\right]$.

Computer Problems 8.3

1. Use Matlab, Maple, Mathematica, or other computer programs available to you to compute the eigenvalues and eigenvectors of these matrices:
a. $\boldsymbol{A}=\left[\begin{array}{rr}1 & 7 \\ 2 & -5\end{array}\right]$
b. $\left[\begin{array}{rrrrr}4 & -7 & 3 & 2 & 3 \\ 1 & 6 & 11 & -1 & 2 \\ 5 & -5 & -2 & -4 & 1 \\ 9 & -3 & 1 & 6 & 5 \\ 3 & 2 & 5 & -5 & 1\end{array}\right]$
c. Let $n=12, a_{i j}=i / j$ when $i \leqq j$, and $a_{i j}=j / i$ when $i>j$. Find the eigenvalues.
d. Create an $n \times n$ matrix with a tridiagonal structure and nonzero elements $(-1,2,-1)$ in each row. For $n=5$ and 20, find all of the eigenvalues, and verify that they are $2-2 \cos (j \pi /(n+1))$.
e. For any positive integer n, form the symmetric matrix \boldsymbol{A} whose upper triangular part is given by

$$
\left[\begin{array}{ccccccc}
n & n-1 & n-2 & n-3 & \cdots & 2 & 1 \\
& n-1 & n-2 & n-3 & \cdots & 2 & 1 \\
& & n-2 & n-3 & \cdots & 2 & 1 \\
& & & \ddots & \cdots & \vdots & \vdots \\
& & & & \ddots & 2 & 1 \\
& & & & & 2 & 1 \\
& & & & & & 1
\end{array}\right]
$$

The eigenvalues of \boldsymbol{A} are $1 /\{2-2 \cos [(2 i-1) \pi /(2 n+1)]\}$. (See Frank [1958] and Gregory and Karney [1969].) Numerically verify this result for $n=30$.
2. Use Matlab to compute the eigenvalues of a random 100×100 matrix by direct use of the command eig and by use of the commands poly and roots. Use the timing functions to determine the CPU time for each.
3. Let p be the polynomial of degree 20 whose roots are the integers $1,2, \ldots, 20$. Find the usual power form of this polynomial so that $p(t)=t^{20}+a_{19} t^{19}+a_{18} t^{18}+\cdots+a_{0}$. Next, form the so-called companion matrix, which is 20×20 and has zeros in all positions except all 1's on the superdiagonal and the coefficients $-a_{0},-a_{1}, \ldots,-a_{19}$ as its bottom row. Find the eigenvalues of this matrix, and account for any difficulties encountered.
4. (Student research project) Investigate some modern methods for computing eigenvalues and eigenvectors. For the symmetric case, see the book by Parlett [1997]. Also, read the LAPACK User's Guide. (See Anderson, et al. [1999].)
5. (Student research project) Experiment with the Cayley-Hamilton Theorem, which asserts that every square matrix satisfies its own characteristic equation. Check this
numerically by using Matlab or some other mathematical software system. Use matrices of size $3,6,9,12$, and 15 , and account for any surprises. If you can use higher-precision arithmetic do so-Matlab works with 15 digits of precision.
6. (Student research project) Experiment with the $Q R$ algorithm and the singular value decomposition of matrices-for example, using Matlab. Try examples with four types of equations $\boldsymbol{A x}=\boldsymbol{b}$-namely, (a) the system has a unique solution; (b) the system has many solutions; (c) the system is inconsistent but has a unique least-squares solution; (d) the system is inconsistent and has many least-squares solutions.
7. Using mathematical software such as Matlab, Maple, or Mathematica on each of the following matrices, compute the eigenvalues via the characteristic polynomial, compute the eigenvectors via the null space of the matrix, and compute the eigenvalues and eigenvectors directly:
a. $\left[\begin{array}{rr}3 & 2 \\ 7 & -1\end{array}\right]$
b. $\left[\begin{array}{rrr}1 & 3 & -7 \\ -3 & 4 & 1 \\ 2 & -5 & 3\end{array}\right]$
8. Using mathematical software such as Matlab, Maple, or Mathematica, determine the execution time for computing all eigenvalues of a 1000×1000 matrix with random entries.
9. Using mathematical software such as Matlab, Maple, or Mathematica, compute the Schur factorization of these complex matrices, and verify the results according to Schur's Theorem and its corollaries:
a. $\left[\begin{array}{ll}3-i & 2-i \\ 2+i & 3+i\end{array}\right]$
b. $\left[\begin{array}{ll}2+i & 3+i \\ 3-i & 2-i\end{array}\right]$
c. $\left[\begin{array}{ll}2-i & 2+i \\ 3-i & 3+i\end{array}\right]$
10. Using mathematical software such as Matlab, Maple, or Mathematica, compute the singular value decomposition of these matrices, and verify that each result satisfies the equation $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{D} \boldsymbol{V}^{T}$:
a. $\left[\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 1 & 0\end{array}\right]$
b. $\left[\begin{array}{rrr}1 & 3 & -2 \\ 2 & 7 & 5 \\ -2 & -3 & 4 \\ 5 & -3 & -2\end{array}\right]$

Create the diagonal matrix $\boldsymbol{D}=\boldsymbol{U}^{T} \boldsymbol{A} \boldsymbol{V}$ to check the results (always recommended). One can see the effects of roundoff errors in these calculations, for the off-diagonal elements in \boldsymbol{D} are theoretically zero.
${ }^{a}$ 11. Consider $\boldsymbol{A}=\left[\begin{array}{llll}5 & 4 & 1 & 1 \\ 4 & 5 & 1 & 1 \\ 1 & 1 & 4 & 2 \\ 1 & 1 & 2 & 4\end{array}\right]$. Find the eigenvalues and accompanying eigenvectors of this matrix, from Gregory and Karney [1969], without using software. Hint: The answers can be integers.
12. Find the singular value decomposition of these matrices:
a. $\left[\begin{array}{lll}2 & 1 & -2\end{array}\right]$
b. $\left[\begin{array}{l}3 \\ 4\end{array}\right]$
c. $\left[-\frac{5}{2}+3 \sqrt{3}\right.$
$\left.\frac{5}{2} \sqrt{3}+3\right]$
d. $\left[\begin{array}{rrrr}2 & 2 & 2 & 2 \\ \frac{17}{10} & \frac{1}{10} & -\frac{17}{10} & -\frac{1}{10} \\ \frac{3}{5} & \frac{9}{5} & -\frac{3}{5} & -\frac{9}{5}\end{array}\right]$
e. $\left[\begin{array}{rr}\frac{7}{2}-\frac{13}{6} \sqrt{6} & \frac{7}{2}+\frac{13}{6} \sqrt{6} \\ -\frac{7}{2}-\frac{13}{6} \sqrt{6} & -\frac{7}{2}+\frac{13}{6} \sqrt{6} \\ -\frac{13}{6} \sqrt{6} & \frac{13}{6} \sqrt{6}\end{array}\right]$
13. Consider $\boldsymbol{B}=\left[\begin{array}{rrr}-149 & -50 & -154 \\ 537 & 180 & 546 \\ -27 & -9 & -25\end{array}\right]$. Find the eigenvalues, singular values, and condition number of the matrix \boldsymbol{B}.

8.4 Power Method

A procedure called the power method can be employed to compute eigenvalues. It is an example of an iterative process that, under the right circumstances, will produce a sequence converging to an eigenvalue of a given matrix.

Suppose that \boldsymbol{A} is an $n \times n$ matrix, and that its eigenvalues (which we do not know) have the following property:

$$
\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geqq\left|\lambda_{3}\right| \geqq \cdots \geqq\left|\lambda_{n}\right|
$$

Notice the strict inequality in this hypothesis. Except for that, we are simply ordering the eigenvalues according to decreasing absolute value. (This is only a matter of notation.) Each eigenvalue has a nonzero eigenvector $\boldsymbol{u}^{(i)}$ and

$$
\begin{equation*}
\boldsymbol{A} \boldsymbol{u}^{(i)}=\lambda_{i} \boldsymbol{u}^{(i)} \quad(i=1,2, \ldots, n) \tag{1}
\end{equation*}
$$

We assume that there is a linearly independent set of n eigenvectors $\left\{\boldsymbol{u}^{(1)}, \boldsymbol{u}^{(2)}, \ldots, \boldsymbol{u}^{(n)}\right\}$. It is necessarily a basis for \mathbb{C}^{n}.

We want to compute the single eigenvalue of maximum modulus (the dominant eigenvalue) and an associated eigenvector. We select an arbitrary starting vector, $\boldsymbol{x}^{(0)} \in \mathbb{C}^{n}$ and express it as a linear combination of $\boldsymbol{u}^{(1)}, \boldsymbol{u}^{(2)}, \ldots, \boldsymbol{u}^{(n)}$:

$$
\boldsymbol{x}^{(0)}=c_{1} \boldsymbol{u}^{(1)}+c_{2} \boldsymbol{u}^{(2)}+\cdots+c_{n} \boldsymbol{u}^{(n)}
$$

In this equation, we must assume that $c_{1} \neq 0$. Since the coefficients can be absorbed into the vectors $\boldsymbol{u}^{(i)}$, there is no loss of generality in assuming that

$$
\begin{equation*}
\boldsymbol{x}^{(0)}=\boldsymbol{u}^{(1)}+\boldsymbol{u}^{(2)}+\cdots+\boldsymbol{u}^{(n)} \tag{2}
\end{equation*}
$$

Then we repeatedly carry out matrix-vector multiplication, using the matrix \boldsymbol{A} to produce a sequence of vectors. Specifically, we have

$$
\left\{\begin{array}{l}
\boldsymbol{x}^{(1)}=\boldsymbol{A} \boldsymbol{x}^{(0)} \\
\boldsymbol{x}^{(2)}=\boldsymbol{A} \boldsymbol{x}^{(1)}=\boldsymbol{A}^{2} \boldsymbol{x}^{(0)} \\
\boldsymbol{x}^{(3)}=\boldsymbol{A} \boldsymbol{x}^{(2)}=\boldsymbol{A}^{3} \boldsymbol{x}^{(0)} \\
\\
\vdots \\
\boldsymbol{x}^{(k)}=\boldsymbol{A} \boldsymbol{x}^{(k-1)}=\boldsymbol{A}^{k} \boldsymbol{x}^{(0)} \\
\vdots
\end{array}\right.
$$

In general, we have

$$
\boldsymbol{x}^{(k)}=\boldsymbol{A}^{k} \boldsymbol{x}^{(0)} \quad(k=1,2,3, \ldots)
$$

Substituting $\boldsymbol{x}^{(0)}$ in Equation (2), we obtain

$$
\begin{aligned}
\boldsymbol{x}^{(k)} & =\boldsymbol{A}^{k} \boldsymbol{x}^{(0)} \\
& =\boldsymbol{A}^{k} \boldsymbol{u}^{(1)}+\boldsymbol{A}^{k} \boldsymbol{u}^{(2)}+\boldsymbol{A}^{k} \boldsymbol{u}^{(3)}+\cdots+\boldsymbol{A}^{k} \boldsymbol{u}^{(n)} \\
& =\lambda_{1}^{k} \boldsymbol{u}^{(1)}+\lambda_{2}^{k} \boldsymbol{u}^{(2)}+\lambda_{3}^{k} \boldsymbol{u}^{(3)}+\cdots+\lambda_{n}^{k} \boldsymbol{u}^{(n)}
\end{aligned}
$$

by using Equation (1). This can be written in the form

$$
\boldsymbol{x}^{(k)}=\lambda_{1}^{k}\left[\boldsymbol{u}^{(1)}+\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k} \boldsymbol{u}^{(2)}+\left(\frac{\lambda_{3}}{\lambda_{1}}\right)^{k} \boldsymbol{u}^{(3)}+\cdots+\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{k} \boldsymbol{u}^{(n)}\right]
$$

Since $\left|\lambda_{1}\right|>\left|\lambda_{j}\right|$ for $j>1$, we have $\left|\lambda_{j} / \lambda_{1}\right|<1$ and $\left(\lambda_{j} / \lambda_{1}\right)^{k} \rightarrow 0$ as $k \rightarrow \infty$. To simplify the notation, we write the above equation in the form

$$
\begin{equation*}
\boldsymbol{x}^{(k)}=\lambda_{1}^{k}\left[\boldsymbol{u}^{(1)}+\boldsymbol{\varepsilon}^{(k)}\right] \tag{3}
\end{equation*}
$$

where $\boldsymbol{\varepsilon}^{(k)} \rightarrow 0$ as $k \rightarrow \infty$. We let φ be any complex-valued linear functional on \mathbb{C}^{n} such that $\varphi\left(\boldsymbol{u}^{(1)}\right) \neq 0$. Recall that φ is a linear functional if $\varphi(a \boldsymbol{x}+b \boldsymbol{y})=a \varphi(\boldsymbol{x})+b \varphi(\boldsymbol{y})$ for scalars a and b and vectors \boldsymbol{x} and \boldsymbol{y}. For example, $\varphi(\boldsymbol{x})=x_{j}$ for some fixed $j(1 \leqq j \leqq n)$ is a linear functional. Now, looking back at Equation (3), we apply φ to it:

$$
\varphi\left(\boldsymbol{x}^{(k)}\right)=\lambda_{1}^{k}\left[\varphi\left(\boldsymbol{u}^{(1)}\right)+\varphi\left(\boldsymbol{\varepsilon}^{(k)}\right)\right]
$$

Next, we form ratios r_{1}, r_{2}, \ldots as follows:

$$
r_{k} \equiv \frac{\varphi\left(\boldsymbol{x}^{(k+1)}\right)}{\varphi\left(\boldsymbol{x}^{(k)}\right)}=\lambda_{1}\left[\frac{\varphi\left(\boldsymbol{u}^{(1)}\right)+\varphi\left(\boldsymbol{\varepsilon}^{(k+1)}\right)}{\varphi\left(\boldsymbol{u}^{(1)}\right)+\varphi\left(\boldsymbol{\varepsilon}^{(k)}\right)}\right] \rightarrow \lambda_{1} \quad \text { as } \quad k \rightarrow \infty
$$

Hence, we are able to compute the dominant eigenvalue λ_{1} as the limit of the sequence $\left\{r_{k}\right\}$. With a little more care, we can get an accompanying eigenvector. In the definition of the vectors $\boldsymbol{x}^{(k)}$ in Equation (2), we see nothing to prevent the vectors from growing or converging to zero. Normalization will cure this problem, as in one of the pseudocodes below.

Power Method Algorithms

Here we present pseudocode for calculating the dominant eigenvalue and an associated eigenvector for a prescribed matrix \boldsymbol{A}. In each algorithm, φ is a linear functional chosen by the user. For example, one can use $\varphi(\boldsymbol{x})=x_{1}$ (the first component of the vector).

Power Method Algorithm

```
integer k, kmax, n; real r
real array (A)
external function }
output 0, x
for }k=1\mathrm{ to kmax do
    y}\leftarrow\boldsymbol{A}\boldsymbol{x
    r}\leftarrow\varphi(\boldsymbol{y})/\varphi(\boldsymbol{x}
    x}\leftarrow\boldsymbol{y
    output }k,\boldsymbol{x},
end do
```

We use a simple 2×2 matrix such as $\boldsymbol{A}=\left[\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right]$ to give a geometric illustration of the power method as shown in Figure 8.3. Clearly, the eigenvalues are $\lambda_{1}=2$ and $\lambda_{2}=4$ with eigenvectors $\boldsymbol{v}^{(1)}=[-1,1]^{T}$ and $\boldsymbol{v}^{(2)}=[1,1]^{T}$, respectively. Starting with $\boldsymbol{x}^{(0)}=[0,1]^{T}$, the power method repeatedly multiplies the matrix \boldsymbol{A} by a vector. It produces a sequence of vectors $\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}$, and so on that move in the direction of the eigenvector $\boldsymbol{v}^{(2)}$, which corresponds to the dominant eigenvalue $\lambda_{2}=4$.

FIGURE 8.3
In 2D, power method illustration

We can easily modify this algorithm to produce normalized eigenvectors by using the infinity vector norm $\|\boldsymbol{x}\|_{\infty}=\max _{1 \leqq j \leqq n}\left|x_{j}\right|$, as in the following code:

Modified Power Method Algorithm with Normalization

```
integer k, kmax, n; real }
real array (A)
external function }
output 0, x
for }k=1\mathrm{ to kmax do
    y}\leftarrow\boldsymbol{A}\boldsymbol{x
    r}\leftarrow\varphi(\boldsymbol{y})/\varphi(\boldsymbol{x}
    x}\leftarrow\boldsymbol{y}/|\boldsymbol{y}\mp@subsup{|}{\infty}{
    output }k,\boldsymbol{x},
end do
```


Aitken Acceleration

From a given sequence $\left\{r_{k}\right\}$, we can construct another sequence $\left\{s_{k}\right\}$ by means of the Aitken acceleration formula

$$
s_{k}=r_{k}-\frac{\left(r_{k}-r_{k-1}\right)^{2}}{r_{k}-2 r_{k-1}+r_{k-2}} \quad(k \geqq 3)
$$

If the original sequence $\left\{r_{k}\right\}$ converges to r and if certain other conditions are satisfied, then the new sequence $\left\{s_{k}\right\}$ will converge to r more rapidly than the original one. (For details, see Kincaid and Cheney [2002].) Because subtractive cancellation may eventually spoil the results, the Aitken acceleration process should be stopped soon after the values become apparently stationary.

EXAMPLE 1 Use the modified power method algorithm and Aitken acceleration to find the dominant eigenvalue and an eigenvector of the given matrix \boldsymbol{A}, with vector $\boldsymbol{x}^{(0)}$ and $\varphi(\boldsymbol{x})$ given as follows:

$$
\boldsymbol{A}=\left[\begin{array}{lll}
6 & 5 & -5 \\
2 & 6 & -2 \\
2 & 5 & -1
\end{array}\right], \quad \boldsymbol{x}^{(0)}=\left[\begin{array}{r}
-1 \\
1 \\
1
\end{array}\right], \quad \varphi(\boldsymbol{x})=x_{2}
$$

Solution After coding and running the modified power method algorithm with Aitken acceleration, we obtain the following results:

$$
\begin{aligned}
\boldsymbol{x}^{(0)} & =[-1.0000,1.0000,1.0000]^{T} & & \\
\boldsymbol{x}^{(1)} & =[-1.0000,0.3333,0.3333]^{T} & r_{0}=2.0000 & \\
\boldsymbol{x}^{(2)} & =[-1.0000,-0.1111,-0.1111]^{T} & r_{1}=-2.0000 & \\
\boldsymbol{x}^{(3)} & =[-1.0000,-0.4074,-0.4074]^{T} & r_{2}=22.0000 & \\
\boldsymbol{x}^{(4)} & =[-1.0000,-0.6049,-0.6049]^{T} & r_{3}=8.9091 & s_{3}=13.5294 \\
\boldsymbol{x}^{(5)} & =[-1.0000,-0.7366,-0.7366]^{T} & r_{4}=7.3061 & s_{4}=7.0825 \\
\boldsymbol{x}^{(6)} & =[-1.0000,-0.8244,-0.8244]^{T} & r_{5}=6.7151 & s_{5}=6.3699 \\
& \vdots & \vdots & \vdots \\
\boldsymbol{x}^{(14)} & =[-1.0000,-0.9931,-0.9931]^{T} & r_{13}=6.0208 & s_{13}=6.0005
\end{aligned}
$$

The Aitken-accelerated sequence, s_{k}, converges noticeably faster than the sequence $\left\{r_{k}\right\}$. The actual dominant eigenvalue and an associated eigenvector are

$$
\lambda_{1}=6 \quad \boldsymbol{u}^{(1)}=[1,1,1]^{T}
$$

The coding of the modified power method is very simple, and we leave the actual implementation as an exercise. We also use the simple infinity-norm for normalizing the vectors. The final vectors and estimates of the eigenvalue are displayed with 15 decimals digits.

In such a problem, one should always seek an independent verification of the purported answer. Here, we simply compute $\boldsymbol{A} \boldsymbol{x}$ to see whether it coincides with $s_{14} \boldsymbol{x}$. The last few commands in the code are doing this rough checking, taking s_{14} as probably the best estimate of the eigenvalue and the last \boldsymbol{x}-vector as the best estimate of an eigenvector. The results after 14 steps are not very accurate. For better accuracy, take 80 steps!

Inverse Power Method

It is possible to compute other eigenvalues of a matrix by using modifications of the power method. For example, if \boldsymbol{A} is invertible, we can compute its eigenvalue of smallest magnitude by noting this logical equivalence:

$$
A x=\lambda x \Longleftrightarrow x=A^{-1}(\lambda x) \Longleftrightarrow A^{-1} x=\frac{1}{\lambda} x
$$

Thus, the smallest eigenvalue of \boldsymbol{A} in magnitude is the reciprocal of the largest eigenvalue of \boldsymbol{A}^{-1}. We compute it by applying the power method to \boldsymbol{A}^{-1} and taking the reciprocal of the result.

Suppose that there is a single smallest eigenvalue of \boldsymbol{A}. With our usual ordering, this will be λ_{n} :

$$
\left|\lambda_{1}\right| \geqq\left|\lambda_{2}\right| \geqq\left|\lambda_{3}\right| \geqq \cdots \geqq\left|\lambda_{n-1}\right|>\left|\lambda_{n}\right|>0
$$

It follows that \boldsymbol{A} is invertible. (Why?) The eigenvalues of \boldsymbol{A}^{-1} are λ_{j}^{-1} for $1 \leqq j \leqq n$. Therefore, we have

$$
\left|\lambda_{n}^{-1}\right|>\left|\lambda_{n-1}^{-1}\right| \geqq \cdots \geqq\left|\lambda_{1}^{-1}\right|>0
$$

We can use the power method on the matrix \boldsymbol{A}^{-1} to compute its dominant eigenvalue λ_{n}^{-1}. The reciprocal of this is the eigenvalue of \boldsymbol{A} that we sought. Notice that we need not compute \boldsymbol{A}^{-1} because the equation

$$
\boldsymbol{x}^{(k+1)}=\boldsymbol{A}^{-1} \boldsymbol{x}^{(k)}
$$

is equivalent to the equation

$$
\boldsymbol{A} \boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}
$$

and the vector $\boldsymbol{x}^{(k+1)}$ can be more easily computed by solving this last linear system. To do this, we first find the $\boldsymbol{L} \boldsymbol{U}$ factorization of \boldsymbol{A}, namely, $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}$. Then we repeatedly update the right-hand side and back solve:

$$
\boldsymbol{U} \boldsymbol{x}^{(k+1)}=\boldsymbol{L}^{-1} \boldsymbol{x}^{(k)}
$$

to obtain $\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \ldots$
EXAMPLE 2 Compute the smallest eigenvalue and an associated eigenvector of the following matrix:

$$
\boldsymbol{A}=\frac{1}{3}\left[\begin{array}{rrr}
-154 & 528 & 407 \\
55 & -144 & -121 \\
-132 & 396 & 318
\end{array}\right]
$$

using the following initial vector and linear function:

$$
\boldsymbol{x}^{(0)}=[1,2,3]^{T}, \quad \varphi(\boldsymbol{x})=x_{2}
$$

We decide to take the easy route and use the inverse of A for producing the successive \boldsymbol{x} vectors. We leave the actual implementation as an exercise. The ratios r_{k} are saved, and once it is complete, the Aitken accelerated values, s_{k}, are computed. Notice that at the end, we will want the reciprocal of the limiting ratio. Hence, it is easier to use reciprocals at every step in the code. Thus, you see $r_{k}=x_{2} / y_{2}$ rather than y_{2} / x_{2}, and these ratios should
converge to the smallest eigenvalue of \boldsymbol{A}. The final results after 80 steps are these:

$$
\begin{aligned}
x & =[0.26726101285547,-0.53452256017715,0.80178375118802]^{T} \\
s_{80} & =3.33333333343344
\end{aligned}
$$

We can divide each entry in \boldsymbol{x} by the first component and arrive at

$$
\boldsymbol{x}=[1.0,-2.00000199979120,3.00000266638827]^{T}
$$

The eigenvalue is actually $\frac{10}{3}$, and the eigenvector should be $[1,-2,3]^{T}$. The discrepancy between $\boldsymbol{A} \boldsymbol{x}$ and $s_{80} \boldsymbol{x}$ is about 2.6×10^{-6}.

Software Examples: Inverse Power Method

Using mathematical software on a small example,

$$
A=\left[\begin{array}{rrr}
6 & 5 & -5 \tag{4}\\
2 & 6 & 2 \\
2 & 5 & -1
\end{array}\right]
$$

we can first get \boldsymbol{A}^{-1} and then use the power method. (We have changed one entry in the matrix \boldsymbol{A} from Example 1 to solve a different problem.) We leave the implementation of the code as an exercise. In the code, r is the reciprocal of the quantity r in the original power method. Thus, at the end of the computation, r should be the eigenvalue of \boldsymbol{A} that has the smallest absolute value. After the prescribed 30 steps, we find that $r=0.214$ and $\boldsymbol{x}=[0.7916,0.5137,0.3308]^{T}$. As usual, we can verify the result independently by computing $\boldsymbol{A} \boldsymbol{x}$ and $r \boldsymbol{x}$, which should be equal. The method just illustrated is called the inverse power method. On larger examples, the successive vectors should be computed not via \boldsymbol{A}^{-1} but rather by solving the equation $\boldsymbol{A} \boldsymbol{y}=\boldsymbol{x}$ for \boldsymbol{y}. In mathematical software systems such as Matlab, Maple, and Mathematica, this can be done with a single command. Alternatively, one can get the $\boldsymbol{L} \boldsymbol{U}$ factorization of \boldsymbol{A} and solve $\boldsymbol{L z}=\boldsymbol{x}$ and $\boldsymbol{U} \boldsymbol{y}=\boldsymbol{z}$.

In this example, two eigenvalues are complex. Since the matrix is real, they must be conjugate pairs of the form $\alpha+\beta i$ and $\alpha-\beta i$. They have the same magnitude; thus, the hypothesis $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|$ needed in the convergence proof of the power method is violated. What happens when the power method is applied to \boldsymbol{A} ? The values of r for $k=26$ to 30 are $0.76,-53.27,8.86,2.69$, and -9.42 . We leave the implementation of the code as a computer problem.

Shifted (Inverse) Power Method

Other eigenvalues of a matrix (besides the largest and smallest) can be computed by exploiting the following logical equivalences:

$$
\boldsymbol{A} \boldsymbol{x}=\lambda \boldsymbol{x} \Longleftrightarrow(\boldsymbol{A}-\mu \boldsymbol{I}) \boldsymbol{x}=(\lambda-\mu) \boldsymbol{x} \Longleftrightarrow(\boldsymbol{A}-\mu \boldsymbol{I})^{-1} \boldsymbol{x}=\frac{1}{\lambda-\mu} \boldsymbol{x}
$$

If we want to compute an eigenvalue of \boldsymbol{A} that is close to a given number μ, we can apply the inverse power method to $A-\mu I$ and take the reciprocal of the limiting value of r. This should be $\lambda-\mu$.

We can also compute an eigenvalue of \boldsymbol{A} that is farthest from a given number μ. Suppose that for some eigenvalue λ_{j} of matrix \boldsymbol{A}, we have

$$
\left|\lambda_{j}-\mu\right|>\varepsilon \quad \text { and } \quad 0<\left|\lambda_{i}-\mu\right|<\varepsilon \quad \text { for all } i \neq j
$$

Consider the shifted matrix $\boldsymbol{A}-\mu \boldsymbol{I}$. Applying the power method to the shifted matrix $\boldsymbol{A}-\mu \boldsymbol{I}$, we compute ratios r_{k} that converge to $\lambda_{j}-\mu$. This procedure is called the shifted power method.

If we want to compute the eigenvalue of \boldsymbol{A} that is closest to a given number μ, a variant of the above procedure is needed. Suppose that λ_{j} is an eigenvalue of \boldsymbol{A} such that

$$
0<\left|\lambda_{j}-\mu\right|<\varepsilon \quad \text { and } \quad\left|\lambda_{i}-\mu\right|>\varepsilon \quad \text { for all } i \neq j
$$

Consider the shifted matrix $\boldsymbol{A}-\mu \boldsymbol{I}$. The eigenvalues of this matrix are $\lambda_{i}-\mu$. Applying the inverse power method to $\boldsymbol{A}-\mu \boldsymbol{I}$ gives an approximate value for $\left(\lambda_{j}-\mu\right)^{-1}$. We can use the explicit inverse of $\boldsymbol{A}-\mu \boldsymbol{I}$ or the $\boldsymbol{L} \boldsymbol{U}$ factorization $\boldsymbol{A}-\mu \boldsymbol{I}=\boldsymbol{L} \boldsymbol{U}$. Now we repeatedly solve the equations

$$
(\boldsymbol{A}-\mu \boldsymbol{I}) \boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}
$$

by solving instead $\boldsymbol{U} \boldsymbol{x}^{(k+1)}=\boldsymbol{L}^{-1} \boldsymbol{x}^{(k)}$. Since the ratios r_{k} converge to $\left(\lambda_{j}-\mu\right)^{-1}$, we have

$$
\lambda_{j}=\mu+\left(\lim _{k \rightarrow \infty} r_{k}\right)^{-1}=\mu+\lim _{k \rightarrow \infty} \frac{1}{r_{k}}
$$

This algorithm is called the shifted inverse power method.

Example: Shifted Inverse Power Method

To illustrate the shifted inverse power method, we consider the following matrix:

$$
\boldsymbol{A}=\left[\begin{array}{rrr}
1 & 3 & 7 \tag{5}\\
2 & -4 & 5 \\
3 & 4 & -6
\end{array}\right]
$$

and use mathematical software to compute the eigenvalue closest to -6 . The code we use takes ratios of y_{2} / x_{2}, and we are therefore expecting convergence of these ratios to $\lambda+6$. After eight steps, we have $r=0.9590$ and $\boldsymbol{x}=[-0.7081,0.6145,0.3478]^{T}$. Hence, the eigenvalue should be $\lambda=0.9590-6=-5.0410$. We can ask Matlab to confirm the eigenvalue and eigenvector by computing both $\boldsymbol{A} \boldsymbol{x}$ and $\lambda \boldsymbol{x}$ to be approximately $[3.57,-3.10,-1.75]^{T}$.

Summary

(1) We have considered the following methods for computing eigenvalues of a matrix. In the power method, we approximate the largest eigenvalue λ_{1} by generating a sequence of points using the formula

$$
\boldsymbol{x}^{(k+1)}=\boldsymbol{A} \boldsymbol{x}^{(k)}
$$

and then forming a sequence $r_{k}=\varphi\left(\boldsymbol{x}^{(k+1)}\right) / \varphi\left(\boldsymbol{x}^{(k)}\right)$, where φ is a linear functional. Under the right circumstances, this sequence, r_{k}, will converge to the largest eigenvalue of \boldsymbol{A}.
(2) In the inverse power method, we find the smallest eigenvalue λ_{n} by using the preceding process on the inverse of the matrix. The reciprocal of the largest eigenvalue of \boldsymbol{A}^{-1} is the smallest eigenvalue of \boldsymbol{A}. We can also describe this process as one of computing the sequence so that

$$
\boldsymbol{A} \boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}
$$

(3) In the shifted power method, we find the eigenvalue that is farthest from a given number μ by seeking the largest eigenvalue of $\boldsymbol{A}-\mu \boldsymbol{I}$. This involves an iteration to produce a sequence

$$
\boldsymbol{x}^{(k+1)}=(\boldsymbol{A}-\mu \boldsymbol{I}) \boldsymbol{x}^{(k)}
$$

(4) In the shifted inverse power method, we find the eigenvalue that is closest to μ by applying the inverse power method to $\boldsymbol{A}-\mu \boldsymbol{I}$. This requires solving the equation

$$
(\boldsymbol{A}-\mu \boldsymbol{I}) \boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)} \quad(\boldsymbol{A}-\mu \boldsymbol{I}=\boldsymbol{L} \boldsymbol{U})
$$

Additional References

For supplemental reading and study, see Anderson Bai, Bischof, Blackford, Demmel, Dongarra, Du Croz, Greenbaum, Hammarling, and McKenney [1999]; Axelsson [1994]; Bai, Demmel, Dongarra, Ruhe, and van der Vorst [2000]; Barrett, Berry, Chan, Demmel, Donato, Dongarra, Eijkhout, Pozo, Romine, and van der Vorst [1994]; Davis [2006]; Dekker and Hoffmann [1989]; Dekker, Hoffmann, and Potma [1997]; Demmel [1997]; Dongarra et al. [1990]; Elman, Silvester, and Wathen [2004]; Fox [1967]; Gautschi [1997]; Greenbaum [1997]; Hageman and Young [1981]; Heroux, Raghavan, and Simon [2006]; Jennings [1977]; Kincaid and Young [1979, 2000]; Lynch [2004]; Meurant [2006]; Noble and Daniel [1988]; Ortega [1990b]; Parlett [2000]; Saad [2003]; Schewchuck [1994]; Southwell [1946]; Stewart [1973]; Trefethen and Bau [1997]; Van der Vorst [2003]; Watkins [1991]; Wilkinson [1988]; and Young [1971].

Problems 8.4

${ }^{a}$ 1. Let $\boldsymbol{A}=\left[\begin{array}{ll}5 & 2 \\ 4 & 7\end{array}\right]$. The power method has been applied to the matrix \boldsymbol{A}. The result is a long list of vectors that seem to settle down to a vector of the form $[h, 1]^{T}$, where $|h|<1$. What is the largest eigenvalue, approximately, in terms of that number h ?
a. $4 h+7$
b. $5 h+2$
c. $1 / h$
d. $5 h+4$
e. None of these.
2. What is the expected final output of the following pseudocode?

```
integer \(n\), kmax; real \(r\)
real array \(\left(A^{-1}\right)_{1: n \times 1: n},(x)_{1: n},(y)_{1: n}\)
for \(k=1\) to 30 do
    \(\boldsymbol{y} \leftarrow \boldsymbol{A}^{-1} \boldsymbol{x}\)
    \(r \leftarrow y_{1} / x_{1}\) (first components of \(\boldsymbol{y}\) and \(\boldsymbol{x}\) )
    \(\boldsymbol{x} \leftarrow \boldsymbol{y} /\|\boldsymbol{y}\|\)
    output \(r, \boldsymbol{x}\)
end do
```

a. r is the eigenvalue of \boldsymbol{A} largest in magnitude, and \boldsymbol{x} is an accompanying eigenvector.
b. $r=1 / \lambda$, where λ is the smallest eigenvalue of \boldsymbol{A}, and \boldsymbol{x} is such that $\boldsymbol{A} \boldsymbol{x}=\lambda \boldsymbol{x}$.
c. A vector \boldsymbol{x} such that $\boldsymbol{A} \boldsymbol{x}=r \boldsymbol{x}$, where r is the eigenvalue of \boldsymbol{A} having the smallest magnitude.
d. r is the largest (in magnitude) eigenvalue of \boldsymbol{A} and \boldsymbol{x} is a corresponding eigenvector of \boldsymbol{A}.
e. None of these.
3. Briefly describe how to compute the following:
a. The dominant eigenvalue and associate eigenvector.
b. The next dominant eigenvalue and associated eigenvector.
c. The least dominant eigenvalue and associated eigenvector.
d. An eigenvalue other than the dominant or least dominant eigenvalue and associated eigenvectors.
4. Let $\boldsymbol{A}=\left[\begin{array}{rrr}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right]$ Carry out several iterations of the power method, starting with $\boldsymbol{x}^{(0)}=(1,1,1)$. What is the purpose of this procedure?
5. Let $\boldsymbol{B}=\boldsymbol{A}-4 \boldsymbol{I}=\left[\begin{array}{rrr}-2 & -1 & 0 \\ -1 & -2 & -1 \\ 0 & -1 & -2\end{array}\right]$. Carry out some iterations of the power method applied to \boldsymbol{B}, starting with $\boldsymbol{x}^{(0)}=(1,1,1)$. What is the purpose of this procedure?
6. Let $\boldsymbol{C}=\boldsymbol{A}^{-1}=\frac{1}{4}\left[\begin{array}{lll}3 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 3\end{array}\right]$. Carry out a few iterations of the power method applied to \boldsymbol{C}, starting with $\boldsymbol{x}^{(0)}=(1,1,1)$. What is the purpose of this procedure?
7. The Rayleigh quotient is the expression $\langle\boldsymbol{x}, \boldsymbol{x}\rangle_{A} /\langle\boldsymbol{x}, \boldsymbol{x}\rangle=\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x} / \boldsymbol{x}^{T} \boldsymbol{x}$. How can the Rayleigh quotient be used when $\boldsymbol{A x}=\lambda \boldsymbol{x}$?

Computer Problems 8.4

1. Use the power method, the inverse power method, and their shifted forms as well as Aitken's acceleration to find some or all of the eigenvalues of the following matrices:
a. $\left[\begin{array}{llll}5 & 4 & 1 & 1 \\ 4 & 5 & 1 & 1 \\ 1 & 1 & 4 & 2 \\ 1 & 1 & 2 & 4\end{array}\right]$
c. $\left[\begin{array}{rrrrr}-2 & 1 & 0 & 0 & 0 \\ 1 & -2 & 1 & 0 & 0 \\ 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 1 & -2\end{array}\right]$
b. $\left[\begin{array}{rrr}2 & 3 & 4 \\ 7 & -1 & 3 \\ 1 & -1 & 5\end{array}\right]$
2. Redo the examples in this section, using either Matlab, Maple, or Mathematica.
3. Modify and test the pseudocode for the power method to normalize the vector so that the largest component is always 1 in the infinity-norm. This procedure gives the eigenvector and eigenvalue without having to compute a linear functional.
4. Find the eigenvalues of the matrix

$$
\boldsymbol{A}=\left[\begin{array}{rrr}
-57 & 192 & 148 \\
20 & -53 & -44 \\
-48 & 144 & 115
\end{array}\right]
$$

that are close to $-4,2$, and 8 by using the inverse power method.
5. Using mathematical software such as Matlab, Maple, or Mathematica, write and execute code for implementing the methods in Section 8.4. Verify that the results are consistent with those described in the text.
a. Example 1 using the modified power method.
b. Example 2 using the inverse power method with Aitken acceleration.
c. Matrix (4) using the inverse power method.
d. Matrix (5) using the shifted power method.
6. Consider the matrix $\boldsymbol{A}=\left[\begin{array}{ccc}1 & 1 & \frac{1}{2} \\ 1 & 1 & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{4} & 2\end{array}\right]$
a. Use the normalized power method starting with $\boldsymbol{x}^{(0)}=[1,1,1]^{T}$, and find the dominant eigenvalue and eigenvector of the matrix \boldsymbol{A}.
b. Repeat, starting with the initial value $\boldsymbol{x}^{(0)}=[-0.64966116,0,74822116,0]^{T}$. Explain the results. See Ralston [1965, p. 475-476].
7. Let $\boldsymbol{A}=\left[\begin{array}{rrr}-4 & 14 & 0 \\ -5 & 13 & 0 \\ -1 & 0 & 2\end{array}\right]$. Code and apply each of the following:
a. The modified power algorithm starting with $\boldsymbol{x}^{(0)}=[1,1,1]^{T}$ as well as the Aitken's acceleration process.
b. The inverse power algorithm.
c. The shifted power algorithm.
d. The shifted inverse power algorithm.
8. (Continuation) Let $\boldsymbol{B}=\left[\begin{array}{rrr}4 & -1 & 1 \\ -1 & 3 & -2 \\ 1 & -2 & 3\end{array}\right]$. Repeat the previous problem starting with $\boldsymbol{x}^{(0)}=[1,0,0]^{T}$.
9. (Continuation) Let $\boldsymbol{C}=\left[\begin{array}{rrr}-8 & -5 & 8 \\ 6 & 3 & -8 \\ -3 & 1 & 9\end{array}\right]$. Use $\boldsymbol{x}^{(0)}=[1,1,1]^{T}$. Repeat the previous problem starting with $\boldsymbol{x}^{(0)}=[1,0,0]^{T}$.
10. By means of the power method, find an eigenvalue and associated eigenvector of these matrices from the historical books by Fox [1957] and Wilkinson [1965]. Verify your results by using mathematical software such as Matlab, Maple, or Mathematica.
a. $\left[\begin{array}{rr}0.9901 & 0.002 \\ -0.0001 & 0.9904\end{array}\right]$ starting with $\boldsymbol{x}^{(0)}=[1,0.9]^{T}$
b. $\left[\begin{array}{rrr}8 & -1 & -5 \\ -4 & 4 & -2 \\ 18 & -5 & -7\end{array}\right]$ starting with $\boldsymbol{x}^{(0)}=[1,0.8,1]^{T}$
c. $\left[\begin{array}{rrr}1 & 1 & 3 \\ 1 & -2 & 1 \\ 3 & 1 & 3\end{array}\right]$ starting with $\boldsymbol{x}^{(0)}=[1,1,1]^{T}$

11. Find all of the eigenvalues and associated eigenvectors of these matrices from Fox [1957] and Wilkinson [1965] by means of the power method and variations of it. Verify your results by using mathematical software such as Matlab, Maple, or Mathematica.
a. $\left[\begin{array}{ll}2 & 1 \\ 4 & 2\end{array}\right]$
b. $\left[\begin{array}{rr}0.4812 & 0.0023 \\ -0.0024 & 0.4810\end{array}\right]$
c. $\left[\begin{array}{ccc}1 & 1 & 0 \\ -1+10^{-8} & 3 & 0 \\ 0 & 1 & 1\end{array}\right]$
d. $\left[\begin{array}{rrr}5 & -1 & -2 \\ -1 & 3 & -2 \\ -2 & -2 & 5\end{array}\right]$
e. $\left[\begin{array}{rrr}0.987 & 0.400 & -0.487 \\ -0.079 & 0.500 & -0.479 \\ 0.082 & 0.400 & 0.418\end{array}\right]$

9
 Approximation by Spline Functions

By experimentation in a wind tunnel, an airfoil is constructed by trial and error so that it has certain desired characteristics. The cross section of the airfoil is then drawn as a curve on coordinate paper (see Figure 9.1). To study this airfoil by analytical methods or to manufacture it, it is essential to have a formula for this curve. To arrive at such a formula, one first obtains the coordinates of a finite set of points on the curve. Then a smooth curve called a cubic interpolating spline can be constructed to match these data points. This chapter discusses general polynomial spline functions and how they can be used in various numerical problems such as the data-fitting problem just described.

FIGURE 9.1
Airfoil cross section

9.1 First-Degree and Second-Degree Splines

The history of spline functions is rooted in the work of draftsmen, who often needed to draw a gently turning curve between points on a drawing. This process is called fairing and can be accomplished with a number of ad hoc devices, such as the French curve, made of plastic and presenting a number of curves of different curvature for the draftsman to select. Long strips of wood were also used, being made to pass through the control points by weights laid on the draftsman's table and attached to the strips. The weights were called ducks and the strips of wood were called splines, even as early as 1891 . The elastic nature of the wooden strips allowed them to bend only a little while still passing through the prescribed points. The wood was, in effect, solving a differential equation and minimizing the strain energy. The latter is known to be a simple function of the curvature. The mathematical theory of these curves owes much to the early investigators, particularly Isaac Schoenberg in the 1940s and 1950s. Other important names associated with the early development of the subject (i.e., prior to 1964) are Garrett Birkhoff, C. de Boor, J. H. Ahlberg, E. N. Nilson,

FIGURE 9.2
First-degree spline function
H. Garabedian, R. S. Johnson, F. Landis, A. Whitney, J. L. Walsh, and J. C. Holladay. The first book giving a systematic exposition of spline theory was the book by Ahlberg, Nilson, and Walsh [1967].

First-Degree Spline

A spline function is a function that consists of polynomial pieces joined together with certain smoothness conditions. A simple example is the polygonal function (or spline of degree 1), whose pieces are linear polynomials joined together to achieve continuity, as in Figure 9.2. The points $t_{0}, t_{1}, \ldots, t_{n}$ at which the function changes its character are termed knots in the theory of splines. Thus, the spline function shown in Figure 9.2 has eight knots.

Such a function appears somewhat complicated when defined in explicit terms. We are forced to write

$$
S(x)=\left\{\begin{array}{cc}
S_{0}(x) & x \in\left[t_{0}, t_{1}\right] \tag{1}\\
S_{1}(x) & x \in\left[t_{1}, t_{2}\right] \\
\vdots & \vdots \\
S_{n-1}(x) & x \in\left[t_{n-1}, t_{n}\right]
\end{array}\right.
$$

where

$$
\begin{equation*}
S_{i}(x)=a_{i} x+b_{i} \tag{2}
\end{equation*}
$$

because each piece of $S(x)$ is a linear polynomial. Such a function $S(x)$ is piecewise linear. If the knots $t_{0}, t_{1}, \ldots, t_{n}$ were given and if the coefficients $a_{0}, b_{0}, a_{1}, b_{1}, \ldots, a_{n-1}, b_{n-1}$ were all known, then the evaluation of $S(x)$ at a specific x would proceed by first determining the interval that contains x and then using the appropriate linear function for that interval.

If the function S defined by Equation (1) is continuous, we call it a first-degree spline. It is characterized by the following three properties.

SPLINE OF DEGREE 1

A function S is called a spline of degree 1 if:

1. The domain of S is an interval $[a, b]$.
2. S is continuous on $[a, b]$.
3. There is a partitioning of the interval $a=t_{0}<t_{1}<\cdots<t_{n}=b$ such that S is a linear polynomial on each subinterval $\left[t_{i}, t_{i+1}\right]$.

Outside the interval $[a, b], S(x)$ is usually defined to be the same function on the left of a as it is on the leftmost subinterval $\left[t_{0}, t_{1}\right]$ and the same on the right of b as it is on the rightmost subinterval $\left[t_{n-1}, t_{n}\right]$, namely, $S(x)=S_{0}(x)$ when $x<a$ and $S(x)=S_{n-1}(x)$ when $x>b$.

Continuity of a function f at a point s can be defined by the condition

$$
\lim _{x \rightarrow s^{+}} f(x)=\lim _{x \rightarrow s^{-}} f(x)=f(s)
$$

Here, $\lim _{x \rightarrow s^{+}}$means that the limit is taken over x values that converge to s from above s; that is, $(x-s)$ is positive for all x values. Similarly, $\lim _{x \rightarrow s^{-}}$means that the x values converge to s from below.

EXAMPLE 1 Determine whether this function is a first-degree spline function:

$$
S(x)= \begin{cases}x & x \in[-1,0] \\ 1-x & x \in(0,1) \\ 2 x-2 & x \in[1,2]\end{cases}
$$

Solution The function is obviously piecewise linear but is not a spline of degree 1 because it is discontinuous at $x=0$. Notice that $\lim _{x \rightarrow 0^{+}} S(x)=\lim _{x \rightarrow 0}(1-x)=1$, whereas $\lim _{x \rightarrow 0^{-}} S(x)=\lim _{x \rightarrow 0} x=0$.

The spline functions of degree 1 can be used for interpolation. Suppose the following table of function values is given:

x	t_{0}	t_{1}	\cdots	t_{n}
y	y_{0}	y_{1}	\cdots	y_{n}

There is no loss of generality in supposing that $t_{0}<t_{1}<\cdots<t_{n}$ because this is only a matter of labeling the knots.

The table can be represented by a set of $n+1$ points in the plane, $\left(t_{0}, y_{0}\right),\left(t_{1}, y_{1}\right), \ldots$, $\left(t_{n}, y_{n}\right)$, and these points have distinct abscissas. Therefore, we can draw a polygonal line through the points without ever drawing a vertical segment. This polygonal line is the graph of a function, and this function is obviously a spline of degree 1 . What are the equations of the individual line segments that make up this graph?

By referring to Figure 9.3 and using the point-slope form of a line, we obtain

$$
\begin{equation*}
S_{i}(x)=y_{i}+m_{i}\left(x-t_{i}\right) \tag{3}
\end{equation*}
$$

on the interval $\left[t_{i}, t_{i+1}\right]$, where m_{i} is the slope of the line and is therefore given by the formula

$$
m_{i}=\frac{y_{i+1}-y_{i}}{t_{i+1}-t_{i}}
$$

FIGURE 9.3
First-degree spline:
linear $S_{i}(x)$

Notice that the function S that we are creating has $2 n$ parameters in it: the n coefficients a_{i} and the n constants b_{i} in Equation (2). On the other hand, exactly $2 n$ conditions are being imposed, since each constituent function S_{i} must interpolate the data at the ends of its subinterval. Thus, the number of parameters equals the number of conditions. For the higher-degree splines, we shall encounter a mismatch in these two numbers; the spline of degree k will have $k-1$ free parameters for us to use as we wish in the problem of interpolating at the knots.

The form of Equation (3) is better than that of Equation (2) for the practical evaluation of $S(x)$ because some of the quantities $x-t_{i}$ must be computed in any case simply to determine which subinterval contains x. If $t_{0} \leqq x \leqq t_{n}$ then the interval $\left[t_{i}, t_{i+1}\right]$ containing x is characterized by the fact that $x-t_{i}$ is the first of the quantities $x-t_{n-1}, x-t_{n-2}, \ldots$, $x-t_{0}$ that is nonnegative.

The following is a function procedure that utilizes $n+1$ table values $\left(t_{i}, y_{i}\right)$ in linear arrays (t_{i}) and (y_{i}), assuming that $a=t_{0}<t_{1}<\cdots<t_{n}=b$. Given an x value, the routine returns $S(x)$ using Equations (1) and (3). If $x<t_{0}$, then $S(x)=y_{0}+m_{0}\left(x-t_{0}\right)$; if $x>t_{n}$, then $S(x)=y_{n-1}+m_{n-1}\left(x-t_{n-1}\right)$.

```
real function Splinel ( }n,(\mp@subsup{t}{i}{}),(\mp@subsup{y}{i}{}),x
integer }i,n;\quad\mathrm{ real }x; real array (t\mp@subsup{t}{i}{}\mp@subsup{)}{0:n}{},(\mp@subsup{y}{i}{}\mp@subsup{)}{0:n}{
for }i=n-1\mathrm{ to 0 step -1 do
    if }x-\mp@subsup{t}{i}{}\geqq0\mathrm{ then exit loop
end for
Splinel }\leftarrow\mp@subsup{y}{i}{}+(x-\mp@subsup{t}{i}{})[(\mp@subsup{y}{i+1}{}-\mp@subsup{y}{i}{})/(\mp@subsup{t}{i+1}{}-\mp@subsup{t}{i}{})
end function Splinel
```


Modulus of Continuity

To assess the goodness of fit when we interpolate a function with a first-degree spline, it is useful to have something called the modulus of continuity of a function f. Suppose f is defined on an interval $[a, b]$. The modulus of continuity of f is

$$
\omega(f ; h)=\sup \{|f(u)-f(v)|: a \leqq u \leqq v \leqq b,|u-v| \leqq h\}
$$

Here, sup is the supremum, which is the least upper bound of the given set of real numbers. The quantity $\omega(f ; h)$ measures how much f can change over a small interval of width h. If f is continuous on $[a, b]$, then it is uniformly continuous, and $\omega(f ; h)$ will tend to zero as h tends to zero. If f is not continuous, $\omega(f ; h)$ will not tend to zero. If f is differentiable on (a, b) (in addition to being continuous on $[a, b])$ and if $f^{\prime}(x)$ is bounded on (a, b), then the Mean Value Theorem can be used to get an estimate of the modulus of continuity: If u and v are as described in the definition of $\omega(f ; h)$, then

$$
|f(u)-f(v)|=\left|f^{\prime}(c)(u-v)\right| \leqq M_{1}|u-v| \leqq M_{1} h
$$

Here, M_{1} denotes the maximum of $\left|f^{\prime}(x)\right|$ as x runs over (a, b). For example, if $f(x)=x^{3}$ and $[a, b]=[1,4]$, then we find that $\omega(f ; h) \leqq 48 h$.

THEOREM 1

FIRST-DEGREE POLYNOMIAL ACCURACY THEOREM

If p is the first-degree polynomial that interpolates a function f at the endpoints of an interval $[a, b]$, then with $h=b-a$, we have

$$
|f(x)-p(x)| \leqq \omega(f ; h) \quad(a \leqq x \leqq b)
$$

Proof The linear function p is given explicitly by the formula

$$
p(x)=\left(\frac{x-a}{b-a}\right) f(b)+\left(\frac{b-x}{b-a}\right) f(a)
$$

Hence,

$$
f(x)-p(x)=\left(\frac{x-a}{b-a}\right)[f(x)-f(b)]+\left(\frac{b-x}{b-a}\right)[f(x)-f(a)]
$$

Then we have

$$
\begin{aligned}
|f(x)-p(x)| & \leqq\left(\frac{x-a}{b-a}\right)|f(x)-f(b)|+\left(\frac{b-x}{b-a}\right)|f(x)-f(a)| \\
& \leqq\left(\frac{x-a}{b-a}\right) \omega(f ; h)+\left(\frac{b-x}{b-a}\right) \omega(f ; h) \\
& =\left[\left(\frac{x-a}{b-a}\right)+\left(\frac{b-x}{b-a}\right)\right] \omega(f ; h)=\omega(f ; h)
\end{aligned}
$$

From this basic result, one can easily prove the following one, simply by applying the basic inequality to each subinterval.

THEOREM 2

FIRST-DECREE SPLINE ACCURACY THEOREM

Let p be a first-degree spline having knots $a=x_{0}<x_{1}<\cdots<x_{n}=b$. If p interpolates a function f at these knots, then with $h=\max _{i}\left(x_{i}-x_{i-1}\right)$, we have

$$
|f(x)-p(x)| \leqq \omega(f ; h) \quad(a \leqq x \leqq b)
$$

If f^{\prime} or $f^{\prime \prime}$ exist and are continuous, then more can be said, namely,

$$
\begin{aligned}
|f(x)-p(x)| \leqq M_{1} \frac{h}{2} & (a \leqq x \leqq b) \\
|f(x)-p(x)| \leqq M_{2} \frac{h^{2}}{8} & (a \leqq x \leqq b)
\end{aligned}
$$

In these estimates, M_{1} is the maximum value of $\left|f^{\prime}(x)\right|$ on the interval, and M_{2} is the maximum of $\left|f^{\prime \prime}(x)\right|$.

The first theorem tells us that if more knots are inserted in such a way that the maximum spacing h goes to zero, then the corresponding first-degree spline will converge uniformly to f. Recall that this type of result is conspicuously lacking in the polynomial interpolation theory. In that situation, raising the degree and making the nodes fill up the interval will not necessarily ensure that convergence takes place for an arbitrary continuous function. (See Section 4.2.)

Second-Degree Splines

Splines of degree higher than 1 are more complicated. We now take up the quadratic splines. Let's use the letter Q to remind ourselves that we are considering piecewise quadratic functions. A function Q is a second-degree spline if it has the following properties.

DEFINITION 2

SPLINE OF DEGREE 2

A function Q is called a spline of degree 2 if:

1. The domain of Q is an interval $[a, b]$.
2. Q and Q^{\prime} are continuous on $[a, b]$.
3. There are points t_{i} (called knots) such that $a=t_{0}<t_{1}<\cdots<t_{n}=b$ and Q is a polynomial of degree at most 2 on each subinterval $\left[t_{i}, t_{i+1}\right]$.

In brief, a quadratic spline is a continuously differentiable piecewise quadratic function, where quadratic includes all linear combinations of the basic functions $x \mapsto 1, x, x^{2}$.

EXAMPLE 2 Determine whether the following function is a quadratic spline:

$$
Q(x)=\left\{\begin{array}{rr}
x^{2} & (-10 \leqq x \leqq 0) \\
-x^{2} & (0 \leqq x \leqq 1) \\
1-2 x & (1 \leqq x \leqq 20)
\end{array}\right.
$$

Solution The function is obviously piecewise quadratic. Whether Q and Q^{\prime} are continuous at the interior knots can be determined as follows:

$$
\begin{array}{lll}
\lim _{x \rightarrow 0^{-}} Q(x)=\lim _{x \rightarrow 0^{-}} x^{2}=0 & \lim _{x \rightarrow 0^{+}} Q(x)=\lim _{x \rightarrow 0^{+}}\left(-x^{2}\right)=0 \\
\lim _{x \rightarrow 1^{-}} Q(x)=\lim _{x \rightarrow 1^{-}}\left(-x^{2}\right)=-1 & \lim _{x \rightarrow 1^{+}} Q(x)=\lim _{x \rightarrow 1^{+}}(1-2 x)=-1 \\
\lim _{x \rightarrow 0^{-}} Q^{\prime}(x)=\lim _{x \rightarrow 0^{-}} 2 x=0 & \lim _{x \rightarrow 0^{+}} Q^{\prime}(x)=\lim _{x \rightarrow 0^{+}}(-2 x)=0 \\
\lim _{x \rightarrow 1^{-}} Q^{\prime}(x)=\lim _{x \rightarrow 1^{-}}(-2 x)=-2 & \lim _{x \rightarrow 1^{+}} Q^{\prime}(x)=\lim _{x \rightarrow 1^{+}}(-2)=-2
\end{array}
$$

Consequently, $Q(x)$ is a quadratic spline.

Interpolating Quadratic Spline $\mathbf{Q}(\boldsymbol{x})$

Quadratic splines are not used in applications as often as are natural cubic splines, which are developed in the next section. However, the derivations of interpolating quadratic and cubic splines are similar enough that an understanding of the simpler second-degree spline theory will allow one to grasp easily the more complicated third-degree spline theory. We want to emphasize that quadratic splines are rarely used for interpolation, and the discussion here is provided only as preparation for the study of higher-order splines, which are used in many applications.

Proceeding now to the interpolation problem, suppose that a table of values has been given:

x	t_{0}	t_{1}	t_{2}	\cdots	t_{n}
y	y_{0}	y_{1}	y_{2}	\cdots	y_{n}

We shall assume that the points $t_{0}, t_{1}, \ldots, t_{n}$, which we think of as the nodes for the interpolation problem, are also the knots for the spline function to be constructed. Later, another quadratic spline interpolant is discussed in which the nodes for interpolation are different from the knots.

A quadratic spline, as just described, consists of n separate quadratic functions $x \mapsto$ $a_{i} x^{2}+b_{i} x+c_{i}$, one for each subinterval created by the $n+1$ knots. Thus, we start with $3 n$ coefficients. On each subinterval $\left[t_{i}, t_{i+1}\right]$, the quadratic spline function Q_{i} must satisfy the interpolation conditions $Q_{i}\left(t_{i}\right)=y_{i}$ and $Q_{i}\left(t_{i+1}\right)=y_{i+1}$. Since there are n such subintervals, this imposes $2 n$ conditions. The continuity of Q does not add any additional conditions. (Why?) However, the continuity of Q^{\prime} at each of the interior knots gives $n-1$ more conditions. Thus, we have $2 n+n-1=3 n-1$ conditions, or one condition short of the $3 n$ conditions required. There are a variety of ways to impose this additional condition; for example, $Q^{\prime}\left(t_{0}\right)=0$ or $Q_{0}^{\prime \prime}=0$.

We now derive the equations for the interpolating quadratic spline, $Q(x)$. The value of $Q^{\prime}\left(t_{0}\right)$ is prescribed as the additional condition. We seek a piecewise quadratic function

$$
Q(x)=\left\{\begin{array}{cc}
Q_{0}(x) & \left(t_{0} \leqq x \leqq t_{1}\right) \tag{4}\\
Q_{1}(x) & \left(t_{1} \leqq x \leqq t_{2}\right) \\
\vdots & \vdots \\
Q_{n-1}(x) & \left(t_{n-1} \leqq x \leqq t_{n}\right)
\end{array}\right.
$$

which is continuously differentiable on the entire interval $\left[t_{0}, t_{n}\right]$ and which interpolates the table; that is, $Q\left(t_{i}\right)=y_{i}$ for $0 \leqq i \leqq n$.

Since Q^{\prime} is continuous, we can put $z_{i} \equiv Q^{\prime}\left(t_{i}\right)$. At present, we do not know the correct values of z_{i}; nevertheless, the following must be the formula for Q_{i} :

$$
\begin{equation*}
Q_{i}(x)=\frac{z_{i+1}-z_{i}}{2\left(t_{i+1}-t_{i}\right)}\left(x-t_{i}\right)^{2}+z_{i}\left(x-t_{i}\right)+y_{i} \tag{5}
\end{equation*}
$$

To see that this is correct, verify that $Q_{i}\left(t_{i}\right)=y_{i}, Q_{i}^{\prime}\left(t_{i}\right)=z_{i}$, and $Q_{i}^{\prime}\left(t_{i+1}\right)=z_{i+1}$. These three conditions define the function Q_{i} uniquely on $\left[t_{i}, t_{i+1}\right]$ as given in Equation (5).

Now, for the quadratic spline function Q to be continuous and to interpolate the table of data, it is necessary and sufficient that $Q_{i}\left(t_{i+1}\right)=y_{i+1}$ for $i=0,1, \ldots, n-1$ in Equation (5). When this equation is written out in detail and simplified, the result is

$$
\begin{equation*}
z_{i+1}=-z_{i}+2\left(\frac{y_{i+1}-y_{i}}{t_{i+1}-t_{i}}\right) \quad(0 \leqq i \leqq n-1) \tag{6}
\end{equation*}
$$

This equation can be used to obtain the vector $\left[z_{0}, z_{1}, \ldots, z_{n}\right]^{T}$, starting with an arbitrary value for z_{0}. We summarize with an algorithm:

- ALGORITHM 1 Quadratic Spline Interpolation at the Knots

1. Determine $\left[z_{0}, z_{1}, \ldots, z_{n}\right]^{T}$ by selecting z_{0} arbitrarily and computing $z_{1}, z_{2}, \ldots, z_{n}$ recursively by Formula (6).
2. The quadratic spline interpolating function Q is given by Formulas (4) and (5).

EXAMPLE 3 For the five data points $(0,8),(1,12),(3,2),(4,6),(8,0)$, construct the linear spline S and the quadratic spline Q.

Solution Figure 9.4 illustrates graphically these two low order spline curves. They fit better than the interpolating polynomials in Figure 4.6 (p. 154) with regard to reduced oscillations.

FIGURE 9.4 First-degree and seconddegree spline functions

Subbotin Quadratic Spline

A useful approximation process, first proposed by Subbotin [1967], consists of interpolation with quadratic splines, where the nodes for interpolation are chosen to be the first and last knots and the midpoints between the knots. Remember that knots are defined as the points where the spline function is permitted to change in form from one polynomial to another. The nodes are the points where values of the spline are specified. In the Subbotin quadratic spline function, there are $n+2$ interpolation conditions and $2(n-1)$ conditions from the continuity of Q and Q^{\prime}. Hence, we have the exact number of conditions needed, $3 n$, to define the quadratic spline function completely.

We outline the theory here, leaving details for the reader to fill in. Suppose that knots $a=t_{0}<t_{1}<\cdots<t_{n}=b$ have been specified; let the nodes be the points

$$
\left\{\begin{array}{l}
\tau_{0}=t_{0} \quad \tau_{n+1}=t_{n} \\
\tau_{i}=\frac{1}{2}\left(t_{i}+t_{i-1}\right) \quad(1 \leqq i \leqq n)
\end{array}\right.
$$

We seek a quadratic spline function Q that has the given knots and takes prescribed values at the nodes:

$$
Q\left(\tau_{i}\right)=y_{i} \quad(0 \leqq i \leqq n+1)
$$

as in Figure 9.5. The knots create n subintervals, and in each of them, Q can be a different quadratic polynomial. Let us say that on $\left[t_{i}, t_{i+1}\right], Q$ is equal to the quadratic polynomial Q_{i}. Since Q is a quadratic spline, it and its first derivative should be continuous. Thus, $z_{i} \equiv Q^{\prime}\left(t_{i}\right)$ is well defined, although as yet we do not know its values. It is easy to see that

FIGURE 9.5
Subbotin quadratic splines
$\left(t_{0}=\tau_{0}, t_{3}=\tau_{4}\right)$

on $\left[t_{i}, t_{i+1}\right]$, our quadratic polynomial can be represented in the form

$$
\begin{equation*}
Q_{i}(x)=y_{i+1}+\frac{1}{2}\left(z_{i+1}+z_{i}\right)\left(x-\tau_{i+1}\right)+\frac{1}{2 h_{i}}\left(z_{i+1}-z_{i}\right)\left(x-\tau_{i+1}\right)^{2} \tag{7}
\end{equation*}
$$

in which $h_{i}=t_{i+1}-t_{i}$. To verify the correctness of Equation (7), we must check that $Q_{i}\left(\tau_{i+1}\right)=y_{i+1}, Q_{i}^{\prime}\left(t_{i}\right)=z_{i}$, and $Q_{i}^{\prime}\left(t_{i+1}\right)=z_{i+1}$. When the polynomial pieces $Q_{0}, Q_{1}, \ldots, Q_{n-1}$ are joined together to form Q, the result may be discontinuous. Hence, we impose continuity conditions at the interior knots:

$$
\lim _{x \rightarrow t_{i}^{-}} Q_{i-1}(x)=\lim _{x \rightarrow t_{i}^{+}} Q_{i}(x) \quad(1 \leqq i \leqq n-1)
$$

The reader should carry out this analysis, which leads to

$$
\begin{equation*}
h_{i-1} z_{i-1}+3\left(h_{i-1}+h_{i}\right) z_{i}+h_{i} z_{i+1}=8\left(y_{i+1}-y_{i}\right) \quad(1 \leqq i \leqq n-1) \tag{8}
\end{equation*}
$$

The first and last interpolation conditions must also be imposed:

$$
Q\left(\tau_{0}\right)=y_{0} \quad Q\left(\tau_{n+1}\right)=y_{n+1}
$$

These two equations lead to

$$
\begin{aligned}
3 h_{0} z_{0}+h_{0} z_{1} & =8\left(y_{1}-y_{0}\right) \\
h_{n-1} z_{n-1}+3 h_{n-1} z_{n} & =8\left(y_{n+1}-y_{n}\right)
\end{aligned}
$$

The system of equations governing the vector $\mathbf{z}=\left[z_{0}, z_{1}, \ldots, z_{n}\right]^{T}$ then can be written in the matrix form

$$
\begin{aligned}
& {\left[\begin{array}{cccccc}
3 h_{0} & h_{0} & & & & \\
h_{0} & 3\left(h_{0}+h_{1}\right) & h_{1} & & & \\
& h_{1} & 3\left(h_{1}+h_{2}\right) & h_{2} & & \\
& & \ddots & \ddots & \ddots & \\
& & & h_{n-2} & 3\left(h_{n-2}+h_{n-1}\right) & h_{n-1} \\
& & & & h_{n-1} & 3 h_{n-1}
\end{array}\right]\left[\begin{array}{l}
z_{0} \\
z_{1} \\
z_{2} \\
\vdots \\
z_{n-1} \\
z_{n}
\end{array}\right]} \\
& \\
& =8\left[\begin{array}{l}
y_{1}-y_{0} \\
y_{2}-y_{1} \\
y_{3}-y_{2} \\
\vdots \\
y_{n}-y_{n-1} \\
y_{n+1}-y_{n}
\end{array}\right]
\end{aligned}
$$

This system of $n+1$ equations in $n+1$ unknowns can be conveniently solved by procedure Tri in Chapter 7. After the z vector has been obtained, values of $Q(x)$ can be computed from Equation (7). The writing of suitable code to carry out this interpolation method is left as a programming project.

Summary

(1) We are given $n+1$ pairs of points $\left(t_{i}, y_{i}\right)$ with distinct knots $a=t_{0}<t_{1}<\cdots<$ $t_{n-1}<t_{n}=b$ over the interval $[a, b]$. A first-degree spline function S is a piecewise linear polynomial defined on the interval $[a, b]$ so that it is continuous. It has the form

$$
S(x)=\left\{\begin{array}{cc}
S_{0}(x) & x \in\left[t_{0}, t_{1}\right] \\
S_{1}(x) & x \in\left[t_{1}, t_{2}\right] \\
\vdots & \vdots \\
S_{n-1}(x) & x \in\left[t_{n-1}, t_{n}\right]
\end{array}\right.
$$

where

$$
S_{i}(x)=y_{i}+\left(\frac{y_{i+1}-y_{i}}{t_{i+1}-t_{i}}\right)\left(x-t_{i}\right)
$$

on the interval $\left[t_{i}, t_{i+1}\right]$. Clearly, $S(x)$ is continuous, since $S_{i-1}\left(t_{i}\right)=S_{i}\left(t_{i}\right)=y_{i}$ for $1 \leqq i \leqq n$.
(2) A second-degree spline function Q is a piecewise quadratic polynomial with Q and Q^{\prime} continuous on the interval $[a, b]$. It has the form

$$
Q(x)=\left\{\begin{array}{cc}
Q_{0}(x) & x \in\left[t_{0}, t_{1}\right] \\
Q_{1}(x) & x \in\left[t_{1}, t_{2}\right] \\
\vdots & \vdots \\
Q_{n-1}(x) & x \in\left[t_{n-1}, t_{n}\right]
\end{array}\right.
$$

where

$$
Q_{i}(x)=\left(\frac{z_{i+1}-z_{i}}{2\left(t_{i+1}-t_{i}\right)}\right)\left(x-t_{i}\right)^{2}+z_{i}\left(x-t_{i}\right)+y_{i}
$$

on the interval $\left[t_{i}, t_{i+1}\right]$. The coefficients $z_{0}, z_{1}, \ldots, z_{n}$ are obtained by selecting z_{0} and then using the recurrence relation

$$
z_{i+1}=-z_{i}+2\left(\frac{y_{i+1}-y_{i}}{t_{i+1}-t_{i}}\right) \quad(0 \leqq i \leqq n-1)
$$

(3) A Subbotin quadratic spline function Q is a piecewise quadratic polynomial with Q and Q^{\prime} continuous on the interval $[a, b]$ and with interpolation condition at the endpoints of the interval $[a, b]$ and at the midpoints of the subintervals, namely, $Q\left(\tau_{i}\right)=y_{i}$ for $0 \leqq i \leqq n+1$, where

$$
\tau_{0}=t_{0}, \quad \tau_{i}=\frac{1}{2}\left(t_{i}+t_{i-1}\right) \quad(1 \leqq i \leqq n), \quad \tau_{n+1}=t_{n}
$$

It has the form

$$
Q_{i}(x)=y_{i+1}+\frac{1}{2}\left(z_{i+1}+z_{i}\right)\left(x-\tau_{i+1}\right)+\frac{1}{2 h_{i}}\left(z_{i+1}-z_{i}\right)\left(x-\tau_{i+1}\right)^{2}
$$

where $h_{i}=t_{i+1}-t_{i}$. The coefficients z_{i} are found by solving the tridiagonal system

$$
\left\{\begin{aligned}
3 h_{0} z_{0}+h_{0} z_{1} & =8\left(y_{1}-y_{0}\right) \\
h_{i-1} z_{i-1}+3\left(h_{i-1}+h_{i}\right) z_{i}+h_{i} z_{i+1} & =8\left(y_{i+1}-y_{i}\right) \\
h_{n-1} z_{n-1}+3 h_{n-1} z_{n} & =8\left(y_{n+1}-y_{n}\right)
\end{aligned} \quad(1 \leqq i \leqq n-1)\right.
$$

as discussed in Section 7.3.

Problems 9.1

${ }^{a}$ 1. Determine whether this function is a first-degree spline:

$$
S(x)=\left\{\begin{array}{lc}
x & (-1 \leqq x \leqq 0.5) \\
0.5+2(x-0.5) & (0.5 \leqq x \leqq 2) \\
x+1.5 & (2 \leqq x \leqq 4)
\end{array}\right.
$$

2. The simplest type of spline function is the piecewise constant function, which could be defined as

$$
S(x)=\left\{\begin{array}{lc}
c_{0} & \left(t_{0} \leqq x<t_{1}\right) \\
c_{1} & \left(t_{1} \leqq x<t_{2}\right) \\
\vdots & \vdots \\
c_{n-1} & \left(t_{n-1} \leqq x \leqq t_{n}\right)
\end{array}\right.
$$

Show that the indefinite integral of such a function is a polygonal function. What is the relationship between the piecewise constant functions and the rectangle rule of numerical integration? (See Problem 5.2.29.)
3. Show that $f(x)-p(x)=\frac{1}{2} f^{\prime \prime}(\xi)(x-a)(x-b)$ for some ξ in the interval (a, b), where p is a linear polynomial that interpolates f at a and b. Hint: Use a result from Section 4.2.
4. (Continuation) Show that $|f(x)-p(x)| \leqq \frac{1}{8} M \ell^{2}$, where $\ell=b-a$, if $\left|f^{\prime \prime}(x)\right| \leqq M$ on the interval (a, b).
5. (Continuation) Show that

$$
f(x)-p(x)=\frac{(x-a)(x-b)}{b-a}\left[\frac{f(x)-f(b)}{x-b}-\frac{f(x)-f(a)}{x-a}\right]
$$

${ }^{a}$ 6. (Continuation) If $\left|f^{\prime}(x)\right| \leqq C$ on (a, b), show that $|f(x)-p(x)| \leqq C \ell / 2$. Hint: Use the Mean-Value Theorem on the result of the preceding problem.
7. (Continuation) Let S be a spline function of degree 1 that interpolates f at $t_{0}, t_{1}, \ldots, t_{n}$. Let $t_{0}<t_{1}<\cdots<t_{n}$ and let $\delta=\max _{0 \leqq i \leqq n-1}\left(t_{i+1}-t_{i}\right)$. Then $|f(x)-S(x)| \leqq C \delta / 2$, where C is an upper bound of $\left|f^{\prime}(x)\right|$ on $\left(t_{0}, t_{n}\right)$.
8. Let f be continuous on $[a, b]$. For a given $\varepsilon>0$, let δ have the property that $\mid f(x)-$ $f(y) \mid<\varepsilon$ whenever $|x-y|<\delta$ (uniform continuity principle). Let $n>1+(b-a) / \delta$. Show that there is a first-degree spline S having n knots such that $|f(x)-S(x)|<\varepsilon$ on $[a, b]$. Hint: Use Problem 5.
${ }^{a} 9$. If the function $f(x)=\sin (100 x)$ is to be approximated on the interval $[0, \pi]$ by an interpolating spline of degree 1 , how many knots are needed to ensure that $\mid S(x)-$ $f(x) \mid<10^{-8}$? Hint: Use Problem 7.
${ }^{a}$ 10. Let $t_{0}<t_{1}<\cdots<t_{n}$. Construct first-degree spline functions $G_{0}, G_{1}, \ldots, G_{n}$ by requiring that G_{i} vanish at $t_{0}, t_{1}, \ldots, t_{i-1}, t_{i+1}, \ldots, t_{n}$ but that $G_{i}\left(t_{i}\right)=1$. Show that the first-degree spline function that interpolates f at $t_{0}, t_{1}, \ldots, t_{n}$ is $\sum_{i=0}^{n} f\left(t_{i}\right) G_{i}(x)$.
11. Show that the trapezoid rule for numerical integration (Section 5.2) results from approximating f by a first-degree spline S and then using

$$
\int_{a}^{b} f(x) d x \approx \int_{a}^{b} S(x) d x
$$

${ }^{a} \mathbf{1 2}$. Prove that the derivative of a quadratic spline is a first-degree spline.
13. If the knots t_{i} happen to be the integers $0,1, \ldots, n$, find a good way to determine the index i for which $t_{i} \leqq x<t_{i+1}$. (Note: This problem is deceptive, for the word good can be given different meanings.)
14. Show that the indefinite integral of a first-degree spline is a second-degree spline.
15. Define $f(x)=0$ if $x<0$ and $f(x)=x^{2}$ if $x \geqq 0$. Show that f and f^{\prime} are continuous. Show that any quadratic spline with knots $t_{0}, t_{1}, \ldots, t_{n}$ is of the form

$$
a x^{2}+b x+c+\sum_{i=1}^{n-1} d_{i} f\left(x-t_{i}\right)
$$

16. Define a function g by the equation

$$
g(x)= \begin{cases}0 & \left(t_{0} \leqq x \leqq 0\right) \\ x & \left(0 \leqq x \leqq t_{n}\right)\end{cases}
$$

Prove that every first-degree spline function that has knots $t_{0}, t_{1}, \ldots, t_{n}$ can be written in the form

$$
a x+b+\sum_{i=1}^{n-1} c_{i} g\left(x-t_{i}\right)
$$

${ }^{a}$ 17. Find a quadratic spline interpolant for these data:

x	-1	0	$\frac{1}{2}$	1	2	$\frac{5}{2}$
y	2	1	0	1	2	3

Assume that $z_{0}=0$.
18. (Continuation) Show that no quadratic spline Q interpolates the table of the preceding problem and satisfies $Q^{\prime}\left(t_{0}\right)=Q^{\prime}\left(t_{5}\right)$.
${ }^{a}$ 19. What equations must be solved if a quadratic spline function Q that has knots t_{0}, t_{1}, \ldots, t_{n} is required to take prescribed values at points $\frac{1}{2}\left(t_{i}+t_{i+1}\right)$ for $0 \leqq i \leqq n-1$?
20. Are these functions quadratic splines? Explain why or why not.
${ }^{a}$ a. $Q(x)= \begin{cases}0.1 x^{2} & (0 \leqq x \leqq 1) \\ 9.3 x^{2}-18.4 x+9.2 & (1 \leqq x \leqq 1.3)\end{cases}$
ab. $Q(x)=\left\{\begin{array}{cr}-x^{2} & (-100 \leqq x \leqq 0) \\ x & (0 \leqq x \leqq 100)\end{array}\right.$
${ }^{a}$ c. $Q(x)=\left\{\begin{array}{lr}x & (-50 \leqq x \leqq 1) \\ x^{2} & (1 \leqq x \leqq 2) \\ 4 & (2 \leqq x \leqq 50)\end{array}\right.$
${ }^{a}$ 21. Is $S(x)=|x|$ a first-degree spline? Why or why not?
22. Verify that Formula (5) has the three properties $Q_{i}\left(t_{i}\right)=y_{i}, Q_{i}^{\prime}\left(t_{i}\right)=z_{i}$, and $Q_{i}^{\prime}\left(t_{i+1}\right)=$ z_{i+1}.
23. (Continuation) Impose the continuity condition on Q and derive the system of Equation (6).
24. Show by induction that the recursive Formula (6) together with Equation (5) produces an interpolating quadratic spline function.
25. Verify the correctness of the equations in the text that pertain to Subbotin's spline interpolation process.
26. Analyze the Subbotin interpolation scheme in this alternative manner. First, let $v_{i}=$ $Q\left(t_{i}\right)$. Show that

$$
Q_{i}(x)=A_{i}\left(x-t_{i}\right)^{2}+B_{i}\left(x-t_{i+1}\right)^{2}+C_{i}
$$

where

$$
\begin{aligned}
C_{i} & =2 y_{i}-\frac{1}{2} v_{i}-\frac{1}{2} v_{i+1}, \quad B_{i}=\frac{v_{i}-C_{i}}{h_{i}^{2}} \\
A_{i} & =\frac{v_{i+1}-C_{i}}{h_{i}^{2}} \quad h_{i}=t_{i+1}-t_{i}
\end{aligned}
$$

Hint: Show that $Q_{i}\left(t_{i}\right)=v_{i}, Q_{i}\left(t_{i+1}\right)=v_{i+1}$, and $Q_{i}\left(\tau_{i}\right)=y_{i}$.
27. (Continuation) When continuity conditions on Q^{\prime} are imposed, show that the result is the following equation, in which $i=1,2, \ldots, n-1$:

$$
h_{i} v_{i-1}+3\left(h_{i}+h_{i+1}\right) v_{i}+h_{i-1} v_{i+1}=4 h_{i-1} y_{i}+4 h_{i} y_{i-1}
$$

28. (Student research project) It is commonly accepted that Schoenberg's [1946] paper is the first mathematical reference in which the word spline is used in connection with smooth, piecewise polynomial approximations. However, the word spline as a thin strip of wood used by a draftsman dates back to the 1890s at least. Many of the ideas used in spline theory have their roots in work done in various industries such as the building of aircraft, automobiles, and ships in which splines are used extensively. Research and write a paper on the history of splines. (See books on mathematical history. For a discussion of the history of splines in the automobile industry, see the NA Digest, Volume 98, Issue 26, July 19, 1998.)

Computer Problems 9.1

1. Rewrite procedure Splinel so that ascending subintervals are considered instead of descending ones. Test the code on a table of 15 unevenly spaced data points.
2. Rewrite procedure Spline1 so that a binary search is used to find the desired interval. Test the revised code. What are the advantages and/or disadvantages of a binary search compared to the procedure in the text? A binary search is similar to the bisection method in that we choose t_{k} with $k=(i+j) / 2$ or $k=(i+j+1) / 2$ and determine whether x is in $\left[t_{i}, t_{k}\right]$ or $\left[t_{k}, t_{j}\right]$.
3. A piecewise bilinear polynomial that interpolates points (x, y) specified in a rectangular grid is given by

$$
p(x, y)=\frac{\left(\ell_{i j} z_{i+1, j+1}+\ell_{i+1, j+1} z_{i j}\right)-\left(\ell_{i+1, j} z_{i, j+1}+\ell_{i, j+1} z_{i+1, j}\right)}{\left(x_{i+1}-x_{i}\right)\left(y_{j+1}-y_{j}\right)}
$$

where $\ell_{i j}=\left(x_{i}-x\right)\left(y_{j}-y\right)$. Here $x_{i} \leqq x \leqq x_{i+1}$ and $y_{j} \leqq y \leqq y_{j+1}$. The given grid $\left(x_{i}, y_{j}\right)$ is specified by strictly increasing arrays $\left(x_{i}\right)$ and (y_{j}) of length n and m, respectively. The given values $z_{i j}$ at the grid points $\left(x_{i}, y_{j}\right)$ are contained in the $n \times m$ array $\left(z_{i j}\right)$, shown in the figure below. Write
real function $\operatorname{Bi} \operatorname{Linear}\left(\left(x_{i}\right), n,\left(y_{j}\right), m,\left(z_{i j}\right), x, y\right)$
to compute the value of $p(x, y)$. Test this routine on a set of 5×10 unequally spaced data points. Evaluate Bi_Linear at four grid points and five nongrid points.

4. Write an adaptive spline interpolation procedure. The input should be a function f, an interval $[a, b]$, and a tolerance ε. The output should be a set of knots $a=t_{0}<$ $t_{1}<\cdots<t_{n}=b$ and a set of function values $y_{i}=f\left(t_{i}\right)$ such that the first-degree spline interpolating function S satisfies $|S(x)-f(x)| \leqq \varepsilon$ whenever x is any point $x_{i j}=t_{i}+j\left(t_{i+1}-t_{j}\right) / 10$ for $0 \leqq i \leqq n-1$ and $0 \leqq j \leqq 9$.
5. Write
procedure $\operatorname{Spline2_ Coef}\left(n, t,\left(y_{i}\right),\left(z_{i}\right)\right)$
that computes the $\left(z_{i}\right)$ array in the quadratic spline interpolation process (interpolation at the knots). Then write
real function $\operatorname{Spline} 2 \operatorname{Eval}\left(n,\left(t_{i}\right),\left(y_{i}\right),\left(z_{i}\right), x\right)$
that computes values of $Q(x)$.
6. Carry out the programming project of the preceding computer problem for the Subbotin quadratic spline.

9.2 Natural Cubic Splines

Introduction

The first- and second-degree splines discussed in the preceding section, though useful in certain applications, suffer an obvious imperfection: Their low-order derivatives are discontinuous. In the case of the first-degree spline (or polygonal line), this lack of smoothness is immediately evident because the slope of the spline may change abruptly from one value to another at each knot. For the quadratic spline, the discontinuity is in the second derivative and is therefore not so evident. But the curvature of the quadratic spline changes abruptly at each knot, and the curve may not be pleasing to the eye.

The general definition of spline functions of arbitrary degree is as follows.

DEFINITION 1

SPLINE OF DEGREE k

A function S is called a spline of degree \boldsymbol{k} if:

1. The domain of S is an interval $[a, b]$.
2. $S, S^{\prime}, S^{\prime \prime}, \ldots, S^{(k-1)}$ are all continuous functions on $[a, b]$.
3. There are points t_{i} (the knots of S) such that $a=t_{0}<t_{1}<\cdots<t_{n}=b$ and such that S is a polynomial of degree at most k on each subinterval $\left[t_{i}, t_{i+1}\right]$.

Observe that no mention has been made of interpolation in the definition of a spline function. Indeed, splines are such versatile functions that they have many applications other than interpolation.

Higher-degree splines are used whenever more smoothness is needed in the approximating function. From the definition of a spline function of degree k, we see that such a function will be continuous and have continuous derivatives $S^{\prime}, S^{\prime \prime}, \ldots, S^{(k-1)}$. If we want the approximating spline to have a continuous m th derivative, a spline of degree at least $m+1$ is selected. To see why, consider a situation in which knots $t_{0}<t_{1}<\cdots<t_{n}$ have been prescribed. Suppose that a piecewise polynomial of degree m is to be defined, with its pieces joined at the knots in such a way that the resulting spline S has m continuous derivatives. At a typical interior knot t, we have the following circumstances: To the left of $t, S(x)=p(x)$; to the right of $t, S(x)=q(x)$, where p and q are m th-degree polynomials. The continuity of the m th derivative $S^{(m)}$ implies the continuity of the lower-order derivatives $S^{(m-1)}, S^{(m-2)}, \ldots, S^{\prime}, S$. Therefore, at the knot t,

$$
\lim _{x \rightarrow t^{-}} S^{(k)}(x)=\lim _{x \rightarrow t^{+}} S^{(k)}(x) \quad(0 \leqq k \leqq m)
$$

from which we conclude that

$$
\begin{equation*}
\lim _{x \rightarrow t^{-}} p^{(k)}(x)=\lim _{x \rightarrow t^{+}} q^{(k)}(x) \quad(0 \leqq k \leqq m) \tag{1}
\end{equation*}
$$

Since p and q are polynomials, their derivatives of all orders are continuous, and so Equation (1) is the same as

$$
p^{(k)}(t)=q^{(k)}(t) \quad(0 \leqq k \leqq m)
$$

This condition forces p and q to be the same polynomial because by Taylor's Theorem,

$$
p(x)=\sum_{k=0}^{m} \frac{1}{k!} p^{(k)}(t)(x-t)^{k}=\sum_{k=0}^{m} \frac{1}{k!} q^{(k)}(t)(x-t)^{k}=q(x)
$$

This argument can be applied at each of the interior knots $t_{1}, t_{2}, \ldots, t_{n-1}$, and we see that S is simply one polynomial throughout the entire interval from t_{0} to t_{n}. Thus, we need a piecewise polynomial of degree $m+1$ with at most m continuous derivatives to have a spline function that is not just a single polynomial throughout the entire interval. (We already know that ordinary polynomials usually do not serve well in curve fitting. See Section 4.2.)

The choice of degree most frequently made for a spline function is 3 . The resulting splines are termed cubic splines. In this case, we join cubic polynomials together in such a way that the resulting spline function has two continuous derivatives everywhere. At each knot, three continuity conditions will be imposed. Since S, S^{\prime}, and $S^{\prime \prime}$ are continuous, the graph of the function will appear smooth to the eye. Discontinuities, of course, will occur in the third derivative but cannot be easily detected visually, which is one reason for choosing degree 3. Experience has shown, moreover, that using splines of degree greater than 3 seldom yields any advantage. For technical reasons, odd-degree splines behave better than even-degree splines (when interpolating at the knots). Finally, a very elegant theorem, to be proved later, shows that in a certain precise sense, the cubic interpolating spline function is the best interpolating function available. Thus, our emphasis on the cubic splines is well justified.

Natural Cubic Spline

We turn next to interpolating a given table of function values by a cubic spline whose knots coincide with the values of the independent variable in the table. As earlier, we start with the table:

x	t_{0}	t_{1}	\cdots	t_{n}
y	y_{0}	y_{1}	\cdots	y_{n}

The t_{i} 's are the knots and are assumed to be arranged in ascending order.
The function S that we wish to construct consists of n cubic polynomial pieces:

$$
S(x)=\left\{\begin{array}{cc}
S_{0}(x) & \left(t_{0} \leqq x \leqq t_{1}\right) \\
S_{1}(x) & \left(t_{1} \leqq x \leqq t_{2}\right) \\
\vdots & \vdots \\
S_{n-1}(x) & \left(t_{n-1} \leqq x \leqq t_{n}\right)
\end{array}\right.
$$

In this formula, S_{i} denotes the cubic polynomial that will be used on the subinterval $\left[t_{i}, t_{i+1}\right]$. The interpolation conditions are

$$
S\left(t_{i}\right)=y_{i} \quad(0 \leqq i \leqq n)
$$

The continuity conditions are imposed only at the interior knots $t_{1}, t_{2}, \ldots, t_{n-1}$. (Why?) These conditions are written as

$$
\lim _{x \rightarrow t_{i}^{-}} S^{(k)}\left(t_{i}\right)=\lim _{x \rightarrow t_{i}^{+}} S^{(k)}\left(t_{i}\right) \quad(k=0,1,2)
$$

It turns out that two more conditions must be imposed to use all the degrees of freedom available. The choice that we make for these two extra conditions is

$$
\begin{equation*}
S^{\prime \prime}\left(t_{0}\right)=S^{\prime \prime}\left(t_{n}\right)=0 \tag{2}
\end{equation*}
$$

The resulting spline function is then termed a natural cubic spline. Additional ways to close the system of equations for the spline coefficients are periodic cubic splines and clamped cubic splines. A clamped spline is a spline curve whose slope is fixed at both end points: $S^{\prime}\left(t_{0}\right)=d_{0}$ and $S^{\prime}\left(t_{n}\right)=d_{n}$. A periodic cubic spline has $S\left(t_{0}\right)=S\left(t_{n}\right), S^{\prime}\left(t_{0}\right)=S^{\prime}\left(t_{n}\right)$, and $S^{\prime \prime}\left(t_{0}\right)=S^{\prime \prime}\left(t_{n}\right)$. For all continuous differential functions, clamped and natural cubic splines yield the least oscillations about the function f that it interpolates.

We now verify that the number of conditions imposed equals the number of coefficients available. There are $n+1$ knots and hence n subintervals. On each of these subintervals, we shall have a different cubic polynomial. Since a cubic polynomial has four coefficients, a total of $4 n$ coefficients are available. As for the conditions imposed, we have specified that within each interval the interpolating polynomial must go through two points, which gives $2 n$ conditions. The continuity adds no additional conditions. The first and second derivatives must be continuous at the $n-1$ interior points, for $2(n-1)$ more conditions. The second derivatives must vanish at the two endpoints for a total of $2 n+2(n-1)+2=4 n$ conditions.

EXAMPLE 1 Derive the equations of the natural cubic interpolating spline for the following table:

x	-1	0	1
y	1	2	-1

Solution Our approach is to determine the parameters a, b, c, d, e, f, g, and h so that $S(x)$ is a natural cubic spline, where

$$
S(x)= \begin{cases}S_{0}(s)=a x^{3}+b x^{2}+c x+d & x \in[-1,0] \\ S_{1}(s)=e x^{3}+f x^{2}+g x+h & x \in[0,1]\end{cases}
$$

where the two cubic polynomials are $S_{0}(x)$ and $S_{1}(x)$. From these interpolation conditions, we have interpolation conditions $S(-1)=S_{0}(-1)=-a+b-c+d=1, S(0)=S_{0}(0)=$ $d=2, S(0)=S_{1}(0)=h=2$, and $S(1)=S_{1}(1)=e+f+g+h=-1$. Taking the first derivatives, we obtain

$$
S^{\prime}(x)=\left\{\begin{array}{l}
S_{0}^{\prime}(x)=3 a x^{2}+2 b x+c \\
S_{1}^{\prime}(x)=3 e x^{2}+2 f x+g
\end{array}\right.
$$

From the continuity condition of S^{\prime}, we have $S_{0}^{\prime}(0)=S_{1}^{\prime}(0)$, and we set $c=g$. Next taking the second derivatives, we obtain

$$
S^{\prime \prime}(x)=\left\{\begin{array}{l}
S_{0}^{\prime \prime}(x)=6 a x+2 b \\
S_{1}^{\prime \prime}(s)=6 e x+2 f
\end{array}\right.
$$

From the continuity condition of $S^{\prime \prime}$, we have $S_{0}^{\prime \prime}(0)=S_{1}^{\prime \prime}(0)$, and we let $b=f$. For S to be a natural cubic spline, we must have $S_{0}^{\prime \prime}(-1)=0$ and $S_{1}^{\prime \prime}(1)=0$, and we obtain $3 a=b$ and $3 e=-f$. From all of these equations, we obtain $a=-1, b=-3, c=-1, d=2$, $e=1, f=-3, g=-1$, and $h=2$.

Algorithm for Natural Cubic Spline

From the previous example, it is evident that we need to develop a systematic procedure for determining the formula for a natural cubic spline, given a table of interpolation values. This is our objective in the material on the next several pages.

Since $S^{\prime \prime}$ is continuous, the numbers

$$
z_{i} \equiv S^{\prime \prime}\left(t_{i}\right) \quad(0 \leqq i \leqq n)
$$

are unambiguously defined. We do not yet know the values $z_{1}, z_{2}, \ldots, z_{n-1}$, but, of course, $z_{0}=z_{n}=0$ by Equation (2).

If the z_{i} 's were known, we could construct S as now described. On the interval $\left[t_{i}, t_{i+1}\right]$, $S^{\prime \prime}$ is a linear polynomial that takes the values z_{i} and z_{i+1} at the endpoints. Thus,

$$
\begin{equation*}
S_{i}^{\prime \prime}(x)=\frac{z_{i+1}}{h_{i}}\left(x-t_{i}\right)+\frac{z_{i}}{h_{i}}\left(t_{i+1}-x\right) \tag{3}
\end{equation*}
$$

with $h_{i}=t_{i+1}-t_{i}$ for $0 \leqq i \leqq n-1$. To verify that Equation (3) is correct, notice that $S_{i}^{\prime \prime}\left(t_{i}\right)=z_{i}, S_{i}^{\prime \prime}\left(t_{i+1}\right)=z_{i+1}$, and $S_{i}^{\prime \prime}$ is linear in x. If this is integrated twice, we obtain S_{i} itself:

$$
S_{i}(x)=\frac{z_{i+1}}{6 h_{i}}\left(x-t_{i}\right)^{3}+\frac{z_{i}}{6 h_{i}}\left(t_{i+1}-x\right)^{3}+c x+d
$$

where c and d are constants of integration. By adjusting the integration constants, we obtain a form for S_{i} that is easier to work with, namely,

$$
\begin{equation*}
S_{i}(x)=\frac{z_{i+1}}{6 h_{i}}\left(x-t_{i}\right)^{3}+\frac{z_{i}}{6 h_{i}}\left(t_{i+1}-x\right)^{3}+C_{i}\left(x-t_{i}\right)+D_{i}\left(t_{i+1}-x\right) \tag{4}
\end{equation*}
$$

where C_{i} and D_{i} are constants. If we differentiate Equation (4) twice, we obtain Equation (3).
The interpolation conditions $S_{i}\left(t_{i}\right)=y_{i}$ and $S_{i}\left(t_{i+1}\right)=y_{i+1}$ can be imposed now to determine the appropriate values of C_{i} and D_{i}. The reader should do so (Problem 9.2.27) and verify that the result is

$$
\begin{align*}
S_{i}(x)= & \frac{z_{i+1}}{6 h_{i}}\left(x-t_{i}\right)^{3}+\frac{z_{i}}{6 h_{i}}\left(t_{i+1}-x\right)^{3} \\
& +\left(\frac{y_{i+1}}{h_{i}}-\frac{h_{i}}{6} z_{i+1}\right)\left(x-t_{i}\right)+\left(\frac{y_{i}}{h_{i}}-\frac{h_{i}}{6} z_{i}\right)\left(t_{i+1}-x\right) \tag{5}
\end{align*}
$$

When the values $z_{0}, z_{1}, \ldots, z_{n}$ have been determined, the spline function $S(x)$ is obtained from equations of this form for $S_{0}(x), S_{1}(x), \ldots, S_{n-1}(x)$.

We now show how to determine the z_{i} 's. One condition remains to be imposed-namely, the continuity of S^{\prime}. At the interior knots t_{i} for $1 \leqq i \leqq n-1$, we must have $S_{i-1}^{\prime}\left(t_{i}\right)=S_{i}^{\prime}\left(t_{i}\right)$, as can be seen in Figure 9.6.

FIGURE 9.6
Cubic spline: adjacent pieces S_{i-1} and S_{i}

We have, from Equation (5),

$$
S_{i}^{\prime}(x)=\frac{z_{i+1}}{2 h_{i}}\left(x-t_{i}\right)^{2}-\frac{z_{i}}{2 h_{i}}\left(t_{i+1}-x\right)^{2}+\frac{y_{i+1}}{h_{i}}-\frac{h_{i}}{6} z_{i+1}-\frac{y_{i}}{h_{i}}+\frac{h_{i}}{6} z_{i}
$$

This gives

$$
\begin{equation*}
S_{i}^{\prime}\left(t_{i}\right)=-\frac{h_{i}}{6} z_{i+1}-\frac{h_{i}}{3} z_{i}+b_{i} \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
b_{i}=\frac{1}{h_{i}}\left(y_{i+1}-y_{i}\right) \tag{7}
\end{equation*}
$$

Analogously, we have

$$
S_{i-1}^{\prime}\left(t_{i}\right)=\frac{h_{i-1}}{6} z_{i-1}+\frac{h_{i-1}}{3} z_{i}+b_{i-1}
$$

When these are set equal to each other, the resulting equation can be rearranged as

$$
h_{i-1} z_{i-1}+2\left(h_{i-1}+h_{i}\right) z_{i}+h_{i} z_{i+1}=6\left(b_{i}-b_{i-1}\right)
$$

for $1 \leqq i \leqq n-1$. By letting

$$
\begin{align*}
u_{i} & =2\left(h_{i-1}+h_{i}\right) \\
v_{i} & =6\left(b_{i}-b_{i-1}\right) \tag{8}
\end{align*}
$$

we obtain a tridiagonal system of equations:

$$
\left\{\begin{align*}
z_{0} & =0 \tag{9}\\
h_{i-1} z_{i-1}+u_{i} z_{i}+h_{i} z_{i+1} & =v_{i} \\
z_{n} & =0
\end{align*} \quad(1 \leqq i \leqq n-1)\right.
$$

to be solved for the z_{i} 's. The simplicity of the first and last equations is a result of the natural cubic spline conditions $S^{\prime \prime}\left(t_{0}\right)=S^{\prime \prime}\left(t_{n}\right)=0$.

EXAMPLE 2 Repeat Example 1 by constructing the natural cubic spline through the points $(-1,1),(0,2)$, and $(1,-1)$. Also, plot the results in order to visualize the spline curve.

Solution From the given values, we have $t_{0}=-1, t_{1}=0, t_{2}=1, y_{0}=1, y_{1}=2$, and $y_{2}=-1$. Consequently, we obtain $h_{0}=t_{1}-t_{0}=1, h_{1}=t_{2}-t_{1}=1, b_{0}=\left(y_{1}-y_{0}\right) / h_{0}=1$, $b_{1}=\left(y_{2}-y_{1}\right) / h_{1}=-3, u_{1}=2\left(h_{0}-h_{1}\right)=4$, and $v_{1}=6\left(b_{1}-b_{0}\right)=-24$. Then the tridiagonal system of equations (9) is

$$
\left\{\begin{aligned}
z_{0} & =0 \\
z_{0}+4 z_{1}+z_{2} & =-24 \\
z_{2} & =0
\end{aligned}\right.
$$

Evidently, we obtain the solution $z_{0}=0, z_{1}=-6$, and $z_{2}=0$. From Equation (5), we have

$$
S(x)= \begin{cases}S_{0}(x)=-(x+1)^{3}+3(x+1)-x & x \in[-1,0] \\ S_{1}(x)=-(1-x)^{3}-x+3(1-x) & x \in[0,1]\end{cases}
$$

or

$$
S(x)=\left\{\begin{array}{rl}
S_{0}(x)=-x^{3}-3 x^{2}-x+2 & x \in[-1,0] \\
S_{1}(x)=x^{3}-3 x^{2}-x+2 & x \in[0,1]
\end{array}\right.
$$

FIGURE 9.7
Natural cubic spline for Examples 1 and 2

This agrees with the results from Example 1. The resulting natural spline curve through the given points is shown in Figure 9.7.

Now consider System (9) in matrix form:

$$
\left[\begin{array}{llllll}
1 & 0 & & & & \\
h_{0} & u_{1} & h_{1} & & & \\
& h_{1} & u_{2} & h_{2} & & \\
& & \ddots & \ddots & \ddots & \\
& & & h_{n-2} & u_{n-1} & h_{n-1} \\
& & & & 0 & 1
\end{array}\right]\left[\begin{array}{l}
z_{0} \\
z_{1} \\
z_{2} \\
\vdots \\
z_{n-1} \\
z_{n}
\end{array}\right]=\left[\begin{array}{l}
0 \\
v_{1} \\
v_{2} \\
\vdots \\
v_{n-1} \\
0
\end{array}\right]
$$

On eliminating the first and last equations, we have

$$
\left[\begin{array}{ccccc}
u_{1} & h_{1} & & & \tag{10}\\
h_{1} & u_{2} & h_{2} & & \\
& \ddots & \ddots & \ddots & \\
& & h_{n-3} & u_{n-2} & h_{n-2} \\
& & & h_{n-2} & u_{n-1}
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2} \\
\vdots \\
z_{n-2} \\
z_{n-1}
\end{array}\right]=\left[\begin{array}{l}
v_{1} \\
v_{2} \\
\vdots \\
v_{n-2} \\
v_{n-1}
\end{array}\right]
$$

which is a symmetric tridiagonal system of order $n-1$. We could use procedure Tri developed in Section 7.3 to solve this system. However, we can design an algorithm specifically for it (based on the ideas in Section 7.3). In Gaussian elimination without pivoting, the forward elimination phase would modify the u_{i} 's and v_{i} 's as follows:

$$
\left\{\begin{array}{l}
u_{i} \leftarrow u_{i}-\frac{h_{i-1}^{2}}{u_{i-1}} \\
v_{i} \leftarrow v_{i}-\frac{h_{i-1} v_{i-1}}{u_{i-1}} \quad(i=2,3, \ldots, n-1)
\end{array}\right.
$$

The back substitution phase yields

$$
\left\{\begin{array}{l}
z_{n-1} \leftarrow \frac{v_{n-1}}{u_{n-1}} \\
z_{i} \leftarrow \frac{v_{i}-h_{i} z_{i+1}}{u_{i}} \quad(i=n-2, n-3, \ldots, 1)
\end{array}\right.
$$

Putting all this together leads to the following algorithm, designed especially for the tridiagonal System (10).

ALGORITHM 1 Solving the Natural Cubic Spline Tridiagonal System Directly

Given the interpolation points $\left(t_{i}, y_{i}\right)$ for $i=0,1, \ldots, n$:

1. Compute for $i=0,1, \ldots, n-1$:

$$
\left\{\begin{array}{l}
h_{i}=t_{i+1}-t_{i} \\
b_{i}=\frac{1}{h_{i}}\left(y_{i+1}-y_{i}\right)
\end{array}\right.
$$

2. Set

$$
\left\{\begin{array}{l}
u_{1}=2\left(h_{0}+h_{1}\right) \\
v_{1}=6\left(b_{1}-b_{0}\right)
\end{array}\right.
$$

and compute inductively for $i=2,3, \ldots, n-1$:

$$
\left\{\begin{array}{l}
u_{i}=2\left(h_{i}+h_{i-1}\right)-\frac{h_{i-1}^{2}}{u_{i-1}} \\
v_{i}=6\left(b_{i}-b_{i-1}\right)-\frac{h_{i-1} v_{i-1}}{u_{i-1}}
\end{array}\right.
$$

3. Set

$$
\left\{\begin{array}{l}
z_{n}=0 \\
z_{0}=0
\end{array}\right.
$$

and compute inductively for $i=n-1, n-2, \ldots, 1$:

$$
z_{i}=\frac{v_{i}-h_{i} z_{i+1}}{u_{i}}
$$

This algorithm conceivably could fail because of divisions by zero in steps 2 and 3 . Therefore, let us prove that $u_{i} \neq 0$ for all i. It is clear that $u_{1}>h_{1}>0$. If $u_{i-1}>h_{i-1}$, then $u_{i}>h_{i}$ because

$$
u_{i}=2\left(h_{i}+h_{i-1}\right)-\frac{h_{i-1}^{2}}{u_{i-1}}>2\left(h_{i}+h_{i-1}\right)-h_{i-1}>h_{i}
$$

Then by induction, $u_{i}>0$ for $i=1,2, \ldots, n-1$.
Equation (5) is not the best computational form for evaluating the cubic polynomial $S_{i}(x)$. We would prefer to have it in the form

$$
\begin{equation*}
S_{i}(x)=A_{i}+B_{i}\left(x-t_{i}\right)+C_{i}\left(x-t_{i}\right)^{2}+D_{i}\left(x-t_{i}\right)^{3} \tag{11}
\end{equation*}
$$

because nested multiplication can then be utilized.
Notice that Equation (11) is the Taylor expansion of S_{i} about the point t_{i}. Hence,

$$
A_{i}=S_{i}\left(t_{i}\right), \quad B_{i}=S_{i}^{\prime}\left(t_{i}\right), \quad C_{i}=\frac{1}{2} S_{i}^{\prime \prime}\left(t_{i}\right), \quad D_{i}=\frac{1}{6} S_{i}^{\prime \prime \prime}\left(t_{i}\right)
$$

Therefore, $A_{i}=y_{i}$ and $C_{i}=z_{i} / 2$. The coefficient of x^{3} in Equation (11) is D_{i}, whereas the coefficient of x^{3} in Equation (5) is $\left(z_{i+1}-z_{i}\right) / 6 h_{i}$. Therefore,

$$
D_{i}=\frac{1}{6 h_{i}}\left(z_{i+1}-z_{i}\right)
$$

Finally, Equation (6) provides the value of $S_{i}^{\prime}\left(t_{i}\right)$, which is

$$
B_{i}=-\frac{h_{i}}{6} z_{i+1}-\frac{h_{i}}{3} z_{i}+\frac{1}{h_{i}}\left(y_{i+1}-y_{i}\right)
$$

Thus, the nested form of $S_{i}(x)$ is

$$
\begin{equation*}
S_{i}(x)=y_{i}+\left(x-t_{i}\right)\left(B_{i}+\left(x-t_{i}\right)\left(\frac{z_{i}}{2}+\frac{1}{6 h_{i}}\left(x-t_{i}\right)\left(z_{i+1}-z_{i}\right)\right)\right) \tag{12}
\end{equation*}
$$

Pseudocode for Natural Cubic Splines

We now write routines for determining a natural cubic spline based on a table of values and for evaluating this function at a given value. First, we use Algorithm 1 for directly solving the tridiagonal System (10). This procedure, called Spline3_Coef, takes $n+1$ table values (t_{i}, y_{i}) in arrays $\left(t_{i}\right)$ and $\left(y_{i}\right)$ and computes the z_{i} 's, storing them in array $\left(z_{i}\right)$. Intermediate (working) arrays $\left(h_{i}\right),\left(b_{i}\right),\left(u_{i}\right)$, and $\left(v_{i}\right)$ are needed.

```
procedure Spline3_Coef (n, (ti), (yi), (zi))
integer }i,n;\quad\mathrm{ real array }(\mp@subsup{t}{i}{}\mp@subsup{)}{0:n}{\prime},(\mp@subsup{y}{i}{}\mp@subsup{)}{0:n}{n},(\mp@subsup{z}{i}{}\mp@subsup{)}{0:n}{
allocate real array (hi)}\mp@subsup{)}{0:n-1}{},(\mp@subsup{b}{i}{}\mp@subsup{)}{0:n-1}{},(\mp@subsup{u}{i}{}\mp@subsup{)}{1:n-1}{},(\mp@subsup{v}{i}{}\mp@subsup{)}{1:n-1}{
for }i=0\mathrm{ to }n-1\mathrm{ do
    hi}\leftarrow\mp@subsup{t}{i+1}{}-\mp@subsup{t}{i}{
    bi}\leftarrow(\mp@subsup{y}{i+1}{}-\mp@subsup{y}{i}{})/\mp@subsup{h}{i}{
end for
u
v _ { 1 } \leftarrow 6 ( b _ { 1 } - b _ { 0 } )
for }i=2\mathrm{ to }n-1\mathrm{ do
    u}\mp@subsup{u}{\leftarrow}{\leftarrow2(\mp@subsup{h}{i}{}+\mp@subsup{h}{i-1}{})-\mp@subsup{h}{i-1}{2}/\mp@subsup{u}{i-1}{}
    vi}\leftarrow6(\mp@subsup{b}{i}{}-\mp@subsup{b}{i-1}{})-\mp@subsup{h}{i-1}{}\mp@subsup{v}{i-1}{}/\mp@subsup{u}{i-1}{
end for
zn}\leftarrow\leftarrow
for i=n-1 to 1 step -1 do
    zi}\leftarrow(\mp@subsup{v}{i}{}-\mp@subsup{h}{i}{}\mp@subsup{z}{i+1}{})/\mp@subsup{u}{i}{
end for
zo}\leftarrow
deallocate array (hi),(\mp@subsup{b}{i}{}),(\mp@subsup{u}{i}{}),(\mp@subsup{v}{i}{})
end procedure Spline3_Coef
```

Now a procedure called Spline3_Eval is written for evaluating Equation (12), the natural cubic spline function $S(x)$, for x a given value. The procedure Spline3_Eval first determines the interval $\left[t_{i}, t_{i+1}\right]$ that contains x and then evaluates $S_{i}(x)$ using the nested form of this cubic polynomial:

```
real function Spline3_Eval(n, (t }\mp@subsup{t}{i}{}),(\mp@subsup{y}{i}{}),(\mp@subsup{z}{i}{}),x
integer }i\mathrm{ ; real }h\mathrm{ ,tmp
real array (ti (t)0:n},(\mp@subsup{y}{i}{}\mp@subsup{)}{0:n}{},(\mp@subsup{z}{i}{}\mp@subsup{)}{0:n}{
for i=n-1 to 0 step - 1 do
    if }x-\mp@subsup{t}{i}{}\geqq0\mathrm{ then exit loop
```

```
end for
\(h \leftarrow t_{i+1}-t_{i}\)
tтр \(\leftarrow\left(z_{i} / 2\right)+\left(x-t_{i}\right)\left(z_{i+1}-z_{i}\right) /(6 h)\)
\(t m p \leftarrow-(h / 6)\left(z_{i+1}+2 z_{i}\right)+\left(y_{i+1}-y_{i}\right) / h+\left(x-t_{i}\right)(t m p)\)
Spline3_Eval \(\leftarrow y_{i}+\left(x-t_{i}\right)(\) tmp \()\)
end function Spline3 Eval
```

The function Spline3_Eval can be used repeatedly with different values of x after one call to procedure Spline3_Coef. For example, this would be the procedure when plotting a natural cubic spline curve. Since procedure Spline3_Coef stores the solution of the tridiagonal system corresponding to a particular spline function in the array $\left(z_{i}\right)$, the arguments $n,\left(t_{i}\right),\left(y_{i}\right)$, and $\left(z_{i}\right)$ must not be altered between repeated uses of Spline3_Eval.

Using Pseudocode for Interpolating and Curve Fitting

To illustrate the use of the natural cubic spline routines Spline3_Coef and Spline3_Eval, we rework an example from Section 4.1.

EXAMPLE 3 Write pseudocode for a program that determines the natural cubic spline interpolant for $\sin x$ at ten equidistant knots in the interval [0, 1.6875]. Over the same interval, subdivide each subinterval into four equally spaced parts, and find the point where the value of $|\sin x-S(x)|$ is largest.

Solution Here is a suitable pseudocode main program, which calls procedures Spline3_Coef and Spline3 Eval:

```
procedure Test_Spline3
integer \(i\); real \(e, h, x\)
real array \(\left(t_{i}\right)_{0: n},\left(y_{i}\right)_{0: n},\left(z_{i}\right)_{0: n}\)
integer \(n \leftarrow 9\)
real \(a \leftarrow 0, b \leftarrow 1.6875\)
\(h \leftarrow(b-a) / n\)
for \(i=0\) to \(n\) do
    \(t_{i} \leftarrow a+i h\)
    \(y_{i} \leftarrow \sin \left(t_{i}\right)\)
end for
call Spline3_Coef \(\left(n,\left(t_{i}\right),\left(y_{i}\right),\left(z_{i}\right)\right)\)
temp \(\leftarrow 0\)
for \(j=0\) to \(4 n\) do
    \(x \leftarrow a+j h / 4\)
    \(e \leftarrow\left|\sin (x)-\operatorname{Spline} 3 \operatorname{Eval}\left(n,\left(t_{i}\right),\left(y_{i}\right),\left(z_{i}\right), x\right)\right|\)
    if \(e>\) temp then temp \(\leftarrow e\)
    output \(j, x, e\)
end for
end Test_Spline 3
```

From the computer, the output is $j=19, x=0.890625$, and $d=0.930 \times 10^{-5}$.

We can use mathematical software such as in Matlab to plot the cubic spline curve for this data, but the Matlab routine spline uses the not-a-knot end condition, which is different from the natural end condition. It dictates that $S^{\prime \prime \prime}$ be a single constant in the first two subintervals and another single constant in the last two subintervals. First, the original data are generated. Next, a finer subdivision of the interval $[a, b]$ on the x-axis is made, and the corresponding y-values are obtained from the procedure spline. Finally, the original data points and the spline curve are plotted.

We now illustrate the use of spline functions in fitting a curve to a set of data. Consider the following table:

x	0.0	0.6	1.5	1.7	1.9	2.1	2.3	2.6	2.8	3.0
y	-0.8	-0.34	0.59	0.59	0.23	0.1	0.28	1.03	1.5	1.44

3.6	4.7	5.2	5.7	5.8	6.0	6.4	6.9	7.6	8.0
0.74	-0.82	-1.27	-0.92	-0.92	-1.04	-0.79	-0.06	1.0	0.0

These 20 points were selected from a wiggly freehand curve drawn on graph paper. We intentionally selected more points where the curve bent sharply and sought to reproduce the curve using an automatic plotter. A visually pleasing curve is provided by using the cubic spline routines Spline3_Coef and Spline3_Eval. Figure 9.8 shows the resulting natural cubic spline curve.

FIGURE 9.8
Natural cubic spline curve

Alternatively, we can use mathematical software such as Matlab, Maple, or Mathematica to plot the cubic spline function for this table.

Space Curves

In two dimensions, two cubic spline functions can be used together to form a parametric representation of a complicated curve that turns and twists. Select points on the curve and
label them $t=0,1, \ldots, n$. For each value of t, read off the x - and y-coordinates of the point, thus producing a table:

t	0	1	\cdots	n
x	x_{0}	x_{1}	\cdots	x_{n}
y	y_{0}	y_{1}	\cdots	y_{n}

Then fit $x=S(t)$ and $y=\bar{S}(t)$, where S and \bar{S} are natural cubic spline interpolants. The two functions S and \bar{S} give a parametric representation of the curve. (See Computer Problem 9.2.6.)

EXAMPLE 4 Select 13 points on the well-known serpentine curve given by

$$
y=\frac{x}{1 / 4+x^{2}}
$$

So that the knots will not be equally spaced, write the curve in parametric form:

$$
\left\{\begin{array}{l}
x=\frac{1}{2} \tan \theta \\
y=\sin 2 \theta
\end{array}\right.
$$

and take $\theta=i(\pi / 12)$, where $i=-6,-5, \ldots, 5,6$. Plot the natural cubic spline curve and the interpolation polynomial in order to compare them.

Solution This is example of curve fitting using both the polynomial interpolation routines Coef and Eval from Chapter 4 and the cubic spline routines Spline3_Coef and Spline3_Eval. Figure 9.9 shows the resulting cubic spline curve and the high-degree polynomial curve (dashed line) from an automatic plotter. The polynomial becomes extremely erratic after the fourth knot from the origin and oscillates wildly, whereas the spline is a near perfect fit.

FIGURE 9.9
Serpentine curve

EXAMPLE 5 Use cubic spline functions to produce the curve for the following data:

t	0	1	2	3	4	5	6	7
y	1.0	1.5	1.6	1.5	0.9	2.2	2.8	3.1

It is known that the curve is continuous but its slope is not.
Solution A single cubic spline is not suitable. Instead, we can use two cubic spline interpolants, the first having knots $0,1,2,3,4$ and the second having knots $4,5,6,7$. By carrying out two separate spline interpolation procedures, we obtain two cubic spline curves that meet at the point $(4,0.9)$. At this point, the two curves have different slopes. The resulting curve is shown in Figure 9.10.

Smoothness Property

Why do spline functions serve the needs of data fitting better than ordinary polynomials? To answer this, one should understand that interpolation by polynomials of high degree is often unsatisfactory because polynomials may exhibit wild oscillations. Polynomials are smooth in the technical sense of possessing continuous derivatives of all orders, whereas in this sense, spline functions are not smooth.

Wild oscillations in a function can be attributed to its derivatives being very large. Consider the function whose graph is shown in Figure 9.11. The slope of the chord that

FIGURE 9.11
Wildly oscillating function

joins the points p and q is very large in magnitude. By the Mean-Value Theorem, the slope of that chord is the value of the derivative at some point between p and q. Thus, the derivative must attain large values. Indeed, somewhere on the curve between p and q, there is a point where $f^{\prime}(x)$ is large and negative. Similarly, between q and r, there is a point where $f^{\prime}(x)$ is large and positive. Hence, there is a point on the curve between p and r where $f^{\prime \prime}(x)$ is large. This reasoning can be continued to higher derivatives if there are more oscillations. This is the behavior that spline functions do not exhibit. In fact, the following result shows that from a certain point of view, natural cubic splines are the best functions to use for curve fitting.

THEOREM 1

CUBIC SPLINE SMOOTHNESS THEOREM

If S is the natural cubic spline function that interpolates a twice-continuously differentiable function f at knots $a=t_{0}<t_{1}<\cdots<t_{n}=b$, then

$$
\int_{a}^{b}\left[S^{\prime \prime}(x)\right]^{2} d x \leqq \int_{a}^{b}\left[f^{\prime \prime}(x)\right]^{2} d x
$$

Proof To verify the assertion about $\left[S^{\prime \prime}(x)\right]^{2}$, we let

$$
g(x)=f(x)-S(x)
$$

so that $g\left(t_{i}\right)=0$ for $0 \leqq i \leqq n$, and

$$
f^{\prime \prime}=S^{\prime \prime}+g^{\prime \prime}
$$

Now

$$
\int_{a}^{b}\left(f^{\prime \prime}\right)^{2} d x=\int_{a}^{b}\left(S^{\prime \prime}\right)^{2} d x+\int_{a}^{b}\left(g^{\prime \prime}\right)^{2} d x+2 \int_{a}^{b} S^{\prime \prime} g^{\prime \prime} d x
$$

If the last integral were 0 , we would be finished because then

$$
\int_{a}^{b}\left(f^{\prime \prime}\right)^{2} d x=\int_{a}^{b}\left(S^{\prime \prime}\right)^{2} d x+\int_{a}^{b}\left(g^{\prime \prime}\right)^{2} d x \geqq \int_{a}^{b}\left(S^{\prime \prime}\right)^{2} d x
$$

We apply the technique of integration by parts to the integral in question to show that it is 0 .* We have

$$
\int_{a}^{b} S^{\prime \prime} g^{\prime \prime} d x=\left.S^{\prime \prime} g^{\prime}\right|_{a} ^{b}-\int_{a}^{b} S^{\prime \prime \prime} g^{\prime} d x=-\int_{a}^{b} S^{\prime \prime \prime} g^{\prime} d x
$$

[^9]$$
\int u d v=u v-\int v d u
$$

Here, use has been made of the fact that S is a natural cubic spline; that is, $S^{\prime \prime}(a)=0$ and $S^{\prime \prime}(b)=0$. Continuing, we have

$$
\int_{a}^{b} S^{\prime \prime \prime} g^{\prime} d x=\sum_{i=0}^{n-1} \int_{t_{i}}^{t_{i+1}} S^{\prime \prime \prime} g^{\prime} d x
$$

Since S is a cubic polynomial in each interval $\left[t_{i}, t_{i+1}\right]$, its third derivative there is a constant, say c_{i}. So

$$
\int_{a}^{b} S^{\prime \prime \prime} g^{\prime} d x=\sum_{i=0}^{n-1} c_{i} \int_{t_{i}}^{t_{i+1}} g^{\prime} d x=\sum_{i=0}^{n-1} c_{i}\left[g\left(t_{i+1}\right)-g\left(t_{i}\right)\right]=0
$$

because g vanishes at every knot.

The interpretation of the integral inequality in the theorem is that the average value of $\left[S^{\prime \prime}(x)\right]^{2}$ on the interval $[a, b]$ is never larger than the average value of this expression with any twice-continuous function f that agrees with S at the knots. The quantity $\left[f^{\prime \prime}(x)\right]^{2}$ is closely related to the curvature of the function f.

Summary

(1) We are given $n+1$ pairs of points $\left(t_{i}, y_{i}\right)$ with distinct knots $a=t_{0}<t_{1}<\cdots<$ $t_{n-1}<t_{n}=b$ over the interval $[a, b]$. A spline function of degree \boldsymbol{k} is a piecewise polynomial function so that $S, S^{\prime}, S^{\prime \prime}, \ldots, S^{(k-1)}$ are all continuous functions on $[a, b]$ and S is a polynomial of degree at most k on each subinterval $\left[t_{i}, t_{i+1}\right]$.
(2) A natural cubic spline function S is a piecewise cubic polynomial defined on the interval $[a, b]$ so that $S, S^{\prime}, S^{\prime \prime}$ are continuous and $S^{\prime \prime}\left(t_{0}\right)=S^{\prime \prime}\left(t_{n}\right)=0$. It can be written in the form

$$
S(x)=\left\{\begin{array}{cc}
S_{0}(x) & x \in\left[t_{0}, t_{1}\right] \\
S_{1}(x) & x \in\left[t_{1}, t_{2}\right] \\
\vdots & \vdots \\
S_{n-1}(x) & x \in\left[t_{n-1}, t_{n}\right]
\end{array}\right.
$$

where on the interval $\left[t_{i}, t_{i+1}\right]$,

$$
\begin{aligned}
S_{i}(x)= & \frac{z_{i+1}}{6 h_{i}}\left(x-t_{i}\right)^{3}+\frac{z_{i}}{6 h_{i}}\left(t_{i+1}-x\right)^{3} \\
& +\left(\frac{y_{i+1}}{h_{i}}-\frac{h_{i}}{6} z_{i+1}\right)\left(x-t_{i}\right)+\left(\frac{y_{i}}{h_{i}}-\frac{h_{i}}{6} z_{i}\right)\left(t_{i+1}-x\right)
\end{aligned}
$$

and where $h_{i}=t_{i+1}-t_{i}$. Clearly, $S(x)$ is continuous, since $S_{i-1}\left(t_{i}\right)=S_{i}\left(t_{i}\right)=y_{i}$ for $1 \leqq i \leqq n$. It can be shown that $S_{i-1}^{\prime}\left(t_{i}\right)=S_{i}^{\prime}\left(t_{i}\right)$ and $S_{i-1}^{\prime \prime}\left(t_{i}\right)=S_{i}^{\prime \prime}\left(t_{i}\right)=z_{i}$ for $1 \leqq i \leqq n$. For efficient evaluation, use the nested form of $S_{i}(x)$, which is

$$
S_{i}(x)=y_{i}+\left(x-t_{i}\right)\left(B_{i}+\left(x-t_{i}\right)\left(\frac{z_{i}}{2}+\frac{1}{6 h_{i}}\left(x-t_{i}\right)\left(z_{i+1}-z_{i}\right)\right)\right)
$$

where $B_{i}=-\left(h_{i} / 6\right) z_{i+1}-\left(h_{i} / 3\right) z_{i}+\left(y_{i+1}-y_{i}\right) / h_{i}$. The coefficients $z_{0}, z_{1}, \ldots, z_{n}$ are found by letting $b_{i}=\left(y_{i+1}-y_{i}\right) / h_{i}, u_{i}=2\left(h_{i-1}+h_{i}\right), v_{i}=6\left(b_{i}-b_{i-1}\right)$, and then solving
the tridiagonal system of equations

$$
\left\{\begin{aligned}
z_{0} & =0 \\
h_{i-1} z_{i-1}+u_{i} z_{i}+h_{i} z_{i+1} & =v_{i} \\
z_{n} & =0
\end{aligned} \quad(1 \leqq i \leqq n-1)\right.
$$

This can be done efficiently by using forward substitution:

$$
\left\{\begin{array}{l}
u_{i} \leftarrow u_{i}-\frac{h_{i-1}^{2}}{u_{i-1}} \\
v_{i} \leftarrow v_{i}-\frac{h_{i-1} v_{i-1}}{u_{i-1}} \quad(i=2,3, \ldots, n-1)
\end{array}\right.
$$

and back substitution:

$$
\left\{\begin{array}{l}
z_{n-1} \leftarrow \frac{v_{n-1}}{u_{n-1}} \\
z_{i} \leftarrow \frac{v_{i}-h_{i} z_{i+1}}{u_{i}} \quad(i=n-2, n-3, \ldots, 1)
\end{array}\right.
$$

Problems 9.2

${ }^{a}$ 1. Do there exist a, b, c, and d such that the function

$$
S(x)=\left\{\begin{array}{lr}
a x^{3}+x^{2}+c x & (-1 \leqq x \leqq 0) \\
b x^{3}+x^{2}+d x & (0 \leqq x \leqq 1)
\end{array}\right.
$$

is a natural cubic spline function that agrees with the absolute value function $|x|$ at the knots $-1,0,1$?
${ }^{a}$ 2. Do there exist a, b, c, and d such that the function

$$
S(x)=\left\{\begin{aligned}
-x & (-10 & \leqq x & \leqq-1) \\
a x^{3}+b x^{2}+c x+d & (-1 & \leqq x & \leqq 1) \\
x & (1 & \leqq x & \leqq 10)
\end{aligned}\right.
$$

is a natural cubic spline function?
3. Determine the natural cubic spline that interpolates the function $f(x)=x^{6}$ over the interval $[0,2]$ using knots 0,1 , and 2 .
${ }^{a}$ 4. Determine the parameters a, b, c, d, and e such that S is a natural cubic spline:

$$
S(x)= \begin{cases}a+b(x-1)+c(x-1)^{2}+d(x-1)^{3} & (x \in[0,1]) \\ (x-1)^{3}+e x^{2}-1 & (x \in[1,2])\end{cases}
$$

${ }^{a}$ 5. Determine the values of a, b, c, and d such that f is a cubic spline and such that $\int_{0}^{2}\left[f^{\prime \prime}(x)\right]^{2} d x$ is a minimum:

$$
f(x)= \begin{cases}3+x-9 x^{3} & (0 \leqq x \leqq 1) \\ a+b(x-1)+c(x-1)^{2}+d(x-1)^{3} & (1 \leqq x \leqq 2)\end{cases}
$$

${ }^{a}$ 6. Determine whether f is a cubic spline with knots $-1,0,1$, and 2 :

$$
f(x)=\left\{\begin{array}{lr}
1+2(x+1)+(x+1)^{3} & (-1 \leqq x \leqq 0) \\
3+5 x+3 x^{2} & (0 \leqq x \leqq 1) \\
11+(x-1)+3(x-1)^{2}+(x-1)^{3} & (1 \leqq x \leqq 2)
\end{array}\right.
$$

7. List all the ways in which the following functions fail to be natural cubic splines:
a. a. $S(x)=\left\{\begin{array}{lc}x+1 & (-2 \leqq x \leqq-1) \\ x^{3}-2 x+1 & (-1 \leqq x \leqq 1) \\ x-1 & (1 \leqq x \leqq 2)\end{array}\right.$
b. $f(x)=\left\{\begin{array}{lr}x^{3}+x-1 & (-1 \leqq x \leqq 0) \\ x^{3}-x-1 & (0 \leqq x \leqq 1)\end{array}\right.$
8. Suppose $S(x)$ is an m th-degree interpolating spline function over the interval $[a, b]$ with $n+1$ knots $a=t_{0}<t_{1}<\cdots<t_{n}=b$.
${ }^{a}$ a. How many conditions are needed to define $S(x)$ uniquely over $[a, b]$?
${ }^{a}$ b. How many conditions are defined by the interpolation conditions at the knots?
${ }^{a}$ c. How many conditions are defined by the continuity of the derivatives?
${ }^{a}$ d. How many additional conditions are needed so that the total equals the number in part a?
9. Show that

$$
S(x)=\left\{\begin{array}{rc}
28+25 x+9 x^{2}+x^{3} & (-3 \leqq x \leqq-1) \\
26+19 x+3 x^{2}-x^{3} & (-1 \leqq x \leqq 0) \\
26+19 x+3 x^{2}-2 x^{3} & (0 \leqq x \leqq 3) \\
-163+208 x-60 x^{2}+5 x^{3} & (3 \leqq x \leqq 4)
\end{array}\right.
$$

is a natural cubic spline function.
${ }^{a}$ 10. Give an example of a cubic spline with knots $0,1,2$, and 3 that is quadratic in $[0,1]$, cubic in $[1,2]$, and quadratic in $[2,3]$.
11. Give an example of a cubic spline function S with knots $0,1,2$, and 3 such that S is linear in $[0,1]$ but of degree 3 in the other two intervals.
${ }^{a}$ 12. Determine a, b, and c such that S is a cubic spline function:

$$
S(x)= \begin{cases}x^{3} & (0 \leqq x \leqq 1) \\ \frac{1}{2}(x-1)^{3}+a(x-1)^{2}+b(x-1)+c & (1 \leqq x \leqq 3)\end{cases}
$$

${ }^{a}$ 13. Is there a choice of coefficients for which the following function is a natural cubic spline? Why or why not?

$$
f(x)=\left\{\begin{array}{lc}
x+1 & (-2 \leqq x \leqq-1) \\
a x^{3}+b x^{2}+c x+d & (-1 \leqq x \leqq 1) \\
x-1 & (1 \leqq x \leqq 2)
\end{array}\right.
$$

14. Determine the coefficients in the function

$$
S(x)=\left\{\begin{array}{lr}
x^{3}-1 & (-9 \leqq x \leqq 0) \\
a x^{3}+b x^{2}+c x+d & (0 \leqq x \leqq 5)
\end{array}\right.
$$

such that it is a cubic spline that takes the value 2 when $x=1$.
${ }^{a}$ 15. Determine the coefficients such that the function

$$
S(x)= \begin{cases}x^{2}+x^{3} & (0 \leqq x \leqq 1) \\ a+b x+c x^{2}+d x^{3} & (1 \leqq x \leqq 2)\end{cases}
$$

is a cubic spline and has the property $S_{1}^{\prime \prime \prime}(x)=12$.
16. Assume that $a=x_{0}<x_{1}<\cdots<x_{m}=b$. Describe the function f that interpolates a table of values $\left(x_{i}, y_{i}\right)$, where $0 \leqq i \leqq m$, and that minimizes the expression $\int_{a}^{b}\left|f^{\prime}(x)\right| d x$.
${ }^{a}$ 17. How many additional conditions are needed to specify uniquely a spline of degree 4 over n knots?
18. Let knots $t_{0}<t_{1}<\cdots<t_{n}$, and let numbers y_{i} and z_{i} be given. Determine formulas for a piecewise cubic function f that has the given knots such that $f\left(t_{i}\right)=y_{i}$ $(0 \leqq i \leqq n), \lim _{x \rightarrow t_{i}^{+}} f^{\prime \prime}(x)=z_{i}(0 \leqq i \leqq n-1)$, and $\lim _{x \rightarrow t_{i}^{-}} f^{\prime \prime}(x)=z_{i}(1 \leqq i \leqq n)$. Why is f not generally a cubic spline?
${ }^{a}$ 19. Define a function f by

$$
f(x)=\left\{\begin{array}{lr}
x^{3}+x-1 & (-1 \leqq x \leqq 0) \\
x^{3}-x-1 & (0 \leqq x \leqq 1)
\end{array}\right.
$$

Show that $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{-}} f(x)$ and that $\lim _{x \rightarrow 0^{+}} f^{\prime \prime}(x)=\lim _{x \rightarrow 0^{-}} f^{\prime \prime}(x)$. Are f and $f^{\prime \prime}$ continuous? Does it follow that f is a cubic spline? Explain.
20. Show that there is a unique cubic spline S with knots $t_{0}<t_{1}<\cdots<t_{n}$, interpolating data $S\left(t_{i}\right)=y_{i}(0 \leqq i \leqq n)$ and satisfying the two end conditions $S^{\prime}\left(t_{0}\right)=S^{\prime}\left(t_{n}\right)=0$.
21. Describe explicitly the natural cubic spline that interpolates a table with only two entries:

x	t_{0}	t_{1}
y	y_{0}	y_{1}

Give a formula for it. Here, t_{0} and t_{1} are the knots.
${ }^{a}$ 22. Suppose that $f(0)=0, f(1)=1.1752, f^{\prime}(0)=1$, and $f^{\prime}(1)=1.5431$. Determine the cubic interpolating polynomial $p_{3}(x)$ for these data. Is it a natural cubic spline?
23. A periodic cubic spline having knots $t_{0}, t_{1}, \ldots, t_{n}$ is defined as a cubic spline function $S(x)$ such that $S\left(t_{0}\right)=S\left(t_{n}\right), S^{\prime}\left(t_{0}\right)=S^{\prime}\left(t_{n}\right)$, and $S^{\prime \prime}\left(t_{0}\right)=S^{\prime \prime}\left(t_{n}\right)$. It would be used to fit data that are known to be periodic. Carry out the analysis necessary to obtain a periodic cubic spline interpolant for the table

x	t_{0}	t_{1}	\cdots	t_{n}
y	y_{0}	y_{1}	\cdots	y_{n}

assuming that $y_{n}=y_{0}$.
24. The derivatives and integrals of polynomials are polynomials. State and prove a similar result about spline functions.
25. Given a differentiable function f and knots $t_{0}<t_{1}<\cdots<t_{n}$, show how to obtain a cubic spline S that interpolates f at the knots and satisfies the end conditions $S^{\prime}\left(t_{0}\right)=$ $f^{\prime}\left(t_{0}\right)$ and $S^{\prime}\left(t_{n}\right)=f^{\prime}\left(t_{n}\right)$. Note: This procedure produces a better fit to f when applicable. If f^{\prime} is not known, finite-difference approximations to $f^{\prime}\left(t_{0}\right)$ and $f^{\prime}\left(t_{n}\right)$ can be used.
${ }^{a}$ 26. Let S be a cubic spline that has knots $t_{0}<t_{1}<\cdots<t_{n}$. Suppose that on the two intervals $\left[t_{0}, t_{1}\right]$ and $\left[t_{2}, t_{3}\right], S$ reduces to linear polynomials. What can be said of S on $\left[t_{1}, t_{2}\right]$?
27. In the construction of the cubic interpolating spline, carry out the evaluation of constants C_{i} and D_{i}, and thus justify Equation (5).
28. Show that S_{i} can also be written in the form

$$
S_{i}(x)=y_{i}+A_{i}\left(x-t_{i}\right)+\frac{1}{2} z_{i}\left(x-t_{i}\right)^{2}+\frac{z_{i+1}-z_{i}}{6 h_{i}}\left(x-t_{i}\right)^{3}
$$

with

$$
A_{i}=-\frac{h_{i}}{3} z_{i}-\frac{h_{i}}{6} z_{i+1}-\frac{y_{i}}{h_{i}}+\frac{y_{i+1}}{h_{i}}
$$

29. Carry out the details in deriving Equation (9), starting with Equation (5).
30. Verify that the algorithm for computing the $\left(z_{i}\right)$ array is correct by showing that if $\left(z_{i}\right)$ satisfies Equation (9), then it satisfies the equation in step 3 of the algorithm.
31. Establish that $u_{i}>2 h_{i}+\frac{3}{2} h_{i-1}$ in the algorithm for determining the cubic spline interpolant.
${ }^{a}$ 32. By hand calculation, find the natural cubic spline interpolant for this table:

x	1	2	3	4	5
y	0	1	0	1	0

${ }^{a}$ 33. Find a cubic spline over knots $-1,0$, and 1 such that the following conditions are satisfied: $S^{\prime \prime}(-1)=S^{\prime \prime}(1)=0, S(-1)=S(1)=0$, and $S(0)=1$.
34. This problem and the next two lead to a more efficient algorithm for natural cubic spline interpolation in the case of equally spaced knots. Let $h_{i}=h$ in Equation (5), and replace the parameters z_{i} by $q_{i}=h^{2} z_{i} / 6$. Show that the new form of Equation (5) is then

$$
\begin{aligned}
S_{i}(x)= & q_{i+1}\left(\frac{x-t_{i}}{h}\right)^{3}+q_{i}\left(\frac{t_{i+1}-x}{h}\right)^{3}+\left(y_{i+1}-q_{i+1}\right)\left(\frac{x-t_{i}}{h}\right) \\
& +\left(y_{i}-q_{i}\right)\left(\frac{t_{i+1}-x}{h}\right)
\end{aligned}
$$

35. (Continuation) Establish the new continuity conditions:

$$
q_{0}=q_{n}=0 \quad q_{i-1}+4 q_{i}+q_{i+1}=y_{i+1}-2 y_{i}+y_{i-1} \quad(1 \leqq i \leqq n-1)
$$

36. (Continuation) Show that the parameters q_{i} can be determined by backward recursion as follows:

$$
q_{n}=0 \quad q_{n-1}=\beta_{n-1} \quad q_{i}=\alpha_{i} q_{i+1}+\beta_{i} \quad(i=n-2, n-3, \ldots, 0)
$$

where the coefficients α_{i} and β_{i} are generated by ascending recursion from the formulas

$$
\begin{array}{ll}
\alpha_{0}=0 & \alpha_{i}=-\left(\alpha_{i-1}+4\right)^{-1} \quad(1 \leqq i \leqq n) \\
\beta_{0}=0 & \beta_{i}=-\alpha_{i}\left(y_{i+1}-2 y_{i}+y_{i-1}-\beta_{i-1}\right)
\end{array} \quad(1 \leqq i \leqq n)
$$

(This stable and efficient algorithm is due to MacLeod [1973].)
37. Prove that if $S(x)$ is a spline of degree k on $[a, b]$, then $S^{\prime}(x)$ is a spline of degree $k-1$.
${ }^{a}$ 38. How many coefficients are needed to define a piecewise quartic (fourth-degree) function with $n+1$ knots? How many conditions will be imposed if the piecewise quartic function is to be a quartic spline? Justify your answers.
${ }^{a}$ 39. Determine whether this function is a natural cubic spline:

$$
S(x)=\left\{\begin{array}{rr}
x^{3}+3 x^{2}+7 x-5 & (-1 \leqq x \leqq 0) \\
-x^{3}+3 x^{2}+7 x-5 & (0 \leqq x \leqq 1)
\end{array}\right.
$$

40. Determine whether this function is or is not a natural cubic spline having knots 0,1 , and 2 :

$$
f(x)= \begin{cases}x^{3}+x-1 & (0 \leqq x \leqq 1) \\ -(x-1)^{3}+3(x-1)^{2}+4(x-1)+1 & (1 \leqq x \leqq 2)\end{cases}
$$

41. Show that the natural cubic spline going through the points $(0,1),(1,2),(2,3),(3,4)$, and $(4,5)$ must be $y=x+1$. (The natural cubic spline interpolant to a given data set is unique, because the matrix in Equation (10) is diagonally dominant and nonsingular, as proven in Section 7.3.)

Computer Problems 9.2

1. Rewrite and test procedure Spline3_Coef using procedure Tri from Chapter 7. Use the symmetry of the $(n-1) \times(n-1)$ tridiagonal system.
2. The extra storage required in step 1 of the algorithm for solving the natural cubic spline tridiagonal system directly can be eliminated at the expense of a slight amount of extra computation-namely, by computing the h_{i} 's and b_{i} 's directly from the t_{i} 's and y_{i} 's in the forward elimination phase (step 2) and in the back substitution phase (step 3). Rewrite and test procedure Spline3_Coef using this idea.
3. Using at most 20 knots and the cubic spline routines Spline3_Coef and Spline3_Eval, plot on a computer plotter an outline of your:
a. school's mascot.
b. signature.
c. profile.
4. Let S be the cubic spline function that interpolates $f(x)=\left(x^{2}+1\right)^{-1}$ at 41 equally spaced knots in the interval $[-5,5]$. Evaluate $S(x)-f(x)$ at 101 equally spaced points on the interval $[0,5]$.
5. Draw a free-form curve on graph paper, making certain that the curve is the graph of a function. Then read values of your function at a reasonable number of points, say, $10-50$, and compute the cubic spline function that takes those values. Compare the freely drawn curve to the graph of the cubic spline.
6. Draw a spiral (or other curve that is not a function) and reproduce it by way of parametric spline functions. (See the figure below.)

7. Write and test procedures that are as simple as possible to perform natural cubic spline interpolation with equally spaced knots. Hint: See Problems 9.3.34-9.3.36.
8. Write a program to estimate $\int_{a}^{b} f(x) d x$, assuming that we know the values of f at only certain prescribed knots $a=t_{0}<t_{1}<\cdots<t_{n}=b$. Approximate f first by an interpolating cubic spline, and then compute the integral of it using Equation (5).
9. Write a procedure to estimate $f^{\prime}(x)$ for any x in $[a, b]$, assuming that we know only the values of f at knots $a=t_{0}<t_{1}<\cdots<t_{n}=b$.
10. Using the Runge function $f(x)=1 /\left(1+x^{2}\right)$ from Section 4.2 with an increasing number of equally spaced nodes, watch the natural cubic spline curve get better with regard to curve fitting while the interpolating polynomial gets worse.
11. Use mathematical software such as Matlab, Maple, or Mathematica to generate and plot the spline function in Example 2.
12. Use mathematical software such as Matlab, Maple, or Mathematica to plot the cubic spline functions corresponding to
a. Figure 9.8.
b. Figure 9.9.
c. Figure 9.10.

9.3 B Splines: Interpolation and Approximation

In this section, we give an introduction to the theory of B splines. These are special spline functions that are well adapted to numerical tasks and are being used more and more frequently in production-type programs for approximating data. Thus, the intelligent user of library code should have some familiarity with them. The B splines were so named because they formed a basis for the set of all splines. (We prefer the more romantic name bell splines because of their characteristic shape.)

Throughout this section, we suppose that an infinite set of knots $\left\{t_{i}\right\}$ has been prescribed in such a way that

$$
\left\{\begin{array}{l}
\cdots<t_{-2}<t_{-1}<t_{0}<t_{1}<t_{2}<\cdots \tag{1}\\
\lim _{i \rightarrow \infty} t_{i}=\infty=-\lim _{i \rightarrow \infty} t_{-i}
\end{array}\right.
$$

The B splines to be defined now depend on this set of knots, although the notation does not show that dependence. The \mathbf{B} splines of degree $\mathbf{0}$ are defined by

$$
B_{i}^{0}(x)= \begin{cases}1 & t_{i} \leqq x<t_{i+1} \tag{2}\\ 0 & \text { otherwise }\end{cases}
$$

The graph of B_{i}^{0} is shown in Figure 9.12.

FIGURE 9.12
B_{i}^{0} spline

Obviously, B_{i}^{0} is discontinuous. However, it is continuous from the right at all points, even where the jumps occur. Thus,

$$
\lim _{x \rightarrow t_{i}^{+}} B_{i}^{0}(x)=1=B_{i}^{0}\left(t_{i}\right) \quad \text { and } \quad \lim _{x \rightarrow t_{i+1}^{+}} B_{i}^{0}(x)=0=B_{i}^{0}\left(t_{i+1}\right)
$$

If the support of a function f is defined as the set of points x where $f(x) \neq 0$, then we can say that the support of B_{i}^{0} is the half-open interval $\left[t_{i}, t_{i+1}\right)$. Since B_{i}^{0} is a piecewise constant function, it is a spline of degree 0 .

Two further observations can be made:

$$
\begin{aligned}
B_{i}^{0}(x) \geqq 0 & \text { for all } x \text { and for all } i \\
\sum_{i=-\infty}^{\infty} B_{i}^{0}(x)=1 & \text { for all } x
\end{aligned}
$$

Although the second of these assertions contains an infinite series, there is no question of convergence because for each x only one term in the series is different from 0 . Indeed, for fixed x, there is a unique integer m such that $t_{m} \leqq x<t_{m+1}$, and then

$$
\sum_{i=-\infty}^{\infty} B_{i}^{0}(x)=B_{m}^{0}(x)=1
$$

The reader should now see the reason for defining B_{i}^{0} in the manner of Equation (2).
A final remark concerning these B splines of degree 0 : Any spline of degree 0 that is continuous from the right and is based on the knots (1) can be expressed as a linear combination of the B splines B_{i}^{0}. Indeed, if S is such a function, then it can be specified by a rule such as

$$
S(x)=b_{i} \quad \text { if } t_{i} \leqq x<t_{i+1} \quad(i=0, \pm 1, \pm 2, \ldots)
$$

Then S can be written as

$$
S=\sum_{i=-\infty}^{\infty} b_{i} B_{i}^{0}
$$

With the functions B_{i}^{0} as a starting point, we now generate all the higher-degree B splines by a simple recursive definition:

$$
\begin{equation*}
B_{i}^{k}(x)=\left(\frac{x-t_{i}}{t_{i+k}-t_{i}}\right) B_{i}^{k-1}(x)+\left(\frac{t_{i+k+1}-x}{t_{i+k+1}-t_{i+1}}\right) B_{i+1}^{k-1}(x) \quad(k \geqq 1) \tag{3}
\end{equation*}
$$

Here $k=1,2, \ldots$, and $i=0, \pm 1, \pm 2, \ldots$.
To illustrate Equation (3), let us determine B_{i}^{1} in an alternative form:

$$
\begin{aligned}
B_{i}^{1}(x) & =\left(\frac{x-t_{i}}{t_{i+1}-t_{i}}\right) B_{i}^{0}(x)+\left(\frac{t_{i+2}-x}{t_{i+2}-t_{i+1}}\right) B_{i+1}^{0}(x) \\
& = \begin{cases}0 & \left(x \geqq t_{i+2} \quad \text { or } \quad x \leqq t_{i}\right) \\
\frac{x-t_{i}}{t_{i+1}-t_{i}} & \left(t_{i} \leqq x<t_{i+1}\right) \\
\frac{t_{i+2}-x}{t_{i+2}-t_{i+1}} & \left(t_{i+1} \leqq x<t_{i+2}\right)\end{cases}
\end{aligned}
$$

FIGURE 9.13
B_{1}^{1} spline

The graph of B_{i}^{1} is shown in Figure 9.13. These are sometimes called hat functions or chapeau functions (from the French) since they resemble a triangular hat one might make from a newspaper. The support of B_{i}^{1} is the open interval $\left(t_{i}, t_{i+2}\right)$. It is true, but perhaps not so obvious, that

$$
\sum_{i=-\infty}^{\infty} B_{i}^{1}(x)=1 \quad \text { for all } x
$$

and that every spline of degree 1 based on the knots (1) is a linear combination of B_{i}^{1}.
The functions B_{i}^{k} as defined by Equation (3) are called \mathbf{B} splines of degree \boldsymbol{k}. Since each B_{i}^{k} is obtained by applying linear factors to B_{i}^{k-1} and B_{i+1}^{k-1}, we see that the degrees actually increase by 1 at each step. Therefore, B_{i}^{1} is piecewise linear, B_{i}^{2} is piecewise quadratic, and so on.

It is also easily shown by induction that

$$
B_{i}^{k}(x)=0 \quad x \notin\left[t_{i}, t_{i+k+1}\right) \quad(k \geqq 0)
$$

To establish this, we start by observing that it is true when $k=0$ because of Definition (2). If it is true for index $k-1$, then it is true for index k by the following reasoning. The inductive hypothesis tells us that $B_{i}^{k-1}(x)=0$ if x is outside $\left[t_{i}, t_{i+k}\right)$ and that $B_{i+1}^{k-1}(x)=0$ if x is outside $\left[t_{i+1}, t_{i+k+1}\right.$). If x is outside both intervals, it is outside their union, $\left[t_{i}, t_{i+k+1}\right)$; then both terms on the right side of Equation (3) are 0 . So $B_{i}^{k}(x)=0$ outside $\left[t_{i}, t_{i+k+1}\right)$. That $B_{i}^{k}\left(t_{i}\right)=0$ follows directly from Equation (3), so we know that $B_{i}^{k}(x)=0$ for all x outside $\left(t_{i}, t_{i+k+1}\right)$ if $k \geqq 1$.

Complementary to the property just established, we can show, again by induction, that

$$
B_{i}^{k}(x)>0 \quad x \in\left(t_{i}, t_{i+k+1}\right) \quad(k \geqq 0)
$$

By Equation (2), this assertion is true when $k=0$. If it is true for index $k-1$, then $B_{i}^{k-1}(x)>0$ on $\left(t_{i}, t_{i+k}\right)$ and $B_{i+1}^{k-1}(x)>0$ on $\left(t_{i+1}, t_{i+k+1}\right)$. In Equation (3), the factors that multiply $B_{i}^{k-1}(x)$ and $B_{i+1}^{k-1}(x)$ are positive when $t_{i}<x<t_{i+k+1}$. Thus, $B_{i}^{k}(x)>0$ on this interval.

Figure 9.14 shows the first four B splines plotted on the same axes.

FIGURE 9.14
First four
B-splines

The principal use of the B splines $B_{i}^{k}(i=0, \pm 1, \pm 2, \ldots)$ is as a basis for the set of all k th-degree splines that have the same knot sequence. Thus, linear combinations

$$
\sum_{i=-\infty}^{\infty} c_{i} B_{i}^{k}
$$

are important objects of study. (We use c_{i} for fixed k and C_{i}^{k} to emphasize the degree k of the corresponding B splines.) Our first task is to develop an efficient method to evaluate a function of the form

$$
\begin{equation*}
f(x)=\sum_{i=-\infty}^{\infty} C_{i}^{k} B_{i}^{k}(x) \tag{4}
\end{equation*}
$$

under the supposition that the coefficients C_{i}^{k} are given (as well as the knot sequence t_{i}). Using Definition (3) and some simple series manipulations, we have

$$
\begin{align*}
f(x) & =\sum_{i=-\infty}^{\infty} C_{i}^{k}\left[\left(\frac{x-t_{i}}{t_{i+k}-t_{i}}\right) B_{i}^{k-1}(x)+\left(\frac{t_{i+k+1}-x}{t_{i+k+1}-t_{i+1}}\right) B_{i+1}^{k-1}(x)\right] \\
& =\sum_{i=-\infty}^{\infty}\left[C_{i}^{k}\left(\frac{x-t_{i}}{t_{i+k}-t_{i}}\right)+C_{i-1}^{k}\left(\frac{t_{i+k}-x}{t_{i+k}-t_{i}}\right)\right] B_{i}^{k-1}(x) \\
& =\sum_{i=-\infty}^{\infty} C_{i}^{k-1} B_{i}^{k-1}(x) \tag{5}
\end{align*}
$$

where C_{i}^{k-1} is defined to be the appropriate coefficient from the line preceding Equation (5).
This algebraic manipulation shows how a linear combination of $B_{i}^{k}(x)$ can be expressed as a linear combination of $B_{i}^{k-1}(x)$. Repeating this process $k-1$ times, we eventually express $f(x)$ in the form

$$
\begin{equation*}
f(x)=\sum_{i=-\infty}^{\infty} C_{i}^{0} B_{i}^{0}(x) \tag{6}
\end{equation*}
$$

If $t_{m} \leqq x<t_{m+1}$, then $f(x)=C_{m}^{0}$. The formula by which the coefficients C_{i}^{j-1} are obtained is

$$
\begin{equation*}
C_{i}^{j-1}=C_{i}^{j}\left(\frac{x-t_{i}}{t_{i+j}-t_{i}}\right)+C_{i-1}^{j}\left(\frac{t_{i+j}-x}{t_{i+j}-t_{i}}\right) \tag{7}
\end{equation*}
$$

A nice feature of Equation (4) is that only the $k+1$ coefficients $C_{m}^{k}, C_{m-1}^{k}, \ldots, C_{m-k}^{k}$ are needed to compute $f(x)$ if $t_{m} \leqq x<t_{m+1}$ (see Problem 9.3.6). Thus, if f is defined by Equation (4) and we want to compute $f(x)$, we use Equation (7) to calculate the entries in the following triangular array:

$$
\begin{array}{llll}
C_{m}^{k} & C_{m}^{k-1} & \cdots & C_{m}^{0} \\
C_{m-1}^{k} & C_{m-1}^{k-1} & . \cdot & \\
\vdots & . & & \\
C_{m-k}^{k} & & &
\end{array}
$$

Although our notation does not show it, the coefficients in Equation (4) are independent of x, whereas the C_{i}^{j-1},s calculated subsequently by Equation (7) do depend on x.

It is now a simple matter to establish that

$$
\sum_{i=-\infty}^{\infty} B_{i}^{k}(x)=1 \quad \text { for all } x \text { and all } k \geqq 0
$$

If $k=0$, we already know this. If $k>0$, we use Equation (4) with $C_{i}^{k}=1$ for all i. By Equation (7), all subsequent coefficients $C_{i}^{k}, C_{i}^{k-1}, C_{i}^{k-2}, \ldots, C_{i}^{0}$ are also equal to 1 (induction is needed here!). Thus, at the end, Equation (6) is true with $C_{i}^{0}=1$, and so $f(x)=1$. Therefore, from Equation (4), the sum of all B splines of degree k is unity.

The smoothness of the B splines B_{i}^{k} increases with the index k. In fact, we can show by induction that B_{i}^{k} has a continuous $k-1$ st derivative.

The B splines can be used as substitutes for complicated functions in many mathematical situations. Differentiation and integration are important examples. A basic result about the derivatives of \mathbf{B} splines is

$$
\begin{equation*}
\frac{d}{d x} B_{i}^{k}(x)=\left(\frac{k}{t_{i+k}-t_{i}}\right) B_{i}^{k-1}(x)-\left(\frac{k}{t_{i+k+1}-t_{i+1}}\right) B_{i+1}^{k-1}(x) \tag{8}
\end{equation*}
$$

This equation can be proved by induction using the recursive Formula (3). Once Equation (8) is established, we get the useful formula

$$
\begin{equation*}
\frac{d}{d x} \sum_{i=-\infty}^{\infty} c_{i} B_{i}^{k}(x)=\sum_{i=-\infty}^{\infty} d_{i} B_{i}^{k-1}(x) \tag{9}
\end{equation*}
$$

where

$$
d_{i}=k\left(\frac{c_{i}-c_{i-1}}{t_{i+k}-t_{i}}\right)
$$

The verification is as follows. By Equation (8),

$$
\begin{aligned}
\frac{d}{d x} & \sum_{i=-\infty}^{\infty} c_{i} B_{i}^{k}(x) \\
& =\sum_{i=-\infty}^{\infty} c_{i} \frac{d}{d x} B_{i}^{k}(x) \\
& =\sum_{i=-\infty}^{\infty} c_{i}\left[\left(\frac{k}{t_{i+k}-t_{i}}\right) B_{i}^{k-1}(x)-\left(\frac{k}{t_{i+k+1}-t_{i+1}}\right) B_{i+1}^{k-1}(x)\right] \\
& =\sum_{i=-\infty}^{\infty}\left[\left(\frac{c_{i} k}{t_{i+k}-t_{i}}\right)-\left(\frac{c_{i-1} k}{t_{i+k}-t_{i}}\right)\right] B_{i}^{k-1}(x) \\
& =\sum_{i=-\infty}^{\infty} d_{i} B_{i}^{k-1}(x)
\end{aligned}
$$

For numerical integration, the B splines are also recommended, especially for indefinite integration. Here is the basic result needed for integration:

$$
\begin{equation*}
\int_{-\infty}^{x} B_{i}^{k}(s) d s=\left(\frac{t_{i+k+1}-t_{i}}{k+1}\right) \sum_{j=i}^{\infty} B_{j}^{k+1}(x) \tag{10}
\end{equation*}
$$

This equation can be verified by differentiating both sides with respect to x and simplifying by the use of Equation (9). To be sure that the two sides of Equation (10) do not differ by a constant, we note that for any $x<t_{i}$, both sides reduce to zero.

The basic result (10) produces this useful formula:

$$
\begin{equation*}
\int_{-\infty}^{x} \sum_{i=-\infty}^{\infty} c_{i} B_{i}^{k}(s) d s=\sum_{i=-\infty}^{\infty} e_{i} B_{i}^{k+1}(x) \tag{11}
\end{equation*}
$$

where

$$
e_{i}=\frac{1}{k+1} \sum_{j=-\infty}^{i} c_{j}\left(t_{j+k+1}-t_{j}\right)
$$

It should be emphasized that this formula gives an indefinite integral (antiderivative) of any function expressed as a linear combination of B splines. Any definite integral can be obtained by selecting a specific value of x. For example, if x is a knot, say, $x=t_{m}$, then

$$
\int_{-\infty}^{t_{m}} \sum_{i=-\infty}^{\infty} c_{i} B_{i}^{k}(s) d s=\sum_{i=-\infty}^{\infty} e_{i} B_{i}^{k+1}\left(t_{m}\right)=\sum_{i=m-k-1}^{m} e_{i} B_{i}^{k+1}\left(t_{m}\right)
$$

Matlab has a Spline Toolbox, developed by Carl de Boor, that can be used for many tasks involving splines. For example, there are routines for interpolating data by splines with diverse end conditions and routines for least-squares fits to data. There are many demonstration routines in this Toolbox that exhibit plots and provide models for programming Matlab M-files. These demonstrations are quite instructive for visualizing and learning the concepts in spline theory, especially B splines.

Maple has a BSpline package for constructing B spline basis functions of degree k from a given knot list, which may include multiple knots. It is based on a divided-difference
implementation found in Bartels, Beatty, and Barskey [1987]. It can be downloaded from the Maple Application Center at www.maplesoft.com.

Interpolation and Approximation by B Splines

We developed a number of properties of B splines and showed how B splines are used in various numerical tasks. The problem of obtaining a B spline representation of a given function was not discussed. Here, we consider the problem of interpolating a table of data; later, a noninterpolatory method of approximation is described.

A basic question is how to determine the coefficients in the expression

$$
\begin{equation*}
S(x)=\sum_{i=-\infty}^{\infty} A_{i} B_{i-k}^{k}(x) \tag{12}
\end{equation*}
$$

so that the resulting spline function interpolates a prescribed table:

x	t_{0}	t_{1}	\cdots	t_{n}
y	y_{0}	y_{1}	\cdots	y_{n}

We mean by interpolate that

$$
\begin{equation*}
S\left(t_{i}\right)=y_{i} \quad(0 \leqq i \leqq n) \tag{13}
\end{equation*}
$$

The natural starting point is with the simplest splines, corresponding to $k=0$. Since

$$
B_{i}^{0}\left(t_{j}\right)=\delta_{i j}= \begin{cases}1 & (i=j) \\ 0 & (i \neq j)\end{cases}
$$

the solution to the problem is immediate: Just set $A_{i}=y_{i}$ for $0 \leqq i \leqq n$. All other coefficients in Equation (12) are arbitrary. In particular, they can be zero. We arrive then at this result: The zero-degree B spline

$$
S(x)=\sum_{i=0}^{n} y_{i} B_{i}^{0}(x)
$$

has the interpolation property (13).
The next case, $k=1$, also has a simple solution. We use the fact that

$$
B_{i-1}^{1}\left(t_{j}\right)=\delta_{i j}
$$

Hence, the following is true: The first-degree B spline

$$
S(x)=\sum_{i=0}^{n} y_{i} B_{i-1}^{1}(x)
$$

has the interpolation property (13). So $A_{i}=y_{i}$ again.
If the table has four entries $(n=3)$, for instance, we use $B_{-1}^{1}, B_{0}^{1}, B_{1}^{1}$, and B_{2}^{1}. They, in turn, require for their definition knots $t_{-1}, t_{0}, t_{1}, \ldots, t_{4}$. Knots t_{-1} and t_{4} can be arbitrary. Figure 9.15 shows the graphs of the four B^{1}-splines. In such a problem, if t_{-1} and t_{4} are not prescribed, it is natural to define them in such a way that t_{0} is the midpoint of the interval $\left[t_{-1}, t_{1}\right]$ and t_{3} is the midpoint of $\left[t_{2}, t_{4}\right]$.

In both elementary cases considered, the unknown coefficients $A_{0}, A_{1}, \ldots, A_{n}$ in Equation (12) were uniquely determined by the interpolation conditions (13). If terms were

FIGURE 9.15
B_{i}^{1} splines

present in Equation (12) corresponding to values of i outside the range $\{0,1, \ldots, n\}$, then they would have no influence on the values of $S(x)$ at $t_{0}, t_{1}, \ldots, t_{n}$.

For higher-degree splines, we shall see that some arbitrariness exists in choosing coefficients. In fact, none of the coefficients is uniquely determined by the interpolation conditions. This fact can be advantageous if other properties are desired of the solution. In the quadratic case, we begin with the equation

$$
\begin{equation*}
\sum_{i=-\infty}^{\infty} A_{i} B_{i-2}^{2}\left(t_{j}\right)=\frac{1}{t_{j+1}-t_{j-1}}\left[A_{j}\left(t_{j+1}-t_{j}\right)+A_{j+1}\left(t_{j}-t_{j-1}\right)\right] \tag{14}
\end{equation*}
$$

Its justification is left to Problem 9.3.26. If the interpolation conditions (13) are now imposed, we obtain the following system of equations, which gives the necessary and sufficient conditions on the coefficients:

$$
\begin{equation*}
A_{j}\left(t_{j+1}-t_{j}\right)+A_{j+1}\left(t_{j}-t_{j-1}\right)=y_{j}\left(t_{j+1}-t_{j-1}\right) \quad(0 \leqq j \leqq n) \tag{15}
\end{equation*}
$$

This is a system of $n+1$ linear equations in $n+2$ unknowns $A_{0}, A_{1}, \ldots, A_{n+1}$.
One way to solve Equation (15) is to assign any value to A_{0} and then use Equation (15) to compute for $A_{1}, A_{2}, \ldots, A_{n+1}$, recursively. For this purpose, the equations could be rewritten as

$$
\begin{equation*}
A_{j+1}=\alpha_{j}+\beta_{j} A_{j} \quad(0 \leqq j \leqq n) \tag{16}
\end{equation*}
$$

where these abbreviations have been used:

$$
\left\{\begin{array}{l}
\alpha_{j}=y_{j}\left(\frac{t_{j+1}-t_{j-1}}{t_{j}-t_{j-1}}\right) \\
\beta_{j}=\frac{t_{j}-t_{j+1}}{t_{j}-t_{j-1}}
\end{array} \quad(0 \leqq j \leqq n)\right.
$$

To keep the coefficients small in magnitude, we recommend selecting A_{0} such that the expression

$$
\Phi=\sum_{i=0}^{n+1} A_{i}^{2}
$$

will be a minimum. To determine this value of A_{0}, we proceed as follows: By successive substitution using Equation (16), we can show that

$$
\begin{equation*}
A_{j+1}=\gamma_{j}+\delta_{j} A_{0} \quad(0 \leqq j \leqq n) \tag{17}
\end{equation*}
$$

where the coefficients γ_{j} and δ_{j} are obtained recursively by this algorithm:

$$
\left\{\begin{array}{ll}
\gamma_{0}=\alpha_{0} & \delta_{0}=\beta_{0} \tag{18}\\
\gamma_{j}=\alpha_{j}+\beta_{j} \gamma_{j-1} & \delta_{j}=\beta_{j} \delta_{j-1}
\end{array} \quad(1 \leqq j \leqq n)\right.
$$

Then Φ is a quadratic function of A_{0} as follows:

$$
\begin{aligned}
\Phi & =A_{0}^{2}+A_{1}^{2}+\cdots+A_{n+1}^{2} \\
& =A_{0}^{2}+\left(\gamma_{0}+\delta_{0} A_{0}\right)^{2}+\left(\gamma_{1}+\delta_{1} A_{0}\right)^{2}+\cdots+\left(\gamma_{n}+\delta_{n} A_{0}\right)^{2}
\end{aligned}
$$

To find the minimum of Φ, we take its derivative with respect to A_{0} and set it equal to zero:

$$
\frac{d \Phi}{d A_{0}}=2 A_{0}+2\left(\gamma_{0}+\delta_{0} A_{0}\right) \delta_{0}+2\left(\gamma_{1}+\delta_{1} A_{0}\right) \delta_{1}+\cdots+2\left(\gamma_{n}+\delta_{n} A_{0}\right) \delta_{n}=0
$$

This is equivalent to $q A_{0}+p=0$, where

$$
\left\{\begin{array}{l}
q=1+\delta_{0}^{2}+\delta_{1}^{2}+\cdots+\delta_{n}^{2} \\
p=\gamma_{0} \delta_{0}+\gamma_{1} \delta_{1}+\cdots+\gamma_{n} \delta_{n}
\end{array}\right.
$$

Pseudocode and a Curve-Fitting Example

A procedure that computes coefficients $A_{0}, A_{1}, \ldots, A_{n+1}$ in the manner outlined above is given now. In its calling sequence, $\left(t_{i}\right)_{0: n}$ is the knot array, $\left(y_{i}\right)_{0: n}$ is the array of abscissa points, $\left(a_{i}\right)_{0: n+1}$ is the array of A_{i} coefficients, and $\left(h_{i}\right)_{0: n+1}$ is an array that contains $h_{i}=$ $t_{i}-t_{i-1}$. Only $n,\left(t_{i}\right)$, and $\left(y_{i}\right)$ are input values. They are available unchanged when the routine is finished. Arrays $\left(a_{i}\right)$ and $\left(h_{i}\right)$ are computed and available as output.

```
procedure BSpline2_Coef (n,(t }\mp@subsup{t}{i}{}),(\mp@subsup{y}{i}{}),(\mp@subsup{a}{i}{}),(\mp@subsup{h}{i}{})
integer }i,n;\quad\mathrm{ real }\delta,\gamma,p,
real array }(\mp@subsup{a}{i}{}\mp@subsup{)}{0:n+1}{},(\mp@subsup{h}{i}{}\mp@subsup{)}{0:n+1}{},(\mp@subsup{t}{i}{}\mp@subsup{)}{0:n}{},(\mp@subsup{y}{i}{}\mp@subsup{)}{0:n}{
for }i=1\mathrm{ to }n\mathrm{ do
        hi}\leftarrow\mp@subsup{t}{i}{}-\mp@subsup{t}{i-1}{
end for
ho}\leftarrow\mp@subsup{h}{1}{
hn+1
\delta}\leftarrow-
\gamma}\leftarrow2\mp@subsup{y}{0}{
p}\leftarrow\delta
q}\leftarrow
for }i=1\mathrm{ to }n\mathrm{ do
    r\leftarrowhhi+1}/\mp@subsup{h}{i}{
    \delta}\leftarrow-r
    \gamma\leftarrow-r\gamma+(r+1)\mp@subsup{y}{i}{}
    p\leftarrowp+\gamma\delta
    q}\leftarrowq+\mp@subsup{\delta}{}{2
end for
```

```
\(a_{0} \leftarrow-p / q\)
for \(i=1\) to \(n+1\) do
    \(a_{i} \leftarrow\left[\left(h_{i-1}+h_{i}\right) y_{i-1}-h_{i} a_{i-1}\right] / h_{i-1}\)
end for
end procedure BSpline2_Coef
```

Next we give a procedure function BSpline 2 Eval for computing values of the quadratic spline given by $S(x)=\sum_{i=0}^{n+1} A_{i} B_{i-2}^{2}(x)$. Its calling sequence has some of the same variables as in the preceding pseudocode. The input variable x is a single real number that should lie between t_{0} and t_{n}. The result of Problem 9.3.26 is used.

```
real function \(\operatorname{BSpline} 2 \operatorname{Eval}\left(n,\left(t_{i}\right),\left(a_{i}\right),\left(h_{i}\right), x\right)\)
integer \(i, n\); real \(d, e, x\); real array \(\left(a_{i}\right)_{0: n+1},\left(h_{i}\right)_{0: n+1},\left(t_{i}\right)_{0: n}\)
for \(i=n-1\) to 0 step -1 do
    if \(x-t_{i} \geqq 0\) then exit loop
end for
\(i \leftarrow i+1\)
\(d \leftarrow\left[a_{i+1}\left(x-t_{i-1}\right)+a_{i}\left(t_{i}-x+h_{i+1}\right)\right] /\left(h_{i}+h_{i+1}\right)\)
\(e \leftarrow\left[a_{i}\left(x-t_{i-1}+h_{i-1}\right)+a_{i-1}\left(t_{i-1}-x+h_{i}\right)\right] /\left(h_{i-1}+h_{i}\right)\)
BSpline2_Eval \(\leftarrow\left[d\left(x-t_{i-1}\right)+e\left(t_{i}-x\right)\right] / h_{i}\)
end function BSpline2 Eval
```

Using the table of 20 points from Section 9.2, we can compare the resulting natural cubic spline curve with the quadratic spline produced by the procedures BSpline2_Coef and BSpline2 Eval. The first of these curves is shown in Figure 9.8, and the second is in Figure 9.16. The latter is reasonable but perhaps not as pleasing as the former. These curves show once again that cubic natural splines are simple and elegant functions for curve fitting.

FIGURE 9.16
Quadratic interpolating spline

Schoenberg's Process

An efficient process due to Schoenberg [1967] can also be used to obtain B spline approximations to a given function. Its quadratic version is defined by

$$
\begin{equation*}
S(x)=\sum_{i=-\infty}^{\infty} f\left(\tau_{i}\right) B_{i}^{2}(x) \quad \text { where } \quad \tau_{i}=\frac{1}{2}\left(t_{i+1}+t_{i+2}\right) \tag{19}
\end{equation*}
$$

Here, of course, the knots are $\left\{t_{i}\right\}_{i=-\infty}^{\infty}$, and the points where f must be evaluated are midpoints between the knots.

Equation (19) is useful in producing a quadratic spline function that approximates f. The salient properties of this process are as follows:

1. If $f(x)=a x+b$, then $S(x)=f(x)$.
2. If $f(x) \geqq 0$ everywhere, then $S(x) \geqq 0$ everywhere.
3. $\max _{x}|S(x)| \leqq \max _{x}|f(x)|$.
4. If f is continuous on $[a, b]$, if $\delta=\max _{i}\left|t_{i+1}-t_{i}\right|$, and if $\delta<b-a$, then for x in $[a, b]$,

$$
|S(x)-f(x)| \leqq \frac{3}{2} \max _{a \leqq u \leqq v \leqq u+\delta \leqq b}|f(u)-f(v)|
$$

5. The graph of S does not cross any line in the plane a greater number of times than does the graph of f.

Some of these properties are elementary; others are more abstruse. Property 1 is outlined in Problem 9.3.29. Property 2 is obvious because $B_{i}^{2}(x) \geqq 0$ for all x. Property 3 follows easily from Equation (19) because if $|f(x)| \leqq M$, then

$$
|S(x)| \leqq\left|\sum_{i=-\infty}^{\infty} f\left(\tau_{i}\right) B_{i}^{2}(x)\right| \leqq \sum_{i=-\infty}^{\infty} \mid f\left(\tau_{i}\right) \| B_{i}^{2}(x) \leqq M \sum_{i=-\infty}^{\infty} B_{i}^{2}(x)=M
$$

Properties 4 and 5 will be accepted without proof. Their significance, however, should not be overlooked. By Property 4, we can make the function S close to a continuous function f simply by making the mesh size δ small. This is because $f(u)-f(v)$ can be made as small as we wish simply by imposing the inequality $|u-v| \leqq \delta$ (uniform continuity property). Property 5 can be interpreted as a shape-preserving attribute of the approximation process. In a crude interpretation, S should not exhibit more undulations than f.

Pseudocode

A pseudocode to obtain a spline approximation by means of Schoenberg's process is developed here. Suppose that f is defined on an interval $[a, b]$ and that the spline approximation of Equation (19) is wanted on the same interval. We define nodes $\tau_{i}=a+i h$, where $h=(b-a) / n$. Here, i can be any integer, but the nodes in $[a, b]$ are only $\tau_{0}, \tau_{1}, \ldots, \tau_{n}$. To have $\tau_{i}=\frac{1}{2}\left(t_{i+1}+t_{i+2}\right)$, we define the knots $t_{i}=a+\left(i-\frac{3}{2}\right) h$. In Equation (19), the only B splines B_{i}^{2} that are active on $[a, b]$ are $B_{-1}^{2}, B_{0}^{2}, \ldots, B_{n+1}^{2}$. Hence, for our purposes, Equation (19) becomes

$$
\begin{equation*}
S(x)=\sum_{i=-1}^{n+1} f\left(\tau_{i}\right) B_{i}^{2}(x) \tag{20}
\end{equation*}
$$

Thus, we require the values of f at $\tau_{-1}, \tau_{0}, \ldots, \tau_{n+1}$. Two of these nodes are outside the interval $[a, b]$; therefore, we furnish linearly extrapolated values in the code by defining

$$
\begin{aligned}
f\left(\tau_{-1}\right) & =2 f\left(\tau_{0}\right)-f\left(\tau_{1}\right) \\
f\left(\tau_{n+1}\right) & =2 f\left(\tau_{n}\right)-f\left(\tau_{n-1}\right)
\end{aligned}
$$

To use the formulas in Problem 9.3.26, we write

$$
S(x)=\sum_{i=1}^{n+3} D_{i} B_{i-2}^{2}(x) \quad\left[D_{i}=f\left(\tau_{i-2}\right)\right]
$$

A pseudocode to compute $D_{1}, D_{2}, \ldots, D_{n+3}$ is given now. In the calling sequence for procedure Schoenberg_Coef, f is an external function. After execution, the $n+3$ desired coefficients are in the $\left(d_{i}\right)$ array.

```
procedure Schoenberg_Coef \(\left(f, a, b, n,\left(d_{i}\right)\right)\)
integer \(i\); real \(a, b, h\); real array \(\left(d_{i}\right)_{1: n+3}\)
external function \(f\)
\(h \leftarrow(b-a) / n\)
for \(i=2\) to \(n+2\) do
    \(d_{i} \leftarrow f(a+(i-2) h)\)
end for
\(d_{1} \leftarrow 2 d_{2}-d_{3}\)
\(d_{n+3} \leftarrow 2 d_{n+2}-d_{n+1}\)
end procedure Schoenberg_Coef
```

After the coefficients D_{i} have been obtained by the procedure just given, we can recover values of the spline $S(x)$ in Equation (20). Here, we use the algorithm of Problem 9.3.26. Given an x, we first need to know where it is relative to the knots. To determine k such that $t_{k-1} \leqq x \leqq t_{k}$, we notice that k should be the largest integer such that $t_{k-1} \leqq x$. This inequality is equivalent to the inequality $k \leqq \frac{5}{2}+(x-a) / h$, as is easily verified. This explains the calculations of k in the pseudocode. The location of x is indicated in Figure 9.17. In the calling sequence for function Schoenberg_Eval, a and b are the ends of the interval, and x is a point where the value of $S(x)$ is desired. The procedure determines knots t_{i} in such a way that the equally spaced points τ_{i} in the preceding procedure satisfy $\tau_{i}=\frac{1}{2}\left(t_{i+1}+t_{i+2}\right)$.

FIGURE 9.17
Location of x


```
real function Schoenberg \(\operatorname{Eval}\left(a, b, n,\left(d_{i}\right), x\right)\)
integer \(k\) : real \(c, h, p, w\); real array \(\left(d_{i}\right)_{1: n+3}\)
\(h \leftarrow(b-a) / n\)
\(k \leftarrow \operatorname{integer}[(x-a) / h+5 / 2]\)
\(p \leftarrow x-a-(k-5 / 2) h\)
\(c \leftarrow\left[d_{k+1} p+d_{k}(2 h-p)\right] /(2 h)\)
\(e \leftarrow\left[d_{k}(p+h)+d_{k-1}(h-p)\right] /(2 h)\)
Schoenberg_Eval \(\leftarrow[c p+e(h-p)] / h\)
end function Schoenberg_Eval
```


Bézier Curves

In computer-aided design, it is useful to have a procedure for producing a curve that goes through (or near to) some control points, or a curve that can be easily manipulated to give a desired shape. High-degree polynomial interpolation is generally not suitable for this sort of task, as one might guess from the negative remarks previously made about them. Experience shows that if one specifies a number of control points through which the polynomial must pass, the overall shape of the resulting curve may be severely disappointing!

Polynomials can be used in a different way, however, leading to Bézier curves. Bézier curves use as a basis for the space Π_{n} (all polynomials of degree not exceeding n) a special set of polynomials that lend themselves to the task at hand. We standardize to the interval $[0,1]$ and fix a value of n. Next, we define basic polynomial functions

$$
\varphi_{n i}(x)=\binom{n}{i} x^{i}(1-x)^{n-i} \quad(0 \leqq i \leqq n)
$$

The polynomials $\varphi_{n i}$ are the constituents of the Bernstein polynomials. For a continuous function f defined on $[0,1]$, Bernstein, in 1912, proved that the sequence of polynomials

$$
p_{n}(x)=\sum_{i=0}^{n} f\left(\frac{i}{n}\right) \varphi_{n i}(x) \quad(n \geqq 1)
$$

converges uniformly to f, thus providing a very attractive proof of the Weierstrass Approximation Theorem.

The graphs of a few polynomials $\varphi_{n i}$ are shown in Figure 9.18, where we used $n=7$ and $i=0,1,5$. The Bernstein basic polynomials are found in mathematical software systems such as Maple or Mathematica, for example.

FIGURE 9.18
First few Bernstein basis polynomials

Bernstein polynomials have two salient properties.

PROPERTIES

For all x satisfying $0 \leqq x \leqq 1$,

1. $\varphi_{n i}(x) \geqq 0$
2. $\sum_{i=0}^{n} \varphi_{n i}(x)=1$

Any set of functions having these two properties is called a partition of unity on the interval $[0,1]$. Notice that the second equation above is actually valid for all real x. The set $\left\{\varphi_{n 0}, \varphi_{n 1}, \ldots, \varphi_{n n}\right\}$ is a basis for the space Π_{n}. Consequently, every polynomial of degree at most n has a representation

$$
\sum_{i=0}^{n} a_{i} \varphi_{n i}(x)
$$

If we want to create a polynomial that comes close to interpolating values $\left(i / n, y_{i}\right)$ for $0 \leqq i \leqq n$, we can use $\sum_{i=0}^{n} y_{i} \varphi_{n i}$ to start and then, after examining the resulting curve, adjust the coefficients to change the shape of the curve. This is one procedure that can be used in computer-aided design. Changing the value of y_{i} will change the curve principally in the vicinity of i / n because of the local nature of the basic polynomials $\varphi_{n i}$.

Another way in which these polynomials can be used is in creating curves that are not simply graphs of a function f. Here, we turn to a vector form of the procedure suggested above. If $n+1$ vectors $v_{0}, v_{1}, \ldots, v_{n}$ are prescribed, say, in \mathbb{R}^{2} or \mathbb{R}^{3}, the expression

$$
u(t)=\sum_{i=0}^{n} \varphi_{n i}(t) v_{i} \quad(0 \leqq t \leqq 1)
$$

makes sense, since the right-hand side is (for each t) a linear combination of the vectors v_{i}. As t runs over the interval $[0,1]$, the vector $u(t)$ describes a curve in the space where the vectors v_{i} are situated. This curve lies in the convex hull of the vectors v_{i}, because $u(t)$ is a convex linear combination of the v_{i}. This requires the two properties of $\varphi_{n i}$ mentioned above.

To illustrate this procedure, we have selected seven points in the plane and have drawn the closed curve generated by the above equation; that is, by the vector $u(t)$. Figure 9.19 shows the resulting curve as well as the control points. In Figure 9.19, the control points

FIGURE 9.19
Curve using control points

are the vertices of the polygon, and the curve is the one that results in the manner described. Mathematical software systems such as Maple and Mathematica can be used to do this.

A glance at Figure 9.18 will suggest to the reader that perhaps B splines can be used in the role of the Bernstein functions $\varphi_{n i}$. Indeed, that is the case, and B splines have taken over in most programs for computer-aided design. Thus, to obtain a curve that comes close to a set of points (t_{i}, y_{i}), we can set up a system of B splines (for example, cubic B splines) having knots t_{i}. Then the linear combination $\sum_{i=0}^{n} y_{i} B_{i}^{3}$ can be examined to see whether it has the desired shape. Here, of course, B_{i}^{3} denotes a cubic B spline whose support is the interval $\left(t_{i}, t_{i+4}\right)$.

The vector case is like the one described above, except that the functions $\varphi_{n i}$ are replaced by B_{i}^{3}. Also, it is easier to take the knots as integers and let t run from 0 to n. The properties 1 and 2 of the $\varphi_{n i}$ displayed above are also shared by the B splines.

Summary

(1) The \mathbf{B} spline of degree $\mathbf{0}$ is

$$
B_{i}^{0}(x)= \begin{cases}1 & \left(t_{i} \leqq x<t_{i+1}\right) \\ 0 & \text { (otherwise) }\end{cases}
$$

Higher-degree B splines are defined recursively:

$$
B_{i}^{k}(x)=\left(\frac{x-t_{i}}{t_{i+k}-t_{i}}\right) B_{i}^{k-1}(x)+\left(\frac{t_{i+k+1}-x}{t_{i+k+1}-t_{i+1}}\right) B_{i+1}^{k-1}(x)
$$

where $k=1,2, \ldots$ and $i=0, \pm 1, \pm 2, \ldots$.
(2) Some properties are

$$
\begin{array}{ll}
B_{i}^{k}(x)=0 & x \notin\left[t_{i}, t_{i+k+1}\right) \\
B_{i}^{k}(x)>0 & x \in\left(t_{i}, t_{i+k+1}\right)
\end{array}
$$

An efficient method to evaluate a function of the form

$$
f(x)=\sum_{i=-\infty}^{\infty} C_{i}^{k} B_{i}^{k}(x)
$$

is to use

$$
C_{i}^{j-1}=C_{i}^{j}\left(\frac{x-t_{i}}{t_{i+j}-t_{i}}\right)+C_{i-1}^{j}\left(\frac{t_{i+j}-x}{t_{i+j}-t_{i}}\right)
$$

(3) The derivative of \mathbf{B} splines is

$$
\frac{d}{d x} B_{i}^{k}(x)=\left(\frac{k}{t_{i+k}-t_{i}}\right) B_{i}^{k-1}(x)-\left(\frac{k}{t_{i+k+1}-t_{i+1}}\right) B_{i+1}^{k-1}(x)
$$

A useful formula is

$$
\frac{d}{d x} \sum_{i=-\infty}^{\infty} c_{i} B_{i}^{k}(x)=\sum_{i=-\infty}^{\infty} d_{i} B_{i}^{k-1}(x)
$$

where $d_{i}=k\left(c_{i}-c_{i-1}\right) /\left(t_{i+k}-t_{i}\right)$. A basic result needed for integration is

$$
\int_{-\infty}^{x} B_{i}^{k}(s) d s=\left(\frac{t_{i+k+1}-t_{i}}{k+1}\right) \sum_{j=i}^{\infty} B_{j}^{k+1}(x)
$$

A resulting useful formula is

$$
\int_{-\infty}^{x} \sum_{i=-\infty}^{\infty} c_{i} B_{i}^{k}(s) d s=\sum_{i=-\infty}^{\infty} e_{i} B_{i}^{k+1}(x)
$$

where $e_{i}=1 /(k+1) \sum_{j=-\infty}^{i} c_{j}\left(t_{j+k+1}-t_{j}\right)$.
(4) To determine the coefficients in the expression

$$
S(x)=\sum_{i=-\infty}^{\infty} A_{i} B_{i-k}^{2}(x)
$$

so that the resulting spline function interpolates a prescribed table, we use the condition

$$
A_{j}\left(t_{j+1}-t_{j}\right)+A_{j+1}\left(t_{j}-t_{j-1}\right)=y_{j}\left(t_{j+1}-t_{j-1}\right) \quad(0 \leqq j \leqq n)
$$

This is a system of $n+1$ linear equations in $n+2$ unknowns $A_{0}, A_{1}, \ldots, A_{n+1}$ that can be solved recursively.
(5) Schoenberg's process is an efficient process to obtain B spline approximations to a given function. For example, its quadratic version is defined by

$$
S(x)=\sum_{i=-\infty}^{\infty} f\left(\tau_{i}\right) B_{i}^{2}(x)
$$

where $\tau_{i}=\frac{1}{2}\left(t_{i+1}+t_{i+2}\right)$ and the knots are $\left\{t_{i}\right\}_{i=-\infty}^{\infty}$. The points τ_{i} where f must be evaluated are midpoints between the knots.
(6) Bézier curves are used in computer-aided design for producing a curve that goes through (or near to) control points, or a curve that can be manipulated easily to give a desired shape. Bézier curves use Bernstein polynomials. For a continuous function f defined on $[0,1]$, the sequence of Bernstein polynomials

$$
p_{n}(x)=\sum_{i=0}^{n} f\left(\frac{i}{n}\right) \varphi_{n i}(x) \quad(n \geqq 1)
$$

converges uniformly to f. The polynomials $\varphi_{n i}$ are

$$
\varphi_{n i}(x)=\binom{n}{i} x^{i}(1-x)^{n-i} \quad(0 \leqq i \leqq n)
$$

Additional References

See Ahlberg et al. [1967], de Boor [1978], Farin [1990], MacLeod [1973], Schoenberg [1946, 1967], Schultz [1973], Schumaker [1981], Subbotin [1967], and Yamaguchi [1988].

Problems 9.3

1. Show that the functions $f_{n}(x)=\cos n x$ are generated by this recursive definition:

$$
\left\{\begin{array}{l}
f_{0}(x)=1, \quad f_{1}(x)=\cos x \\
f_{n+1}(x)=2 f_{1}(x) f_{n}(x)-f_{n-1}(x) \quad(n \geqq 1)
\end{array}\right.
$$

${ }^{a}$ 2. What functions are generated by the following recursive definition?

$$
\left\{\begin{array}{l}
f_{0}(x)=1, \quad f_{1}(x)=x \\
f_{n+1}(x)=2 x f_{n}(x)-f_{n-1}(x) \quad(n \geqq 1)
\end{array}\right.
$$

${ }^{a}$ 3. Find an expression for $B_{i}^{2}(x)$ and verify that it is piecewise quadratic. Show that $B_{i}^{2}(x)$ is zero at every knot except

$$
B_{i}^{2}\left(t_{i+1}\right)=\frac{t_{i+1}-t_{i}}{t_{i+2}-t_{i}} \quad \text { and } \quad B_{i}^{2}\left(t_{i+2}\right)=\frac{t_{i+3}-t_{i+2}}{t_{i+3}-t_{i+1}}
$$

4. Verify Equation (5).
${ }^{a}$ 5. Establish that $\sum_{i=-\infty}^{\infty} f\left(t_{i}\right) B_{i-1}^{1}(x)$ is a first-degree spline that interpolates f at every knot. What is the zero-degree spline that does so?
5. Show that if $t_{m} \leqq x<t_{m+1}$, then

$$
\sum_{i=-\infty}^{\infty} c_{i} B_{i}^{k}(x)=\sum_{i=m-k}^{m} c_{i} B_{i}^{k}(x)
$$

7. Let $h_{i}=t_{i+1}-t_{i}$. Show that if

$$
S(x)=\sum_{i=-\infty}^{\infty} c_{i} B_{i}^{2}(x) \quad \text { and if } \quad c_{i-1} h_{i-1}+c_{i-2} h_{i}=y_{i}\left(h_{i}+h_{i-1}\right)
$$

for all i, then $S\left(t_{m}\right)=y_{m}$ for all m. Hint: Use Problem 3.
8. Show that the coefficients C_{i}^{j-1} generated by Equation (7) satisfy the condition $\min _{i} C_{i}^{j-1} \leqq f(x) \leqq \max _{i} C_{i}^{j-1}$.
9. For equally spaced knots, show that $k(k+1)^{-1} B_{i}^{k}(x)$ lies in the interval with endpoints $B_{i}^{k-1}(x)$ and $B_{i+1}^{k-1}(x)$.
10. Show that $B_{i}^{k}(x)=B_{0}^{k}\left(x-t_{i}\right)$ if the knots are the integers on the real line $\left(t_{i}=i\right)$.
11. Show that

$$
\int_{-\infty}^{\infty} B_{i}^{k}(x) d x=\frac{t_{i+k+1}-t_{i}}{k+1}
$$

12. Show that the class of all spline functions of degree m that have knots $x_{0}, x_{1}, \ldots, x_{n}$ includes the class of polynomials of degree m.
13. Establish Equation (8) by induction.
${ }^{a}$ 14. Which B splines B_{i}^{k} have a nonzero value on the interval $\left(t_{n}, t_{m}\right)$? Explain.
${ }^{a}$ 15. Show that on $\left[t_{i}, t_{i+1}\right]$ we have

$$
B_{i}^{k}(x)=\frac{\left(x-t_{i}\right)^{k}}{\left(t_{i+1}-t_{i}\right)\left(t_{i+2}-t_{i}\right) \cdots\left(t_{i+k}-t_{i}\right)}
$$

${ }^{a}$ 16. Is a spline of the form $S(x)=\sum_{i=-\infty}^{\infty} c_{i} B_{i}^{k}(x)$ uniquely determined by a finite set of interpolation conditions $S\left(t_{i}\right)=y_{i}(0 \leqq i \leqq n)$? Why or why not?
${ }^{a}$ 17. If the spline function $S(x)=\sum_{i=-\infty}^{\infty} c_{i} B_{i}^{k}(x)$ vanishes at each knot, must it be identically zero? Why or why not?
18. What is the necessary and sufficient condition on the coefficients in order that $\sum_{i=-\infty}^{\infty} c_{i} B_{i}^{k}=0$? State and prove.
${ }^{a}$ 19. Expand the function $f(x)=x$ in an infinite series $\sum_{i=-\infty}^{\infty} c_{i} B_{i}^{1}$.
${ }^{a}$ 20. Establish that $\sum_{i=-\infty}^{\infty} B_{i}^{k}$ is a constant function by means of Equation (9).
21. Show that if $k \geqq 2$, then

$$
\begin{aligned}
& \frac{d^{2}}{d x^{2}} \sum_{i=-\infty}^{\infty} c_{i} B_{i}^{k}=k(k-1) \sum_{i=-\infty}^{\infty}\left[\frac{c_{i}-c_{i-1}}{\left(t_{i+k}-t_{i}\right)\left(t_{i+k-1}-t_{i}\right)}\right. \\
& \left.\quad-\frac{c_{i-1}-c_{i-2}}{\left(t_{i+k-1}-t_{i-1}\right)\left(t_{i+k-1}-t_{i}\right)}\right] B_{i}^{k-2}
\end{aligned}
$$

22. Prove that if the knots are taken to be the integers, then

$$
B_{-1}^{1}(x)=\max \{0,1-|x|\}
$$

23. Letting the knots be the integers, show that

$$
B_{0}^{2}(x)=\left\{\begin{aligned}
0 & (x<0) \\
\frac{1}{2} x^{2} & (0 \leqq x<1) \\
\frac{1}{2}\left(6 x-3-2 x^{2}\right) & (1 \leqq x<2) \\
\frac{1}{2}(3-x)^{2} & (2 \leqq x<3) \\
0 & (x \leqq 3)
\end{aligned}\right.
$$

${ }^{a}$ 24. Establish formulas

$$
\begin{aligned}
& B_{i-1}^{2}\left(t_{i}\right)=\frac{t_{i}-t_{i-1}}{t_{i+1}-t_{i-1}}=\frac{h_{i-1}}{h_{i}+h_{i-1}} \\
& B_{i-2}^{2}\left(t_{i}\right)=\frac{t_{i+1}-t_{i}}{t_{i+1}-t_{i-1}}=\frac{h_{i}}{h_{i}+h_{i-1}}
\end{aligned}
$$

where $h_{i}=t_{i+1}-t_{i}$.
25. Show by induction that if

$$
A_{j}=\frac{1}{t_{j-1}-t_{j-2}}\left[y_{j-1}\left(t_{j}-t_{j-2}\right)-A_{j-1}\left(t_{j}-t_{j-1}\right)\right]
$$

for $j=2,3, \ldots, n+1$, then

$$
\sum_{i=0}^{n+1} A_{i} B_{i-2}^{2}\left(t_{j}\right)=y_{j} \quad(0 \leqq j \leqq n)
$$

26. Show that if $S(x)=\sum_{i=-\infty}^{\infty} A_{i} B_{i-2}^{2}(x)$ and $t_{j-1} \leqq x \leqq t_{j}$, then

$$
S(x)=\frac{1}{t_{j}-t_{j-1}}\left[d\left(x-t_{j-1}\right)+e\left(t_{j}-x\right)\right]
$$

with

$$
d=\frac{1}{t_{j+1}-t_{j-1}}\left[A_{j+1}\left(x-t_{j-1}\right)+A_{j}\left(t_{j+1}-x\right)\right]
$$

and

$$
e=\frac{1}{t_{j}-t_{j-2}}\left[A_{j}\left(x-t_{j-2}\right)+A_{j-1}\left(t_{j}-x\right)\right]
$$

27. Verify Equations (17) and (18) by induction, using Equation (16).
${ }^{a}$ 28. If points $\tau_{0}<\tau_{1}<\cdots<\tau_{n}$ are given, can we always determine points t_{i} such that $t_{i}<t_{i+1}$ and $\tau_{i}=\frac{1}{2}\left(t_{i+1}+t_{i+2}\right)$? Why or why not?
28. Show that if $f(x)=x$, then Schoenberg's process produces $S(x)=x$.
${ }^{a}$ 30. Show that $x^{2}=\sum_{i=-\infty}^{\infty} t_{i+1} t_{i+2} B_{i}^{2}(x)$.
29. Let $f(x)=x^{2}$. Assume that $t_{i+1}-t_{i} \leqq \delta$ for all i. Show that the quadratic spline approximation to f given by Equation (19) differs from f by no more than $\delta^{2} / 4$. Hint: Use the preceding problem and the fact that $\sum_{i=-\infty}^{\infty} B_{i}^{2} \equiv 1$.
${ }^{a}$ 32. Verify (for $k>0$) that $B_{i}^{k}\left(t_{j}\right)=0$ if and only if $j \leqq i$ or $j \geqq i+k+1$.
${ }^{a}$ 33. What is the maximum value of B_{i}^{2} and where does it occur?
30. Let the knots be the integers, and prove that

$$
B_{0}^{3}(x)=\left\{\begin{aligned}
0 & (x<0) \\
\frac{1}{6} x^{3} & (0 \leqq x<1) \\
\frac{1}{6}\left(4-3 x(x-2)^{2}\right) & (1 \leqq x<2) \\
\frac{1}{6}\left(4+3(x-4)(x-2)^{2}\right) & (2 \leqq x<3) \\
\frac{1}{6}(4-x)^{3} & (3 \leqq x<4) \\
0 & (x \geqq 4)
\end{aligned}\right.
$$

35. In the theory of Bézier curves, using the Bernstein basic polynomials, show that the curve passes through the first point, v_{0}.
36. Show that a linear \mathbf{B} spline with integer knots can be written in matrix form as

$$
S(x)=\left[\begin{array}{ll}
x & 1
\end{array}\right]\left[\begin{array}{rr}
-1 & 1 \\
2 & 0
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{0}
\end{array}\right]=b_{10} c_{0}+b_{11} c_{1}
$$

where

$$
B_{0}^{1}(x)= \begin{cases}b_{10}=x & (0 \leqq x<1) \\ b_{11}=2-x & (1 \leqq x<2) \\ 0 & (\text { otherwise })\end{cases}
$$

37. Show that the quadratic \mathbf{B} spline with integer knots can be written in matrix form as

$$
S(x)=\frac{1}{2}\left[\begin{array}{lll}
x^{2} & x & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & -2 & 1 \\
-6 & 6 & 0 \\
9 & -3 & 0
\end{array}\right]\left[\begin{array}{l}
c_{2} \\
c_{1} \\
c_{0}
\end{array}\right]=b_{20} c_{0}+b_{21} c_{1}+b_{22} c_{2}
$$

where

$$
B_{0}^{2}(x)= \begin{cases}b_{20} & (0 \leqq x<1) \\ b_{21} & (1 \leqq x<2) \\ b_{22} & (2 \leqq x<3) \\ 0 & \text { (otherwise) }\end{cases}
$$

Hint: See Problem 9.3.23.
38. Show that the cubic B spline with integer knots can be written as

$$
\begin{aligned}
S(x) & =\frac{1}{6}\left[\begin{array}{llll}
x^{3} & x^{2} & x & 1
\end{array}\right]\left[\begin{array}{rrrr}
-1 & 3 & -3 & 1 \\
12 & -24 & 12 & 0 \\
-48 & 60 & -12 & 0 \\
64 & -44 & 4 & 0
\end{array}\right]\left[\begin{array}{l}
c_{3} \\
c_{2} \\
c_{1} \\
c_{0}
\end{array}\right] \\
& =b_{30} c_{0}+b_{31} c_{1}+b_{32} c_{2}+b_{33} c_{3}
\end{aligned}
$$

where

$$
B_{0}^{3}(x)= \begin{cases}b_{30} & (0 \leqq x<1) \\ b_{31} & (1 \leqq x<2) \\ b_{32} & (2 \leqq x<3) \\ b_{33} & (3 \leqq x<4) \\ 0 & \text { (otherwise) }\end{cases}
$$

Hint: See Problem 9.3.34.

Computer Problems 9.3

1. Using an automatic plotter, graph B_{0}^{k} for $k=0,1,2,3,4$. Use integer knots $t_{i}=i$ over the interval $[0,5]$.
2. Let $t_{i}=i$ (so the knots are the integer points on the real line). Print a table of 100 values of the function $3 B_{7}^{1}+6 B_{8}^{1}-4 B_{9}^{1}+2 B_{10}^{1}$ on the interval [6,14]. Using a plotter, construct the graph of this function on the given interval.
3. (Continuation) Repeat for the function $3 B_{7}^{2}+6 B_{8}^{2}-4 B_{9}^{2}+2 B_{10}^{2}$.
4. Assuming that $S(x)=\sum_{i=0}^{n} c_{i} B_{i}^{k}(x)$, write a procedure to evaluate $S^{\prime}(x)$ at a specified x. Input is $n, k, x, t_{0}, \ldots, t_{n+k+1}$ and $c_{0}, c_{1}, \ldots, c_{n}$.
5. Write a procedure to evaluate $\int_{a}^{b} S(x) d x$, using the assumption that $S(x)=$ $\sum_{i=0}^{n} c_{i} B_{i}^{k}(x)$. Input will be $n, k, a, b, c_{0}, c_{1}, \ldots, c_{n}, t_{0}, \ldots, t_{n+k+1}$.
6. (March of the B splines) Produce graphs of several B splines of the same degree marching across the x-axis. Use an automatic plotter or a computer package with on-screen graphics capabilities, such as Matlab.
${ }^{a}$ 7. Historians have estimated the size of the Army of Flanders as follows:

Date	Sept. 1572	Dec. 1573	Mar. 1574	Jan. 1575	May 1576
Number	67,259	62,280	62,350	59,250	51,457
Feb. 1578	Sept. 1580	Oct. 1582	Apr. 1588	Nov. 1591	Mar. 1607
27,603	45,435	61,162	63,455	62,164	41,471

Fit the table with a quadratic B spline, and use it to find the average size of the army during the period given. (The average is defined by an integral.)
8. Rewrite procedures BSpline2_Coef and BSpline Eval so that the array $\left(h_{i}\right)$ is not used.
9. Rewrite procedures BSpline2_Coef and BSpline2_Eval for the special case of equally spaced knots, simplifying the code where possible.
10. Write a procedure to produce a spline approximation to $F(x)=\int_{a}^{x} f(t) d t$. Assume that $a \leqq x \leqq b$. Begin by finding a quadratic spline interpolant to f at the n points $t_{i}=a+i(b-a) / n$. Test your program on the following:
a. $f(x)=\sin x \quad(0 \leqq x \leqq \pi)$
b. $f(x)=e^{x}$
$(0 \leqq x \leqq 4)$
c. $f(x)=\left(x^{2}+1\right)^{-1}$
$(0 \leqq x \leqq 2)$
11. Write a procedure to produce a spline function that approximates $f^{\prime}(x)$ for a given f on a given interval $[a, b]$. Begin by finding a quadratic spline interpolant to f at $n+1$ points evenly spaced in $[a, b]$, including endpoints. Test your procedure on the functions suggested in the preceding computer problem.
12. Define f on $[0,6]$ to be a polygonal line that joins points $(0,0),(1,2),(3,3),(5,3)$, and $(6,0)$. Determine spline approximations to f, using Schoenberg's process and taking $7,13,19,25$, and 31 knots.
13. Write suitable code to calculate $\sum_{i=-\infty}^{\infty} f\left(s_{i}\right) B_{i}^{2}(x)$ with $s_{i}=\frac{1}{2}\left(t_{i+1}+t_{i+2}\right)$. Assume that f is defined on $[a, b]$ and that x will lie in $[a, b]$. Assume also that $t_{1}<a<t_{2}$ and $t_{n+1}<b<t_{n+2}$. (Make no assumption about the spacing of knots.)
14. Write a procedure to carry out this approximation scheme:

$$
S(x)=\sum_{i=-\infty}^{\infty} f\left(\tau_{i}\right) B_{i}^{3}(x) \quad \tau_{i}=\frac{1}{3}\left(t_{i+1}+t_{i+2}+t_{i+3}\right)
$$

Assume that f is defined on $[a, b]$ and that $\tau_{i}=a+i h$ for $0 \leqq i \leqq n$, where $h=$ $(b-a) / n$.
15. Using a mathematical software system such as Matlab with B spline routines, compute and plot the spline curve in Figure 9.16 based on the 20 data points from Section 9.2. Vary the degree of the B splines from $0,1,2,3$, through 4 and observe the resulting curves.
16. Using B splines, write a program to perform a natural cubic spline interpolation at knots $t_{0}<t_{1}<\cdots<t_{n}$.
17. The documentation preparation system ${ }^{E T} T_{E} X$ is widely available and contains facilities for drawing some simple curves such as Bézier curves. Use this system to reproduce the following figure.

18. Use mathematical software such as found in Matlab, Maple, or Mathematica to plot the functions corresponding to
a. Figure 9.17.
b. Figure 9.18 .
c. Figure 9.19.
19. (Computer-aided geometric design) Use mathematical software for drawing twodimensional Bézier spline curves, and graph the script number five shown, using spline points and control points. See Farin [1990], Sauer [2006], and Yamaguchi [1988] for additional details.

Ordinary Differential Equations

In a simple electrical circuit, the current \mathcal{I} in amperes is a function of time: $\mathcal{I}(t)$. The function $\mathcal{I}(t)$ will satisfy an ordinary differential equation of the form

$$
\frac{d \mathcal{I}}{d t}=f(t, \mathcal{I})
$$

Here, the right-hand side is a function of t and I that depends on the circuit and on the nature of the electromotive force supplied to the circuit. Using methods developed in this chapter, we can solve the differential equation numerically to produce a table of \mathcal{I} as a function of t.

10.1 Taylor Series Methods

First, we present a general discussion of ordinary differential equations and their solutions.

Initial-Value Problem: Analytical versus Numerical Solution

An ordinary differential equation (ODE) is an equation that involves one or more derivatives of an unknown function. A solution of a differential equation is a specific function that satisfies the equation. Here are some examples of differential equations with their solutions. In each case, t is the independent variable and x is the dependent variable. Thus, x is the name of the unknown function of the independent variable t :

Equation

Solution

$$
\begin{aligned}
x^{\prime}-x & =e^{t} \\
x^{\prime \prime}+9 x & =e^{t} \\
x^{\prime}+\frac{1}{2 x} & =0
\end{aligned}
$$

$$
x^{\prime \prime}+9 x=e^{t} \quad x(t)=c_{1} \sin 3 t+c_{2} \cos 3 t
$$

$$
x(t)=\sqrt{c-t}
$$

In these three examples, the letter c denotes an arbitrary constant. The fact that such constants appear in the solutions is an indication that a differential equation does not, in general, determine a unique solution function. When occurring in a scientific problem, a differential equation is usually accompanied by auxiliary conditions that (together with the differential equation) specify the unknown function precisely.

In this chapter, we concentrate on one type of differential equation and one type of auxiliary condition: the initial-value problem for a first-order differential equation. The standard form that has been adopted is

$$
\left\{\begin{array}{l}
x^{\prime}=f(t, x) \tag{1}\\
x(a) \text { is given }
\end{array}\right.
$$

It is understood that x is a function of t, so the differential equation written in more detail looks like this:

$$
\frac{d x(t)}{d t}=f(t, x(t))
$$

Problem (1) is termed an initial-value problem because t can be interpreted as time and $t=a$ can be thought of as the initial instant in time. We want to be able to determine the value of x at any time t before or after a.

Here are some examples of initial-value problems, together with their solutions:

\[

\]

Although many methods exist for obtaining analytical solutions of differential equations, they are primarily limited to special differential equations. When applicable, they produce a solution in the form of a formula, such as shown in the preceding examples. Frequently, however, in practical problems, a differential equation is not amenable to solution by special methods, and a numerical solution must be sought. Even when a formal solution can be obtained, a numerical solution may be preferable, especially if the formal solution is very complicated. A numerical solution of a differential equation is usually obtained in the form of a table; the functional form of the solution remains unknown insofar as a specific formula is concerned.

The form of the differential equation adopted here permits the function f to depend on t and x. If f does not involve x, as in the second example above, then the differential equation can be solved by a direct process of indefinite integration. To illustrate, consider the initial-value problem

$$
\left\{\begin{array}{l}
x^{\prime}=3 t^{2}-4 t^{-1}+\left(1+t^{2}\right)^{-1} \tag{2}\\
x(5)=17
\end{array}\right.
$$

The differential equation can be integrated to produce

$$
x(t)=t^{3}-4 \ln t+\arctan t+C
$$

The constant C can then be chosen so that $x(5)=17$. We can use a mathematical software system such as Maple or Mathematica to solve this differential equation explicitly and thereby find the value of this constant as $C=4 \ln (5)-\arctan (5)-108$.

We often want a numerical solution to a differential equation because (a) the closedform solution may be very complicated and difficult to evaluate or (b) there is no other choice; that is, no closed-form solution can be found. Consider, for instance, the differential equation

$$
\begin{equation*}
x^{\prime}=e^{-\sqrt{t^{2}-\sin t}}+\ln \left|\sin t+\tanh t^{3}\right| \tag{3}
\end{equation*}
$$

The solution is obtained by taking the integral or antiderivative of the right-hand side. It can be done in principle but not in practice. In other words, a function x exists for which $d x / d t$ is the right-hand member of Equation (3), but it is not possible to write $x(t)$ in terms of familiar functions.

Solving ordinary differential equations on a computer may require a large number of steps with small step size, so a significant amount of roundoff error can accumulate. Consequently, multiple-precision computations may be necessary on small-word-length computers.

An Example of a Practical Problem

Many practical problems in dynamics involve Newton's three Laws of Motion, particularly the Second Law. It states symbolically that $F=m a$, where F is the force acting on a body of mass m and a is the resulting acceleration of that body. This law is a differential equation in disguise because a, the acceleration, is the derivative of velocity and velocity is, in turn, the derivative of the position. We illustrate with a simplified model of a rocket being fired at time $t=0$. Its motion is to be vertically upward, and we measure its height with the variable x. The propulsive force is a constant value, namely, 5370. (Units are chosen to be consistent with each other.) There is a negative force due to air resistance whose magnitude is $v^{3 / 2} / \ln (2+v)$, where v is the velocity of the rocket. The mass is decreasing at a steady rate due to the burning of fuel and is taken to be $321-24 t$. The independent variable is time, t. The fuel is completely consumed by the time $t=10$. There is a downward force, due to gravity, of magnitude 981. Putting all these terms into the equation $F=m a$, we have

$$
\begin{equation*}
5370-981-v^{3 / 2} / \ln (2+v)=(321-24 t) v^{\prime} \tag{4}
\end{equation*}
$$

The initial condition is $v=0$ at $t=0$.
We shall develop methods to solve such differential equations in the succeeding sections. Moreover, one can also invoke a mathematical software system to solve this problem.

A computer code for solving ordinary differential equations produces a table of discrete values, while the mathematical solution is a continuous function. One may need additional values within an interval for various purposes, such as plotting. Interpolation procedures can be used to obtain all values of the approximate numerical solution within a given interval. For example, a piecewise polynomial interpolation scheme may yield a numerical solution that is continuous and has a continuous first derivative matching the derivative of the solution. In using any ODE solver, an approximation to $x^{\prime}(t)$ is available from the fact that $x^{\prime}(t)=f(t, x)$. Mathematical packages for solving ODEs may include automatic plotting capabilities because the best way to make sense out of the large amount of data that may be returned as the solution is to display the solution curves on a graphical monitor or plot them on paper.

Solving Differential Equations and Integration

There is a close connection between solving differential equations and integration. Consider the differential equation

$$
\left\{\begin{array}{l}
\frac{d x}{d r}=f(r, x) \\
x(a)=s
\end{array}\right.
$$

Integrating from t to $t+h$, we have

$$
\int_{t}^{t+h} d x=\int_{t}^{t+h} f(r, x(r)) d r
$$

Hence,

$$
x(t+h)=x(t)+\int_{t}^{t+h} f(r, x(r)) d r
$$

Replacing the integral with one of the numerical integration rules from Chapter 5, we obtain a formula for solving the differential equation. For example, Euler's method, Equation (6) (see p. 432), is obtained from the left rectangle approximation (see Problem 5.2.28):

$$
\int_{t}^{t+h} f(r, x(r)) d r \approx h f(t, x(t))
$$

The trapezoid rule

$$
\int_{t}^{t+h} f(r, x(r)) d r \approx \frac{h}{2}[f(t, x(t))+f(t+h, x(t+h))]
$$

gives the formula

$$
x(t+h)=x(t)+\frac{h}{2}[f(t, x(t))+f(t+h, x(t+h))]
$$

Since $x(t+h)$ appears on both sides of this equation, it is called an implicit formula. If Euler's method

$$
x(t+h)=x(t)+h f(t, x(t))
$$

is used for the $x(t+h)$ on the right-hand side, then we obtain the Runge-Kutta formula of order 2-namely, Equation (10) in Section 10.2.

Using the Fundamental Theorem of Calculus, we can easily show that an approximate numerical value for the integral

$$
\int_{a}^{b} f(r, x(r)) d r
$$

can be computed by solving the following initial-value problem for $x(b)$:

$$
\left\{\begin{array}{l}
\frac{d x}{d r}=f(r, x) \\
x(a)=0
\end{array}\right.
$$

Vector Fields

Consider a generic first-order differential equation with prescribed initial condition:

$$
\left\{\begin{array}{l}
x^{\prime}(t)=f(t, x(t)) \\
x(a)=b
\end{array}\right.
$$

Before addressing the question of solving such an initial-value problem numerically, it is helpful to think about the intuitive meaning of the equation. The function f provides the slope of the solution function in the $t x$-plane. At every point where $f(t, x)$ is defined, we can imagine a short line segment being drawn through that point and having the prescribed slope. We cannot graph all of these short segments, but we can draw as many as we wish, in
the hope of understanding how the solution function $x(t)$ traces its way through this forest of line segments while keeping its slope at every point equal to the slope of the line segment drawn at that point. The diagram of line segments illustrates discretely the so-called vector field of the differential equation.

For example, let us consider the equation

$$
x^{\prime}=\sin \left(x+t^{2}\right)
$$

with initial value $x(0)=0$. In the rectangle described by the inequalities $-4 \leqq x \leqq 4$ and $-4 \leqq t \leqq 4$, we can direct mathematical software, such as Matlab, to furnish a picture of the vector field engendered by our differential equation. Using commands in the windows environment, we bring up a window with the differential equation shown in a rectangle. Behind the scenes, the mathematical software will then carry out immense calculations to provide the vector field for this differential equation, and will display it, correctly labeled. To see the solution going through any point in the diagram, it is necessary only to use the mouse to position the pointer on such a point. By clicking the left mouse button, the software will display the solution sought. By use of such a software tool, one can see immediately the effect of changing initial conditions. For the problem under consideration, several solution curves (corresponding to different initial values) are shown in Figure 10.1.

FIGURE 10.1 Vector field and some solution curves for $x^{\prime}=\sin \left(x+t^{2}\right)$

Another example, treated in the same way, is the differential equation

$$
x^{\prime}=x^{2}-t
$$

Figure 10.2 shows a vector field for this equation and some of its solutions. Notice the phenomenon of many quite different curves all seeming to arise from the same initial condition. What is happening here? This is an extreme example of a differential equation whose solutions are exceedingly sensitive to the initial condition! One can expect trouble in solving this differential equation with an initial value prescribed at $t=-2$.

How do we know that the differential equation $x^{\prime}=x^{2}-t$, together with an initial value, $x\left(t_{0}\right)=x_{0}$, has a unique solution? There are many theorems in the subject of differ-

FIGURE 10.2
Vector field and some solution curves for $x^{\prime}=x^{2}-t$

ential equations that concern such existence and uniqueness questions. One of the easiest to use is as follows.

UNIQUENESS OF INITIAL-VALUE PROBLEMS

If f and $\partial f / \partial y$ are continuous in the rectangle defined by $\left|t-t_{0}\right|<\alpha$ and $\left|x-x_{0}\right|<$ β, then the initial-value problem $x^{\prime}=f(t, x), x\left(t_{0}\right)=x_{0}$ has a unique continuous solution in some interval $\left|t-t_{0}\right|<\epsilon$.

From the theorem just quoted, we cannot conclude that the solution in question is defined for $\left|t-t_{0}\right|<\beta$. However, the value of ϵ in the theorem is at least β / M, where M is an upper bound for $|f(t, x)|$ in the original rectangle.

Taylor Series Methods

The numerical method described in this section does not have the utmost generality, but it is natural and capable of high precision. Its principle is to represent the solution of a differential equation locally by a few terms of its Taylor series.

In what follows, we shall assume that our solution function x is represented by its Taylor series*

$$
\begin{align*}
x(t+h)= & x(t)+h x^{\prime}(t)+\frac{1}{2!} h^{2} x^{\prime \prime}(t)+\frac{1}{3!} h^{3} x^{\prime \prime \prime}(t) \\
& +\frac{1}{4!} h^{4} x^{(4)}(t)+\cdots+\frac{1}{m!} h^{m} x^{(m)}(t)+\cdots \tag{5}
\end{align*}
$$

*Remember that some functions such as $e^{-1 / x^{2}}$ are smooth but not represented by a Taylor series at 0 .

For numerical purposes, the Taylor series truncated after $m+1$ terms enables us to compute $x(t+h)$ rather accurately if h is small and if $x(t), x^{\prime}(t), x^{\prime \prime}(t), \ldots, x^{(m)}(t)$ are known. When only terms through $h^{m} x^{(m)}(t) / m$! are included in the Taylor series, the method that results is called the Taylor series method of order \boldsymbol{m}. We begin with the case $m=1$.

Euler's Method Pseudocode

The Taylor series method of order 1 is known as Euler's method. To find approximate values of the solutions to the initial-value problem

$$
\left\{\begin{array}{l}
x^{\prime}=f(t, x(t)) \\
x(a)=x_{a}
\end{array}\right.
$$

over the interval $[a, b]$, the first two terms in the Taylor series (5) are used:

$$
x(t+h) \approx x(t)+h x^{\prime}(t)
$$

Hence, the formula

$$
\begin{equation*}
x(t+h)=x(t)+h f(t, x(t)) \tag{6}
\end{equation*}
$$

can be used to step from $t=a$ to $t=b$ with n steps of size $h=(b-a) / n$. The pseudocode for Euler's method can be written as follows, where some prescribed values for n, a, b, and x_{a} are used:

```
program Euler
integer }k\mathrm{ ; real }h,t;\quad\mathrm{ integer }n\leftarrow10
external function f
real}a\leftarrow1,b\leftarrow2,x\leftarrow-
h\leftarrow(b-a)/n
t\leftarrowa
output }0,t,
for }k=1\mathrm{ to }n\mathrm{ do
    x}\leftarrowx+hf(t,x
    t\leftarrowt+h
    output }k,t,
end for
end program Euler
```

To use this program, a code for $f(t, x)$ is needed, as shown in Example 1.
EXAMPLE 1 Using Euler's method, compute an approximate value for x (2) for the differential equation $x^{\prime}=1+x^{2}+t^{3}$ with the initial value $x(1)=-4$ using 100 steps.
Solution Use the pseudocode above with the initial values given and combine with the following function:

```
real function f(t,x)
real t, x
f}\leftarrow1+\mp@subsup{x}{}{2}+\mp@subsup{t}{}{3
end function
```

The computed value is $x(2) \approx 4.23585$.

We can write a computer program to execute Euler's method on this very simple problem:

$$
\left\{\begin{array}{l}
x^{\prime}(t)=x \\
x(0)=1
\end{array}\right.
$$

We obtain the results $x(2) \approx 7.3891$. The plot produced by the code is shown in Figure 10.3. The solution, $x(t)=e^{t}$, is the solid curve, and the points produced by Euler's method are shown by dots. Can you understand why the dots are always below the curve?

FIGURE 10.3
Euler's method curves

Before accepting these results and continuing, one should raise some questions such as: How accurate are the answers? Are higher-order Taylor series methods ever needed? Unfortunately, Euler's method is not very accurate because only two terms in the Taylor series (5) are used; therefore, the truncation error is $\mathcal{O}\left(h^{2}\right)$.

Taylor Series Method of Higher Order

Example 1 can be used to explain the Taylor series method of higher order. Consider again the initial-value problem

$$
\left\{\begin{array}{l}
x^{\prime}=1+x^{2}+t^{3} \tag{7}\\
x(1)=-4
\end{array}\right.
$$

If the functions in the differential equation are differentiated several times with respect to t, the results are as follows. (Remember that a function of x must be differentiated with respect to t by using the chain rule.)

$$
\begin{align*}
x^{\prime} & =1+x^{2}+t^{3} \\
x^{\prime \prime} & =2 x x^{\prime}+3 t^{2} \\
x^{\prime \prime \prime} & =2 x x^{\prime \prime}+2 x^{\prime} x^{\prime}+6 t \tag{8}\\
x^{(4)} & =2 x x^{\prime \prime \prime}+6 x^{\prime} x^{\prime \prime}+6
\end{align*}
$$

If numerical values of t and $x(t)$ are known, these four formulas, applied in order, yield $x^{\prime}(t), x^{\prime \prime}(t), x^{\prime \prime \prime}(t)$, and $x^{(4)}(t)$. Thus, it is possible from this work to use the first five terms in the Taylor series, Equation (5). Since $x(1)=-4$, we have a suitable starting point, and we select $n=100$, which determines h. Next, we can compute an approximation to $x(a+h)$ from Formulas (5) and (8). The same process can be repeated to compute $x(a+2 h)$ using $x(a+h), x^{\prime}(a+h), \ldots, x^{(4)}(a+h)$. Here is the pseudocode:

```
program Taylor
integer \(k\); real \(h, t, x, x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}, x^{(4)}\)
integer \(n \leftarrow 100\)
real \(a \leftarrow 1, b \leftarrow 2, x \leftarrow-4\)
\(h \leftarrow(b-a) / n\)
\(t \leftarrow a\)
output \(0, t, x\)
for \(k=1\) to \(n\) do
    \(x^{\prime} \leftarrow 1+x^{2}+t^{3}\)
    \(x^{\prime \prime} \leftarrow 2 x x^{\prime}+3 t^{2}\)
    \(x^{\prime \prime \prime} \leftarrow 2 x x^{\prime \prime}+2\left(x^{\prime}\right)^{2}+6 t\)
    \(x^{(4)} \leftarrow 2 x x^{\prime \prime \prime}+6 x^{\prime} x^{\prime \prime}+6\)
    \(x \leftarrow x+h\left[x^{\prime}+\frac{1}{2} h\left[x^{\prime \prime}+\frac{1}{3} h\left[x^{\prime \prime \prime}+\frac{1}{4} h\left[x^{(4)}\right]\right]\right]\right]\)
    \(t \leftarrow a+k h\)
    output \(k, t, x\)
end for
end program Taylor
```

A few words of explanation may be helpful here. Before writing the pseudocode, determine the interval in which you want to compute the solution of the differential equation. In the example, this interval is chosen as $a=1 \leqq t \leqq 2=b$, and 100 steps are used. In each step, the current value of t is an integer multiple of the step size h. The assignment statements that define $x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}$, and $x^{(4)}$ are simply carrying out calculations of the derivatives according to Equation (8). The final calculation carries out the evaluation of the Taylor series in Equation (5) using five terms. Since this equation is a polynomial in h, it is evaluated most efficiently by using nested multiplication, which explains the formula for x in the pseudocode. The computation $t \leftarrow t+h$ may cause a small amount of roundoff error to accumulate in the value of t. This is avoided by using $t \leftarrow a+k h$.

As one might expect, the results of using only two terms in the Taylor series (Euler's method) are not as accurate as when five terms are used:

> Euler's Method
> $x(2) \approx 4.2358541$
Taylor Series Method (Order 4)
$x(2) \approx 4.3712096$

By further analysis, one can prove that the correct value to more significant figures is $x(2) \approx 4.371221866$. Here, the computations were done with more precision just to show that lack of precision was not a contributing factor.

Types of Errors

When the pseudocode described above is programmed and run on a computer, what sort of accuracy can we expect? Are all the digits printed by the machine for the variable x accurate? Of course not! On the other hand, it is not easy to say how many digits are reliable. Here is a coarse assessment. Since terms up to $\frac{1}{24} h^{4} x^{(4)}(t)$ are included, the first term not included in the Taylor series is $\frac{1}{120} h^{5} x^{(5)}(t)$. The error may be larger than this, but the factor $h^{5}=\left(10^{-2}\right)^{5} \approx 10^{-10}$ is affecting only the tenth decimal place. The printed solution is perhaps accurate to eight decimal places. Bridges or airplanes should not be built on such shoddy analysis, but for now, our attention is focused on the general form of the procedure.

Actually, there are two types of errors to consider. At each step, if $x(t)$ is known and $x(t+h)$ is computed from the first few terms of the Taylor series, an error occurs because we have truncated the Taylor series. This error, then, is called the truncation error or, to be more precise, the local truncation error. In the preceding example, it is roughly $\frac{1}{120} h^{5} x^{(5)}(\xi)$. In this situation, we say that the local truncation error is of order h^{5}, abbreviated by $\mathcal{O}\left(h^{5}\right)$.

The second type of error obviously present is due to the accumulated effects of all local truncation errors. Indeed, the calculated value of $x(t+h)$ is in error because $x(t)$ is already wrong (because of previous truncation errors) and because another local truncation error occurs in the computation of $x(t+h)$ by means of the Taylor series.

Additional sources of errors must be considered in a complete theory. One is roundoff error. Although not serious in any one step of the solution procedure, after hundreds or thousands of steps, it may accumulate and contaminate the calculated solution seriously. Remember that an error that is made at a certain step is carried forward into all succeeding steps. Depending on the differential equation and the method that is used to solve it, such errors may be magnified by succeeding steps.

Taylor Series Method Using Symbolic Computations

Various routine mathematical calculations of both a nonnumerical and a numerical type, including differentiation and integration of even rather complicated expressions, can now be turned over to the computer. Of course, this applies only to a restricted class of functions, but this class is broad enough to include all the functions that one encounters in the typical calculus textbook. With the use of such a program for symbolic computations, the Taylor series method of high order can be carried out without difficulty. Using the algebraic manipulation potentialities in mathematical software such as Maple or Mathematica, we can write code to solve the initial value problem (7). The final result is $x(2) \approx 4.37121005224969227234569$.

Summary

(1) We wish to solve the first-order initial-value problem

$$
\left\{\begin{array}{l}
x^{\prime}(t)=f(t, x(t)) \\
x(a)=x_{a}
\end{array}\right.
$$

over the interval $[a, b]$ with step size $h=(b-a) / n$. The Taylor series method of order m is

$$
\begin{aligned}
x(t+h)= & x(t)+h x^{\prime}(t)+\frac{1}{2!} h^{2} x^{\prime \prime}(t)+\frac{1}{3!} h^{3} x^{\prime \prime \prime}(t) \\
& +\frac{1}{4!} h^{4} x^{(4)}(t)+\cdots+\frac{1}{m!} h^{m} x^{(m)}(t)
\end{aligned}
$$

where all of the derivatives $x^{\prime \prime}, x^{\prime \prime \prime}, \ldots, x^{(m)}$ have been determined analytically.
(2) Euler's method is the Taylor series method of order 1 and can be written as

$$
x(t+h)=x(t)+h f(t, x(t))
$$

Because only two terms in the Taylor series are used, the truncation error is large, and the results cannot be computed with much accuracy. Consequently, higher-order Taylor series methods are used most often. Of course, they require that one determine more derivatives, with more chances for mathematical errors.

Problems 10.1

1. Give the solutions of these differential equations:
${ }^{a}$ a. $x^{\prime}=t^{3}+7 t^{2}-t^{1 / 2}$
${ }^{a}$ b. $x^{\prime}=x$
c. $x^{\prime}=-x$
d. $x^{\prime \prime}=-x$
${ }^{a}$ e. $x^{\prime \prime}=x$
f. $x^{\prime \prime}+x^{\prime}-2 x=0 \quad$ Hint: $\operatorname{Try} x=e^{a t}$.
${ }^{a}$ 2. Give the solutions of these initial-value problems:
${ }^{a}$ a. $x^{\prime}=t^{2}+t^{1 / 3} \quad x(0)=7$
b. $x^{\prime}=2 x \quad x(0)=15$
c. $x^{\prime \prime}=-x \quad x(\pi)=0 \quad x^{\prime}(\pi)=3$
2. Solve the following differential equations:
a. $x^{\prime}=1+x^{2} \quad$ Hint: $1+\tan ^{2} t=\sec ^{2} t$
b. $x^{\prime}=\sqrt{1-x^{2}} \quad$ Hint: $\sin ^{2} t+\cos ^{2} t=1$
${ }^{a}$ c. $x^{\prime}=t^{-1} \sin t \quad$ Hint: See Computer Problem 5.1.2.
${ }^{a}$ d. $x^{\prime}+t x=t^{2} \quad$ Hint: Multiply the equation by $f(t)=\exp \left(t^{2} / 2\right)$. The left-hand side becomes $(x f)^{\prime}$.
${ }^{a}$ 4. Solve Problem $3 \mathbf{b}$ by substituting a power series $x(t)=\sum_{n=0}^{\infty} a_{n} t^{n}$ and then determining appropriate values of the coefficients.
3. Determine $x^{\prime \prime}$ when $x^{\prime}=x t^{2}+x^{3}+e^{x} t$.
${ }^{a}$ 6. Find a polynomial p with the property $p-p^{\prime}=t^{3}+t^{2}-2 t$.
4. The general first-order linear differential equation is $x^{\prime}+p x+q=0$, where p and q are functions of t. Show that the solution is $x=-y^{-1}(z+c)$, where y and z are functions obtained as follows: Let u be an antiderivative of p. Put $y=e^{u}$, and let z be an antiderivative of $y q$.
5. Here is an initial-value problem that has two solutions: $x^{\prime}=x^{1 / 3}, x(0)=0$. Verify that the two solutions are $x_{1}(t)=0$ and $x_{2}(t)=\left(\frac{2}{3} t\right)^{3 / 2}$ for $t \geqq 0$. If the Taylor series method is applied, what happens?
${ }^{a} 9$. Consider the problem $x^{\prime}=x$. If the initial condition is $x(0)=c$, then the solution is $x(t)=c e^{t}$. If a roundoff error of ε occurs in reading the value of c into the computer, what effect is there on the solution at the point $t=10$? At $t=20$? Do the same for $x^{\prime}=-x$.
${ }^{a}$ 10. If the Taylor series method is used on the initial-value problem $x^{\prime}=t^{2}+x^{3}, x(0)=0$, and if we intend to use the derivatives of x up to and including $x^{(4)}$, what are the five main equations that must be programmed?
6. In solving the following differential equations by the Taylor series method of order n, what are the main equations in the algorithm?
${ }^{a}$ a. $x^{\prime}=x+e^{x} \quad n=4$
b. $x^{\prime}=x^{2}-\cos x \quad n=5$
${ }^{a}$ 12. Calculate an approximate value for $x(0.1)$ using one step of the Taylor series method of order 3 on the ordinary differential equation

$$
\left\{\begin{array}{l}
x^{\prime \prime}=x^{2} e^{t}+x^{\prime} \\
x(0)=1 \quad x^{\prime}(0)=2
\end{array}\right.
$$

13. Suppose that a differential equation is solved numerically on an interval $[a, b]$ and that the local truncation error is $c h^{p}$. Show that if all truncation errors have the same sign (the worst possible case), then the total truncation error is $(b-a) c h^{p-1}$, where $h=(b-a) / n$.
${ }^{a}$ 14. If we plan to use the Taylor series method with terms up to h^{20}, how should the computation $\sum_{n=0}^{20} x^{(n)}(t) h^{n} / n$! be carried out? Assume that $x(t), x^{(1)}(t), x^{(2)}(t), \ldots$, and $x^{(20)}(t)$ are available. Hint: Only a few statements suffice.
14. Explain how to use the ODE method that is based on the Trapezoid Rule:

$$
\begin{aligned}
\widehat{x}(t+h) & =x(t)+h f(t, x(t)) \\
x(t+h) & =x(t)+\frac{h}{2}[f(t, x(t))+f(t+h, \widehat{x}(t+h))]
\end{aligned}
$$

This is called the improved Euler's method or Heun's method. Here, $\widehat{x}(t+h)$ is computed by using Euler's method.
16. (Continuation) Use the improved Euler's method to solve the following differential equation over the interval $[0,1]$ with step size $h=0.1$:

$$
\left\{\begin{array}{l}
x^{\prime}=-x+t+\frac{1}{2} \\
x(0)=1
\end{array}\right.
$$

17. Consider the initial-value problem

$$
\left\{\begin{array}{l}
x^{\prime}=-100 x^{2} \\
x(0)=1
\end{array}\right.
$$

In the improved Euler's method, replace $\widehat{x}(t+h)$ with $x(t+h)$ and try to solve with one step of size $h=0.1$. Explain what happens. Find the closed-form solution by substituting $x=(a+b t)^{c}$ and determining a, b, c.

Computer Problems 10.1

${ }^{a}$ 1. Write and test a program for applying the Taylor series method to the initial-value problem

$$
\left\{\begin{array}{l}
x^{\prime}=x+x^{2} \\
x(1)=\frac{e}{16-e}=0.20466341728915526943
\end{array}\right.
$$

Generate the solution in the interval [1, 2.77]. Use derivatives to up to $x^{(5)}$ in the Taylor series. Use $h=1 / 100$. Print out for comparison the values of the exact solution $x(t)=e^{t} /\left(16-e^{t}\right)$. Verify that it is the exact solution.
2. Write a program to solve each problem on the indicated intervals. Use the Taylor series method with $h=1 / 100$, and include terms to h^{3}. Account for any difficulties.
a. $\left\{\begin{array}{l}x^{\prime}=t+x^{2} \quad \text { on }[0,0.9] \\ x(0)=1\end{array}\right.$
${ }^{a}$ b. $\left\{\begin{array}{l}x^{\prime}=x-t \quad \text { on [1, 1.75] } \\ x(1)=1\end{array}\right.$
${ }^{a}$ c. $\left\{\begin{array}{l}x^{\prime}=t x+t^{2} x^{2} \quad \text { on }[2,5] \\ x(2)=-0.6396625333\end{array}\right.$
${ }^{a}$ 3. Solve the differential equation $x^{\prime}=x$ with initial value $x(0)=1$ by the Taylor series method on the interval $[0,10]$. Compare the result with the exact solution $x(t)=e^{t}$. Use derivatives up to and including the tenth. Use step size $h=1 / 100$.
4. Solve for $x(1)$:
${ }^{a}$ a. $x^{\prime}=1+x^{2}$,
$x(0)=0$
b. $x^{\prime}=(1+t)^{-1} x, \quad x(0)=1$

Use the Taylor series method of order 5 with $h=1 / 100$, and compare with the exact solutions, which are $\tan t$ and $1+t$, respectively.
${ }^{a}$ 5. Solve the initial-value problem $x^{\prime}=t+x+x^{2}$ on the interval [0, 1] with initial condition $x(1)=1$. Use the Taylor series method of order 5 .
6. Solve the initial-value problem $x^{\prime}=(x+t)^{2}$ with $x(0)=-1$ on the interval $[0,1]$ using the Taylor series method with derivatives up to and including the fourth. Compare this to Taylor series methods of orders 1,2 , and 3.
${ }^{a}$ 7. Write a program to solve on the interval $[0,1]$ the initial-value problem

$$
\left\{\begin{array}{l}
x^{\prime}=t x \\
x(0)=1
\end{array}\right.
$$

using the Taylor series method of order 20; that is, include terms in the Taylor series up to and including h^{20}. Observe that a simple recursive formula can be used to obtain $x^{(n)}$ for $n=1,2, \ldots, 20$.
8. Write a program to solve the initial-value problem $x^{\prime}=\sin x+\cos t$, using the Taylor series method. Continue the solution from $t=2$ to $t=5$, starting with $x(2)=0.32$. Include terms up to and including h^{3}.
${ }^{a} 9$. Write a program to solve the initial-value problem $x^{\prime}=e^{t} x$ with $x(2)=1$ on the interval $0 \leqq t \leqq 2$ using the Taylor series method. Include terms up to h^{4}.
${ }^{a}$ 10. Write a program to solve $x^{\prime}=t x+t^{4}$ on the interval $0 \leqq t \leqq 5$ with $x(5)=3$. Use the Taylor series method with terms to h^{4}.
11. Write a program to solve the initial-value problem of the example in this section over the interval [1, 3]. Explain.
12. Compute a table, at 101 equally spaced points in the interval [0, 2], of the Dawson integral

$$
f(x)=\exp \left(-x^{2}\right) \int_{0}^{x} \exp \left(t^{2}\right) d t
$$

by numerically solving, with the Taylor series method of suitable order, an initial-value problem of which f is the solution. Make the table accurate to eight decimal places, and print only eight decimal places. Hint: Find the relationship between $f^{\prime}(x)$ and $x f(x)$. The Fundamental Theorem of Calculus is useful. Check values: $f(1)=0.5380795069$ and $f(2)=0.3013403889$.
13. Solve the initial-value problem $x^{\prime}=t^{3}+e^{x}$ with $x(3)=7.4$ on the interval $0 \leqq t \leqq 3$ by means of the fourth-order Taylor series method.
14. Use a symbolic manipulation package such as Maple to solve the differential equations of Example 1 by the fourth-order Taylor series method to high accuracy, carrying 24 decimal digits.
15. Program the pseudocodes Euler and Taylor and compare the numerical results to that given in the text.
16. (Continuation) Repeat by calling directly an ordinary differential equation solver routine within a mathematical software system such as Matlab, Maple, or Mathematica.
17. Use mathematical software such as Matlab, Maple, or Mathematica, to find analytical or numerical solutions to the ordinary differential equations at the beginning of this section:
a. (2)
b. (3)
c. (4)
18. Write computer programs to reproduce the following figures:
a. Figure 10.1
b. Figure 10.2
c. Figure 10.3

10.2 Runge-Kutta Methods

The methods named after Carl Runge and Wilhelm Kutta are designed to imitate the Taylor series method without requiring analytic differentiation of the original differential equation. Recall that in using the Taylor series method on the initial-value problem

$$
\left\{\begin{array}{l}
x^{\prime}=f(t, x) \tag{1}\\
x(a)=x_{a}
\end{array}\right.
$$

we need to obtain $x^{\prime \prime}, x^{\prime \prime \prime}, \ldots$ by differentiating the function f. This requirement can be a serious obstacle to using the method. The user of this method must do some preliminary
analytical work before writing a computer program. Ideally, a method for solving Equation (1) should involve nothing more than writing a code to evaluate f. The Runge-Kutta methods accomplish this.

For purposes of exposition, the Runge-Kutta method of order 2 is presented, although its low precision usually precludes its use in actual scientific calculations. Later, the RungeKutta method of order 4 is given without a derivation. It is in common use. The order-2 Runge-Kutta procedure does find application in real-time calculations on small computers. For example, it is used in some aircraft by the on-board minicomputer.

At the heart of any method for solving an initial-value problem is a procedure for advancing the solution function one step at a time; that is, a formula must be given for $x(t+h)$ in terms of known quantities. As examples of known quantities, we can cite $x(t), x(t-h), x(t-2 h), \ldots$ if the solution process has gone through a number of steps. At the beginning, only $x(a)$ is known. Of course, we assume that $f(t, x)$ can be computed for any point (t, x).

Taylor Series for $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{v})$

Before explaining the Runge-Kutta method of order 2, let us present the Taylor series in two variables. The infinite series is

$$
\begin{equation*}
f(x+h, y+k)=\sum_{i=0}^{\infty} \frac{1}{i!}\left(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y}\right)^{i} f(x, y) \tag{2}
\end{equation*}
$$

This series is analogous to the Taylor series in one variable given by Equation (11) in Section 1.2. The mysterious-looking terms in Equation (2) are interpreted as follows:

$$
\begin{aligned}
& \left(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y}\right)^{0} f(x, y)=f \\
& \left(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y}\right)^{1} f(x, y)=h \frac{\partial f}{\partial x}+k \frac{\partial f}{\partial y} \\
& \left(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y}\right)^{2} f(x, y)=h^{2} \frac{\partial^{2} f}{\partial x^{2}}+2 h k \frac{\partial^{2} f}{\partial x \partial y}+k^{2} \frac{\partial^{2} f}{\partial y^{2}}
\end{aligned}
$$

where f and all partial derivatives are evaluated at (x, y). As in the one-variable case, if the Taylor series is truncated, an error term or remainder term is needed to restore the equality. Here is the appropriate equation:

$$
\begin{equation*}
f(x+h, y+k)=\sum_{i=0}^{n-1} \frac{1}{i!}\left(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y}\right)^{i} f(x, y)+\frac{1}{n!}\left(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y}\right)^{n} f(\bar{x}, \bar{y}) \tag{3}
\end{equation*}
$$

The point (\bar{x}, \bar{y}) lies on the line segment that joins (x, y) to $(x+h, y+k)$ in the plane.
In applying Taylor series, we use subscripts to denote partial derivatives. So, for instance,

$$
\begin{equation*}
f_{x}=\frac{\partial f}{\partial x} \quad f_{t}=\frac{\partial f}{\partial t} \quad f_{x x}=\frac{\partial^{2} f}{\partial x^{2}} \quad f_{x t}=\frac{\partial^{2} f}{\partial t \partial x} \tag{4}
\end{equation*}
$$

We are dealing with functions for which the order of these subscripts is immaterial; for example, $f_{x t}=f_{t x}$. Thus, we have

$$
\begin{aligned}
f(x+h, y+k)= & f+\left(h f_{x}+k f_{y}\right) \\
& +\frac{1}{2!}\left(h^{2} f_{x x}+2 h k f_{x y}+k^{2} f_{y y}\right) \\
& +\frac{1}{3!}\left(h^{3} f_{x x x}+3 h^{2} k f_{x x y}+3 h k^{2} f_{x y y}+k^{3} f_{y y y}\right) \\
& +\cdots
\end{aligned}
$$

As special cases, we notice that

$$
\begin{aligned}
& f(x+h, y)=f+h f_{x}+\frac{h^{2}}{2!} f_{x x}+\frac{h^{3}}{3!} f_{x x x}+\cdots \\
& f(x, y+k)=f+k f_{y}+\frac{k^{2}}{2!} f_{y y}+\frac{k^{3}}{3!} f_{y y y}+\cdots
\end{aligned}
$$

Runge-Kutta Method of Order 2

In the Runge-Kutta method of order 2, a formula is adopted that has two function evaluations of the special form

$$
\left\{\begin{array}{l}
K_{1}=h f(t, x) \\
K_{2}=h f\left(t+\alpha h, x+\beta K_{1}\right)
\end{array}\right.
$$

and a linear combination of these is added to the value of x at t to obtain the value at $t+h$:

$$
x(t+h)=x(t)+w_{1} K_{1}+w_{2} K_{2}
$$

or, equivalently,

$$
\begin{equation*}
x(t+h)=x(t)+w_{1} h f(t, x)+w_{2} h f(t+\alpha h, x+\beta h f(t, x)) \tag{5}
\end{equation*}
$$

The objective is to determine constants w_{1}, w_{2}, α, and β so that Equation (5) is as accurate as possible. Explicitly, we want to reproduce as many terms as possible in the Taylor series

$$
\begin{equation*}
x(t+h)=x(t)+h x^{\prime}(t)+\frac{1}{2!} h^{2} x^{\prime \prime}(t)+\frac{1}{3!} h^{3} x^{\prime \prime \prime}(t)+\cdots \tag{6}
\end{equation*}
$$

Now compare Equation (5) with Equation (6). One way to force them to agree up through the term in h is to set $w_{1}=1$ and $w_{2}=0$ because $x^{\prime}=f$. However, this simply reproduces Euler's method (described in the preceding section), and its order of precision is only 1 . Agreement up through the h^{2} term is possible by a more adroit choice of parameters. To see how, apply the two-variable form of the Taylor series to the final term in Equation (5). We use $n=2$ in the two-variable Taylor series given by Formula (3), with $t, \alpha h, x$, and $\beta h f$ playing the role of x, h, y, and k, respectively:

$$
f(t+\alpha h, x+\beta h f)=f+\alpha h f_{t}+\beta h f f_{x}+\frac{1}{2}\left(\alpha h \frac{\partial}{\partial t}+\beta h f \frac{\partial}{\partial x}\right)^{2} f(\bar{x}, \bar{y})
$$

Using the above equation results in a new form for Equation (5). We have

$$
\begin{equation*}
x(t+h)=x(t)+\left(w_{1}+w_{2}\right) h f+\alpha w_{2} h^{2} f_{t}+\beta w_{2} h^{2} f f_{x}+\mathcal{O}\left(h^{3}\right) \tag{7}
\end{equation*}
$$

Equation (6) is also given a new form by using differential Equation (1). Since $x^{\prime}=f$, we have

$$
x^{\prime \prime}=\frac{d x^{\prime}}{d t}=\frac{d f(t, x)}{d t}=\left(\frac{\partial f}{\partial t}\right)\left(\frac{d t}{d t}\right)+\left(\frac{\partial f}{\partial x}\right)\left(\frac{d x}{d t}\right)=f_{t}+f_{x} f
$$

So Equation (6) implies that

$$
\begin{equation*}
x(t+h)=x+h f+\frac{1}{2} h^{2} f_{t}+\frac{1}{2} h^{2} f f_{x}+\mathcal{O}\left(h^{3}\right) \tag{8}
\end{equation*}
$$

Agreement between Equations (7) and (8) is achieved by stipulating that

$$
\begin{equation*}
w_{1}+w_{2}=1 \quad \alpha w_{2}=\frac{1}{2} \quad \beta w_{2}=\frac{1}{2} \tag{9}
\end{equation*}
$$

A convenient solution of these equations is

$$
\alpha=1 \quad \beta=1 \quad w_{1}=\frac{1}{2} \quad w_{2}=\frac{1}{2}
$$

The resulting second-order Runge-Kutta method is then, from Equation (5),

$$
x(t+h)=x(t)+\frac{h}{2} f(t, x)+\frac{h}{2} f(t+h, x+h f(t, x))
$$

or, equivalently,

$$
\begin{equation*}
x(t+h)=x(t)+\frac{1}{2}\left(K_{1}+K_{2}\right) \tag{10}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
K_{1}=h f(t, x) \\
K_{2}=h f\left(t+h, x+K_{1}\right)
\end{array}\right.
$$

Formula (10) shows that the solution function at $t+h$ is computed at the expense of two evaluations of the function f.

Notice that other solutions for the nonlinear System (9) are possible. For example, α can be arbitrary, and then

$$
\beta=\alpha \quad w_{1}=1-\frac{1}{2 \alpha} \quad w_{2}=\frac{1}{2 \alpha}
$$

One can show (see Problem 10.2.10) that the error term for Runge-Kutta methods of order 2 is

$$
\begin{equation*}
\frac{h^{3}}{4}\left(\frac{2}{3}-\alpha\right)\left(\frac{\partial}{\partial t}+f \frac{\partial}{\partial x}\right)^{2} f+\frac{h^{3}}{6} f_{x}\left(\frac{\partial}{\partial t}+f \frac{\partial}{\partial x}\right) f \tag{11}
\end{equation*}
$$

Notice that the method with $\alpha=\frac{2}{3}$ is especially interesting. However, none of the secondorder Runge-Kutta methods is widely used on large computers because the error is only $\mathcal{O}\left(h^{3}\right)$.

Runge-Kutta Method of Order 4

One algorithm in common use for the initial-value Problem (1) is the classical fourth-order Runge-Kutta method. Its formulas are as follows:

$$
\begin{equation*}
x(t+h)=x(t)+\frac{1}{6}\left(K_{1}+2 K_{2}+2 K_{3}+K_{4}\right) \tag{12}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
K_{1}=h f(t, x) \\
K_{2}=h f\left(t+\frac{1}{2} h, x+\frac{1}{2} K_{1}\right) \\
K_{3}=h f\left(t+\frac{1}{2} h, x+\frac{1}{2} K_{2}\right) \\
K_{4}=h f\left(t+h, x+K_{3}\right)
\end{array}\right.
$$

The derivation of the Runge-Kutta formulas of order 4 is tedious. Very few textbooks give the details. Two exceptions are the books of Henrici [1962] and Ralston [1965]. There exist higher-order Runge-Kutta formulas, and they are still more tedious to derive. However, symbolic manipulation software packages such as Maple or Mathematica can be used to develop the formulas.

As can be seen, the solution at $x(t+h)$ is obtained at the expense of evaluating the function f four times. The final formula agrees with the Taylor expansion up to and including the term in h^{4}. The error therefore contains h^{5} but no lower powers of h. Without knowing the coefficient of h^{5} in the error, we cannot be precise about the local truncation error. In treatises devoted to this subject, these matters are explored further. See, for example, Butcher [1987] or Gear [1971].

Pseudocode

Here is a pseudocode to implement the classical Runge-Kutta method of order 4:

```
procedure \(R K 4(f, t, x, h, n)\)
integer \(j, n\); real \(K_{1}, K_{2}, K_{3}, K_{4}, h, t, t_{a}, x\)
external function \(f\)
output \(0, t, x\)
\(t_{a} \leftarrow t\)
for \(j=1\) to \(n\) do
    \(K_{1} \leftarrow h f(t, x)\)
    \(K_{2} \leftarrow h f\left(t+\frac{1}{2} h, x+\frac{1}{2} K_{1}\right)\)
    \(K_{3} \leftarrow h f\left(t+\frac{1}{2} h, x+\frac{1}{2} K_{2}\right)\)
    \(K_{4} \leftarrow h f\left(t+h, x+K_{3}\right)\)
    \(x \leftarrow x+\frac{1}{6}\left(K_{1}+2 K_{2}+2 K_{3}+K_{4}\right)\)
    \(t \leftarrow t_{a}+j h\)
    output \(j, t, x\)
end for
end procedure \(R K 4\)
```

To illustrate the use of the preceding pseudocode, consider the initial-value problem

$$
\left\{\begin{array}{l}
x^{\prime}=2+(x-t-1)^{2} \tag{13}\\
x(1)=2
\end{array}\right.
$$

whose exact solution is $x(t)=1+t+\tan (t-1)$. A pseudocode to solve this problem on the interval [$1,1.5625$] by the Runge-Kutta procedure follows. The step size needed is calculated by dividing the length of the interval by the number of steps, say, $n=72$.

```
program Test_RK4
real h,t; external function f
integer }n\leftarrow7
real }a\leftarrow1,b\leftarrow1.5625,x\leftarrow
h\leftarrow(b-a)/n
t\leftarrowa
call RK4(f,t,x,h,n)
end program Test RK4
```

```
real function f(t,x)
real t, x
f\leftarrow2+(x-t-1)2
end function f
```

We include an external-function statement both in the main program and in procedure $R K 4$ because the procedure f is passed in the argument list of $R K 4$. The final value of the computed numerical solution is $x(1.5625)=3.192937699$.

General-purpose routines incorporating the Runge-Kutta algorithm usually include additional programming to monitor the truncation error and make necessary adjustments in the step size as the solution progresses. In general terms, the step size can be large when the solution is slowly varying but should be small when it is rapidly varying. Such a program is presented in Section 10.3.

Summary

(1) The second-order Runge-Kutta method is

$$
x(t+h)=x(t)+\frac{1}{2}\left(K_{1}+K_{2}\right)
$$

where

$$
\left\{\begin{array}{l}
K_{1}=h f(t, x) \\
K_{2}=h f\left(t+h, x+K_{1}\right)
\end{array}\right.
$$

This method requires two evaluations of the function f per step. It is equivalent to a Taylor series method of order 2.
(2) One of the most popular single-step methods for solving ODEs is the fourth-order Runge-Kutta method

$$
x(t+h)=x(t)+\frac{1}{6}\left(K_{1}+2 K_{2}+2 K_{3}+K_{4}\right)
$$

where

$$
\left\{\begin{array}{l}
K_{1}=h f(t, x) \\
K_{2}=h f\left(t+\frac{1}{2} h, x+\frac{1}{2} K_{1}\right) \\
K_{3}=h f\left(t+\frac{1}{2} h, x+\frac{1}{2} K_{2}\right) \\
K_{4}=h f\left(t+h, x+K_{3}\right)
\end{array}\right.
$$

It needs four evaluations of the function f per step. Since it is equivalent to a Taylor series method of order 4, it has truncation error of order $\mathcal{O}\left(h^{5}\right)$. The small number of function evaluations and high-order truncation error account for its popularity.

Problems 10.2

1. Derive the equations needed to apply the fourth-order Taylor series method to the differential equation $x^{\prime}=t x^{2}+x-2 t$. Compare them in complexity with the equations required for the fourth-order Runge-Kutta method.
2. Put these differential equations into a form suitable for numerical solution by the RungeKutta method.
a. $x+2 x x^{\prime}-x^{\prime}=0$
b. $\log x^{\prime}=t^{2}-x^{2}$
${ }^{a}$ c. $\left(x^{\prime}\right)^{2}\left(1-t^{2}\right)=x$
${ }^{a}$ 3. Solve the differential equation

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=-t x^{2} \\
x(0)=2
\end{array}\right.
$$

at $t=-0.2$, correct to two decimal places, using one step of the Taylor series method of order 2 and one step of the Runge-Kutta method of order 2.
4. Consider the ordinary differential equation

$$
\left\{\begin{array}{l}
x^{\prime}=(t x)^{3}-(x / t)^{2} \\
x(1)=1
\end{array}\right.
$$

Take one step of the Taylor series method of order 2 with $h=0.1$ and then use the Runge-Kutta method of order 2 to recompute $x(1.1)$. Compare answers.
5. In solving the following differential equations by using a Runge-Kutta procedure, it is necessary to write code for a function $f(t, x)$. Do so for each of the following:
${ }^{a}$ a. $x^{\prime}=t^{2}+t x^{\prime}-2 x x^{\prime}$
b. $x^{\prime}=e^{t}+x^{\prime} \cos x+t^{2}$
6. Consider the ordinary differential equation $x^{\prime}=t^{3} x^{2}-2 x^{3} / t^{2}$ with $x(1)=0$. Determine the equations that would be used in applying the Taylor series method of order 3 and the Runge-Kutta method of order 4.
7. Consider the third-order Runge-Kutta method:

$$
x(t+h)=x(t)+\frac{1}{9}\left(2 K_{1}+3 K_{2}+4 K_{3}\right)
$$

where

$$
\left\{\begin{array}{l}
K_{1}=h f(t, x) \\
K_{2}=h f\left(t+\frac{1}{2} h, x+\frac{1}{2} K_{1}\right) \\
K_{3}=h f\left(t+\frac{3}{4} h, x+\frac{3}{4} K_{2}\right)
\end{array}\right.
$$

a. Show that it agrees with the Taylor series method of the same order for the differential equation $x^{\prime}=x+t$.
b. Prove that this third-order Runge-Kutta method reproduces the Taylor series of the solution up to and including terms in h^{3} for any differential equation.
${ }^{a}$ 8. Describe how the fourth-order Runge-Kutta method can be used to produce a table of values for the function

$$
f(x)=\int_{0}^{x} e^{-t^{2}} d t
$$

at 100 equally spaced points in the unit interval. Hint: Find an appropriate initial-value problem whose solution is f.
9. Show that the fourth-order Runge-Kutta formula reduces to a simple form when applied to an ordinary differential equation of the form

$$
x^{\prime}=f(t)
$$

${ }^{a}$ 10. Establish the error term (11) for Runge-Kutta methods of order 2.
${ }^{a}$ 11. On a certain computer, it was found that when the fourth-order Runge-Kutta method was used over an interval $[a, b]$ with $h=(b-a) / n$, the total error due to roundoff was about $36 n 2^{-50}$ and the total truncation error was $9 n h^{5}$, where n is the number of steps and h is the step size. What is an optimum value of h ? Hint: Minimize the total error: roundoff error plus truncation error.
${ }^{a}$ 12. How would you solve the initial-value problem

$$
\left\{\begin{array}{l}
x^{\prime}=\sin x+\sin t \\
x(0)=0
\end{array}\right.
$$

on the interval $[0,1]$ if ten decimal places of accuracy are required? Assume that you have a computer in which unit roundoff error is $\frac{1}{2} \times 10^{-14}$, and assume that the fourthorder Runge-Kutta method will involve local truncation errors of magnitude $100 h^{5}$.
13. An important theorem of calculus states that the equation $f_{t x}=f_{x t}$ is true, provided that at least one of these two partial derivatives exists and is continuous. Test this equation on some functions, such as $f(t, x)=x t^{2}+x^{2} t+x^{3} t^{4}, \log \left(x-t^{-1}\right)$, and $e^{x} \sinh (t+x)+\cos (2 x-3 t)$.
14. a. If $x^{\prime}=f(t, x)$, then

$$
x^{\prime \prime}=D f, \quad x^{\prime \prime \prime}=D^{2} f+f_{x} D f f
$$

where

$$
D=\frac{\partial}{\partial t}+f \frac{\partial}{\partial x}, \quad D^{2}=\frac{\partial^{2}}{\partial t^{2}}+2 f \frac{\partial^{2}}{\partial x \partial t}+f^{2} \frac{\partial^{2}}{\partial x^{2}}
$$

Verify these equations.
${ }^{a}$ b. Determine $x^{(4)}$ in a similar form.
${ }^{a}$ 15. Derive the two-variable form of the Taylor series from the one-variable form by considering the function of one variable $\phi(t)=f(x+t h, y+t k)$ and expanding it by Taylor's Theorem.
16. The Taylor series expansion about point (a, b) in terms of two variables x and y is given by

$$
f(x, y)=\sum_{i=0}^{\infty} \frac{1}{i!}\left((x-a) \frac{\partial}{\partial x}+(y-b) \frac{\partial}{\partial y}\right)^{i} f(a, b)
$$

Show that Formula (2) can be obtained from this form by a change of variables.
${ }^{a}$ 17. (Continuation) Using the form given in the preceding problem, determine the first four nonzero terms in the Taylor series for $f(x, y)=\sin x+\cos y$ about the point $(0,0)$. Compare the result to the known series for $\sin x$ and $\cos y$. Make a conjecture about the Taylor series for functions that have the special form $f(x, y)=g(x)+h(y)$.
${ }^{a}$ 18. For the function $f(x, y)=y^{2}-3 \ln x$, write the first six terms in the Taylor series of $f(1+h, 0+k)$.
${ }^{a}$ 19. Using the truncated Taylor series about (1,1), give a three-term approximation to $e^{(1-x y)}$. Hint: Use Problem 10.2.16.
${ }^{a}$ 20. The function $f(x, y)=x e^{y}$ can be approximated by the Taylor series in two variables by $f(x+h, y+k) \approx(A x+B) e^{y}$. Determine A and B when terms through the second partial derivatives are used in the series.
${ }^{a}$ 21. For $f(x, y)=(y-x)^{-1}$, the Taylor series can be written as

$$
f(x+h, y+k)=A f+B f^{2}+C f^{3}+\cdots
$$

where $f=f(x, y)$. Determine the coefficients A, B, and C.
${ }^{a}$ 22. Consider the function $e^{x^{2}+y}$. Determine its Taylor series about the point $(0,1)$ through second-partial-derivative terms. Use this result to obtain an approximate value for $f(0.001,0.998)$.
23. Show that the improved Euler's method is a Runge-Kutta method of order 2.

Computer Problems 10.2

1. Run the sample pseudocode given in the text for differential Equation (13) to illustrate the Runge-Kutta method.
${ }^{a}$ 2. Solve the initial-value problem $x^{\prime}=x / t+t \sec (x / t)$ with $x(0)=0$ by the fourthorder Runge-Kutta method. Continue the solution to $t=1$ using step size $h=2^{-7}$. Compare the numerical solution with the exact solution, which is $x(t)=t \arcsin t$. Define $f(0,0)=0$, where $f(t, x)=x / t+t \sec (x / t)$.
2. Select one of the following initial-value problems, and compare the numerical solutions obtained with fourth-order Runge-Kutta formulas and fourth-order Taylor series.

Use different values of $h=2^{-n}$, for $n=2,3, \ldots, 7$, to compute the solution on the interval [1, 2].
a. $x^{\prime}=1+x / t \quad x(1)=1$
${ }^{a}$ b. $x^{\prime}=1 / x^{2}-x t \quad x(1)=1$
${ }^{a}$ c. $x^{\prime}=1 / t^{2}-x / t-x^{2} \quad x(1)=-1$
${ }^{a}$ 4. Select a Runge-Kutta routine from a program library, and test it on the initialvalue problem $x^{\prime}=(2-t) x$ with $x(2)=1$. Compare with the exact solution, $x=$ $\exp \left[-\left(\frac{1}{2}\right)(t-2)^{2}\right]$.
${ }^{a}$ 5. (Ill-conditioned ODE) Solve the ordinary differential equation $x^{\prime}=10 x+11 t-$ $5 t^{2}-1$ with initial value $x(0)=0$. Continue the solution from $t=0$ to $t=3$, using the fourth-order Runge-Kutta method with $h=2^{-8}$. Print the numerical solution and the exact solution $\left(t^{2} / 2-t\right)$ at every tenth step, and draw a graph of the two solutions. Verify that the solution of the same differential equation with initial value $x(0)=\varepsilon$ is $\varepsilon e^{10 t}+t^{2} / 2-t$ and thus account for the discrepancy between the numerical and exact solutions of the original problem.
${ }^{a}$ 6. Solve the initial-value problem $x^{\prime}=x \sqrt{x^{2}-1}$ with $x(0)=1$ by the Runge-Kutta method on the interval $0 \leqq t \leqq 1.6$, and account for any difficulties. Then, using negative h, solve the same differential equation on the same interval with initial value $x(1.6)=1.0$.
7. The following pathological example has been given by Dahlquist and Björck [1974]. Consider the differential equation $x^{\prime}=100(\sin t-x)$ with initial value $x(0)=0$. Integrate it with the fourth-order Runge-Kutta method on the interval [0, 3], using step sizes $h=0.015,0.020,0.025,0.030$. Observe the numerical instability!
${ }^{a}$ 8. Consider the differential equation

$$
\left\{\begin{array}{lr}
x^{\prime}=\left\{\begin{array}{lr}
x+t & -1 \leqq t \leqq 0 \\
x-t & 0 \leqq t \leqq 1
\end{array}\right. \\
x(-1)=1
\end{array}\right.
$$

Using the Runge-Kutta procedure $R K 4$ with step size $h=0.1$, solve this problem over the interval $[-1,1]$. Now solve by using $h=0.09$. Which numerical solution is more accurate and why? Hint: The true solution is given by $x=e^{(t+1)}-(t+1)$ if $t \leqq 0$ and $x=e^{(t+1)}-2 e^{t}+(t+1)$ if $t \geqq 0$.
${ }^{a} 9$. Solve $t-x^{\prime}+2 x t=0$ with $x(0)=0$ on the interval [0,10] using the Runge-Kutta formulas with $h=0.1$. Compare with the true solution: $\frac{1}{2}\left(e^{t^{2}}-1\right)$. Draw a graph or have one created by an automatic plotter. Then graph the logarithm of the solution.
10. Write a program to solve $x^{\prime}=\sin (x t)+\arctan t$ on $1 \leqq t \leqq 7$ with $x(2)=4$ using the Runge-Kutta procedure $R K 4$.
11. The general form of Runge-Kutta methods of order 2 is given by Equations (5) and (10). Write and test procedure $R K 2(f, t, x, h, \alpha, n)$ for carrying out n steps with step size h and initial conditions t and x for several given α values.
12. We want to solve

$$
\left\{\begin{array}{l}
x^{\prime}=e^{t} x^{2}+e^{3} \\
x(2)=4
\end{array}\right.
$$ at x (5) with step size 0.5 . Solve it in the following two ways.

a. Code the function $f(t, x)$ that is needed and use procedure $R K 4$.
b. Write a short program that uses the Taylor series method including terms up to h^{4}.
13. Plot the solution for differential equation (13).
14. Select a differential equation with a known solution and compare the classical fourthorder Runge-Kutta method with one or both of the following ones. Print the errors at each step. Is the ratio of the two errors a constant at each step? What are the advantages and/or disadvantages of each method?
a. A fourth-order Runge-Kutta method similar to the classical one is given by

$$
x(t+h)=x(t)+\frac{1}{6}\left(K_{1}+4 K_{3}+K_{4}\right)
$$

where

$$
\left\{\begin{array}{l}
K_{1}=h f(t, x) \\
K_{2}=h f\left(t+\frac{1}{2} h, x+\frac{1}{2} K_{1}\right) \\
K_{3}=h f\left(t+\frac{1}{2} h, x+\frac{1}{4} K_{1}+\frac{1}{4} K_{2}\right) \\
K_{4}=h f\left(t+h, x-K_{2}+2 K_{3}\right)
\end{array}\right.
$$

See England [1969] or Shampine, Allen, and Pruess [1997].
b. Another fourth-order Runge-Kutta method is given by

$$
x(t+h)=x(t)+w_{1} K_{1}+w_{2} K_{2}+w_{3} K_{3}+w_{4} K_{4}
$$

where

$$
\left\{\begin{array}{l}
K_{1}=h f(t, x) \\
K_{2}=h f\left(t+\frac{2}{5} h, x+\frac{2}{5} K_{1}\right) \\
K_{3}=h f\left(t+\frac{1}{16}(14-3 \sqrt{5}) h, x+c_{31} K_{1}+c_{32} K_{2}\right) \\
K_{4}=h f\left(t+h, x+c_{41} K_{1}+c_{42} K_{2}+c_{43} K_{3}\right)
\end{array}\right.
$$

Here the appropriate constants are

$$
\begin{array}{llrl}
c_{31} & =\frac{3(-963+476 \sqrt{5})}{1024} & c_{32}=\frac{5(757-324 \sqrt{5})}{1024} \\
c_{41}=\frac{-3365+2094 \sqrt{5}}{6040} & c_{42}=\frac{-975-3046 \sqrt{5}}{2552} \\
c_{43}=\frac{32(14595+6374 \sqrt{5})}{240845} & & \\
w_{1} & =\frac{263+24 \sqrt{5}}{1812} & w_{2}=\frac{125(1-8 \sqrt{5})}{3828} \\
w_{3} & =\frac{1024(3346+1623 \sqrt{5})}{5924787} & w_{4} & =\frac{2(15-2 \sqrt{5})}{123}
\end{array}
$$

Note: There are any number of Runge-Kutta methods of any order. The higher the order, the more complicated are the formulas. Since the one given by Equation (12) has error $\mathcal{O}\left(h^{5}\right)$ and is rather simple, it is the most popular fourth-order Runge-Kutta method. The error term for the method of part \mathbf{b} of this problem is also $\mathcal{O}\left(h^{5}\right)$, and it is optimum in a certain sense. (See Ralston [1965] for details.)
15. A fifth-order Runge-Kutta method is given by

$$
x(t+h)=x(t)+\frac{1}{24} K_{1}+\frac{5}{48} K_{4}+\frac{27}{56} K_{5}+\frac{125}{336} K_{6}
$$

where

$$
\left\{\begin{array}{l}
K_{1}=h f(t, x) \\
K_{2}=h f\left(t+\frac{1}{2} h, x+\frac{1}{2} K_{1}\right) \\
K_{3}=h f\left(t+\frac{1}{2} h, x+\frac{1}{4} K_{1}+\frac{1}{4} K_{2}\right) \\
K_{4}=h f\left(t+h, x-K_{2}+2 K_{3}\right) \\
K_{5}=h f\left(t+\frac{2}{3} h, x+\frac{7}{27} K_{1}+\frac{10}{27} K_{2}+\frac{1}{27} K_{4}\right) \\
K_{6}=h f\left(t+\frac{1}{5} h, x+\frac{28}{625} K_{1}-\frac{1}{5} K_{2}+\frac{546}{625} K_{3}+\frac{54}{625} K_{4}-\frac{378}{625} K_{5}\right)
\end{array}\right.
$$

Write and test a procedure that uses this formula.
16. a. Use a symbol manipulation package such as Maple or Mathematica to find the general Runge-Kunge method of order 2.
b. Repeat for order 3.
17. (Delay ordinary differential equation) Investigate procedures for determining the numerical solution of an ordinary differential equation with a constant delay such as

$$
x^{\prime}(t)=-x(t)+x(t-20)+\frac{1}{20} \cos \left(\frac{1}{20} t\right)+\sin \left(\frac{1}{20} t\right)-\sin \left(\frac{1}{20}(t-20)\right)
$$

on the interval $0 \leqq t \leqq 1000$, where $x(t)=\sin \left(\frac{1}{20} t\right)$ for $t \leqq 0$. Use a step size less than or equal to 20 so that no overlapping occurs. Compare to the exact solution $x(t)=\sin \left(\frac{1}{20} t\right)$.
18. Write a software for program Test $R K 4$ and routine $R K 4$, and verify the numerical results given in the text.

10.3 Stability and Adaptive Runge-Kutta and Multistep Methods

An Adaptive Runge-Kutta-Fehlberg Method

In realistic situations involving the numerical solution of initial-value problems, there is always a need to estimate the precision attained in the computation. Usually, an error tolerance is prescribed, and the numerical solution must not deviate from the true solution
beyond this tolerance. Once a method has been selected, the error tolerance dictates the largest allowable step size. Even if we consider only the local truncation error, determining an appropriate step size may be difficult. Moreover, often a small step size is needed on one portion of the solution curve, whereas a larger one may suffice elsewhere.

For the reasons given, various methods have been developed for automatically adjusting the step size in algorithms for the initial-value problem. One simple procedure is now described. Consider the classical fourth-order Runge-Kutta method discussed in Section 10.2. To advance the solution curve from t to $t+h$, we can take one step of size h using the Runge-Kutta formulas. But we can also take two steps of size $h / 2$ to arrive at $t+h$. If there were no truncation error, the value of the numerical solution $x(t+h)$ would be the same for both procedures. The difference in the numerical results can be taken as an estimate of the local truncation error. So, in practice, if this difference is within the prescribed tolerance, the current step size h is satisfactory. If this difference exceeds the tolerance, the step size is halved. If the difference is very much less than the tolerance, the step size is doubled.

The procedure just outlined is easily programmed but rather wasteful of computing time and is not recommended. A more sophisticated method was developed by Fehlberg [1969]. The Fehlberg method of order $\mathbf{4}$ is of Runge-Kutta type and uses these formulas:

$$
x(t+h)=x(t)+\frac{25}{216} K_{1}+\frac{1408}{2565} K_{3}+\frac{2197}{4104} K_{4}-\frac{1}{5} K_{5}
$$

where

$$
\left\{\begin{array}{l}
K_{1}=h f(t, x) \\
K_{2}=h f\left(t+\frac{1}{4} h, x+\frac{1}{4} K_{1}\right) \\
K_{3}=h f\left(t+\frac{3}{8} h, x+\frac{3}{32} K_{1}+\frac{9}{32} K_{2}\right) \\
K_{4}=h f\left(t+\frac{12}{13} h, x+\frac{1932}{2197} K_{1}-\frac{7200}{2197} K_{2}+\frac{7296}{2197} K_{3}\right) \\
K_{5}=h f\left(t+h, x+\frac{439}{216} K_{1}-8 K_{2}+\frac{3680}{513} K_{3}-\frac{845}{4104} K_{4}\right)
\end{array}\right.
$$

Since this scheme requires one more function evaluation than the classical Runge-Kutta method of order 4, it is of questionable value alone. However, with an additional function evaluation

$$
K_{6}=h f\left(t+\frac{1}{2} h, x-\frac{8}{27} K_{1}+2 K_{2}-\frac{3544}{2565} K_{3}+\frac{1859}{4104} K_{4}-\frac{11}{40} K_{5}\right)
$$

we can obtain a fifth-order Runge-Kutta method, namely,

$$
x(t+h)=x(t)+\frac{16}{135} K_{1}+\frac{6656}{12825} K_{3}+\frac{28561}{56430} K_{4}-\frac{9}{50} K_{5}+\frac{2}{55} K_{6}
$$

The difference between the values of $x(t+h)$ obtained from the fourth- and fifth-order procedures is an estimate of the local truncation error in the fourth-order procedure. So six function evaluations give a fifth-order approximation, together with an error estimate!

A pseudocode for the Runge-Kutta-Fehlberg method is given in procedure RK45:

```
procedure \(R K 45(f, t, x, h, \varepsilon)\)
real \(\varepsilon, K_{1}, K_{2}, K_{3}, K_{4}, K_{5}, K_{6}, h, t, x, x_{4}\)
external function \(f\)
real \(c_{20} \leftarrow 0.25, c_{21} \leftarrow 0.25\)
real \(c_{30} \leftarrow 0.375, c_{31} \leftarrow 0.09375, c_{32} \leftarrow 0.28125\)
real \(c_{40} \leftarrow 12 . / 13\)., \(c_{41} \leftarrow 1932 . / 2197\).
real \(c_{42} \leftarrow-7200 . / 2197 ., c_{43} \leftarrow 7296 . / 2197\).
real \(c_{51} \leftarrow 439 . / 216 ., c_{52} \leftarrow-8\).
real \(c_{53} \leftarrow 3680 . / 513 ., c_{54} \leftarrow-845 . / 4104\).
real \(c_{60} \leftarrow 0.5, c_{61} \leftarrow-8 . / 27 ., c_{62} \leftarrow 2\).
real \(c_{63} \leftarrow-3544 . / 2565\)., \(c_{64} \leftarrow 1859 . / 4104\).
real \(c_{65} \leftarrow-0.275\)
real \(a_{1} \leftarrow 25 . / 216 ., a_{2} \leftarrow 0\)., \(a_{3} \leftarrow 1408 . / 2565\).
real \(a_{4} \leftarrow 2197 . / 4104 ., a_{5} \leftarrow-0.2\)
real \(b_{1} \leftarrow 16 . / 135\)., \(b_{2} \leftarrow 0\)., \(b_{3} \leftarrow 6656 . / 12825\).
real \(b_{4} \leftarrow 28561 . / 56430\)., \(b_{5} \leftarrow-0.18\)
real \(b_{6} \leftarrow 2 . / 55\).
\(K_{1} \leftarrow h f(t, x)\)
\(K_{2} \leftarrow h f\left(t+c_{20} h, x+c_{21} K_{1}\right)\)
\(K_{3} \leftarrow h f\left(t+c_{30} h, x+c_{31} K_{1}+c_{32} K_{2}\right)\)
\(K_{4} \leftarrow h f\left(t+c_{40} h, x+c_{41} K_{1}+c_{42} K_{2}+c_{43} K_{3}\right)\)
\(K_{5} \leftarrow h f\left(t+h, x+c_{51} K_{1}+c_{52} K_{2}+c_{53} K_{3}+c_{54} K_{4}\right)\)
\(K_{6} \leftarrow h f\left(t+c_{60} h, x+c_{61} K_{1}+c_{62} K_{2}+c_{63} K_{3}+c_{64} K_{4}+c_{65} K_{5}\right)\)
\(x_{4} \leftarrow x+a_{1} K_{1}+a_{3} K_{3}+a_{4} K_{4}+a_{5} K_{5}\)
\(x \leftarrow x+b_{1} K_{1}+b_{3} K_{3}+b_{4} K_{4}+b_{5} K_{5}+b_{6} K_{6}\)
\(t \leftarrow t+h\)
\(\varepsilon \leftarrow\left|x-x_{4}\right|\)
end procedure \(R K 45\)
```

Of course, the programmer may wish to consider various optimization techniques such as assigning numerical values to the coefficients with decimal expansions corresponding to the precision of the computer being used so that the fractions do not need to be recomputed at each call to the procedure.

We can use the RK45 procedure in a nonadaptive fashion such as in the following:

```
program Test_RK45
integer \(k\); real \(t, h, \varepsilon\); external function \(f\)
integer \(n \leftarrow 72\)
real \(a \leftarrow 1.0, b \leftarrow 1.5625, x \leftarrow 2.0\)
\(h \leftarrow(b-a) / n\)
\(t \leftarrow a\)
output \(0, t, x\)
for \(k=1\) to \(n\) do
    call \(\operatorname{RK} 45(f, t, x, h, \varepsilon)\)
    output \(k, t, x, \varepsilon\)
end for
end program Test_RK45
```

```
real function f(t,x)
real t,x
f\leftarrow2.0+(x-t-1.0)}\mp@subsup{}{}{2
end function f
```

Here，we print the error estimation at each step．However，we can use it in an adaptive procedure，since the error estimate ε can tell us when to adjust the step size to control the single－step error．

We now describe a simple adaptive procedure．In the $R K 45$ procedure，the fourth－and fifth－order approximations for $x(t+h)$ ，say，x_{4} and x_{5} ，are computed from six function evaluations，and the error estimate $\varepsilon=\left|x_{4}-x_{5}\right|$ is known．From user－specified bounds on the allowable error estimate $\left(\varepsilon_{\min } \leqq \varepsilon \leqq \varepsilon_{\max }\right)$ ，the step size h is doubled or halved as needed to keep ε within these bounds．A range for the allowable step size h is also specified by the user（ $h_{\min } \leqq|h| \leqq h_{\max }$ ）．Clearly，the user must set the bounds（ $\varepsilon_{\min }, \varepsilon_{\max }, h_{\min }, h_{\max }$ ） carefully so that the adaptive procedure does not get caught in a loop，trying repeatedly to halve and double the step size from the same point to meet error bounds that are too restrictive for the given differential equation．

Basically，our adaptive process is as follows：

ALGORITHM 1 Overview of Adaptive Process

1．Given a step size h and an initial value $x(t)$ ，the $R K 45$ routine computes the value $x(t+h)$ and an error estimate ε ．
2．If $\varepsilon_{\text {min }} \leqq \varepsilon \leqq \varepsilon_{\text {max }}$ ，then the step size h is not changed and the next step is taken by repeating step 1 with initial value $x(t+h)$ ．
3．If $\varepsilon<\varepsilon_{\min }$ ，then h is replaced by $2 h$ ，provided that $|2 h| \leqq h_{\max }$ ．
4．If $\varepsilon>\varepsilon_{\max }$ ，then h is replaced by $h / 2$ ，provided that $|h / 2| \geqq h_{\min }$ ．
5．If $h_{\min } \leqq|h| \leqq h_{\max }$ ，then the step is repeated by returning to step 1 with $x(t)$ and the new h value．

The procedure for this adaptive scheme is RK45＿Adaptive．In the parameter list of the pseudocode，f is the function $f(t, x)$ for the differential equation，t and x contain the initial values，h is the initial step size，t_{b} is the final value for t ，itmax is the maximum number of steps to be taken in going from $a=t_{a}$ to $b=t_{b}, \varepsilon_{\min }$ and $\varepsilon_{\max }$ are lower and upper bounds on the allowable error estimate $\varepsilon, h_{\min }$ and $h_{\max }$ are bounds on the step size h ，and iflag is an error flag that returns one of the following values：

iflag	Meaning
0	Successful march from t_{a} to t_{b}
1	Maximum number of iterations reached

On return，t and x are the exit values，and h is the final step size value considered or used：

```
procedure RK45_Adaptive(f,t,x,h, t⿱亠⿻口丿
integer iflag, itmax, }n\mathrm{ ; external function }
real }\varepsilon,\mp@subsup{\varepsilon}{\mathrm{ max }}{},\mp@subsup{\varepsilon}{\mathrm{ min }}{},d,h,\mp@subsup{h}{\mathrm{ min }}{},\mp@subsup{h}{\mathrm{ max }}{},t,\mp@subsup{t}{b}{},x,\mp@subsup{x}{\mathrm{ save }}{},\mp@subsup{t}{\mathrm{ save }}{
real }\delta\leftarrow\frac{1}{2}\times1\mp@subsup{0}{}{-5
```

```
output \(0, h, t, x\)
iflag \(\leftarrow 1\)
\(k \leftarrow 0\)
while \(k \leqq\) itmax
    \(k \leftarrow k+1\)
    if \(|h|<h_{\text {min }}\) then \(h \leftarrow \operatorname{sign}(h) h_{\text {min }}\)
    if \(|h|>h_{\text {max }}\) then \(h \leftarrow \operatorname{sign}(h) h_{\text {max }}\)
    \(d \leftarrow\left|t_{b}-t\right|\)
    if \(d \leqq|h|\) then
        iflag \(\leftarrow 0\)
        if \(d \leqq \delta \cdot \max \left\{\left|t_{b}\right|,|t|\right\}\) then exit loop
        \(h \leftarrow \operatorname{sign}(h) d\)
    end if
    \(x_{\text {save }} \leftarrow x\)
    \(t_{\text {save }} \leftarrow t\)
    call \(\operatorname{RK45}(f, t, x, h, \varepsilon)\)
    output \(n, h, t, x, \varepsilon\)
    if \(i\) flag \(=0\) then exit loop
    if \(\varepsilon<\varepsilon_{\text {min }}\) then \(h \leftarrow 2 h\)
    if \(\varepsilon>\varepsilon_{\text {max }}\) then
        \(h \leftarrow h / 2\)
        \(x \leftarrow x_{\text {save }}\)
        \(t \leftarrow t_{\text {save }}\)
        \(k \leftarrow k-1\)
    end if
end while
end procedure RK45_Adaptive
```

In the pseudocode, notice that several conditions must be checked to determine the size of the final step, since floating-point arithmetic is involved and the step size varies.

As an illustration, the reader should repeat the computer example in the previous section using RK45 Adaptive, which allows variable step size, instead of RK4. Compare the accuracy of these two computed solutions.

An Industrial Example

A first-order differential equation that arose in the modeling of an industrial chemical process is as follows:

$$
\begin{equation*}
x^{\prime}=a+b \sin t+c x \quad x(0)=0 \tag{1}
\end{equation*}
$$

in which $a=3, b=5$, and $c=0.2$ are constants. This equation is amenable to the solution techniques of calculus, in particular the use of an integrating factor. However, the analytic solution is complicated, and a numerical solution may be preferable.

To solve this problem numerically using the adaptive Runge-Kutta formulas, one need only identify (and program) the function f that appears in the general description. In this problem, it is $f(t, x)=3+5 \sin t+0.2 x$. Here is a brief pseudocode for solving the
equation on the interval $[0,10]$ with particular values assigned to the parameters in the routine RK45_Adaptive:

```
program Test_RK45_Adaptive
integer iflag; real t,x,h,\mp@subsup{t}{b}{}; external function f
integer itmax }\leftarrow100
real }\mp@subsup{\varepsilon}{\mathrm{ max }}{}\leftarrow1\mp@subsup{0}{}{-5},\mp@subsup{\varepsilon}{\mathrm{ min }}{}\leftarrow1\mp@subsup{0}{}{-8},\mp@subsup{h}{\mathrm{ min }}{}\leftarrow1\mp@subsup{0}{}{-6},\mp@subsup{h}{\mathrm{ max }}{}\leftarrow1.
t\leftarrow0.0;\quadx\leftarrow0.0; h\leftarrow0.01; t
call RK45_Adaptive(f,t,x,h,\mp@subsup{t}{b}{},\mathrm{ itmax, }\mp@subsup{\varepsilon}{\operatorname{max}}{},\mp@subsup{\varepsilon}{\operatorname{min}}{},\mp@subsup{h}{\mathrm{ min }}{},\mp@subsup{h}{\operatorname{max}}{},\mathrm{ iflag)}
output itmax, iflag
end program Test_RK45_Adaptive
real function f(t,x)
real t, x
f\leftarrow3+5\operatorname{sin}(t)+0.2x
end function }
```

We obtain the approximation $x(10) \approx 135.917$. The output from the code is a table of values that can be sent to a plotting routine. The resulting graph helps the user to visualize the solution curve.

Adams-Bashforth-Moulton Formulas

We now introduce a strategy in which numerical quadrature formulas are used to solve a single first-order ordinary differential equation. The model equation is

$$
x^{\prime}(t)=f(t, x(t))
$$

and we suppose that the values of the unknown function have been computed at several points to the left of t, namely, $t, t-h, t-2 h, \ldots, t-(n-1) h$. We want to compute $x(t+h)$. By the theorems of calculus, we can write

$$
\begin{aligned}
x(t+h) & =x(t)+\int_{t}^{t+h} x^{\prime}(s) d s \\
& =x(t)+\int_{t}^{t+h} f(s, x(s)) d s \\
& \approx x(t)+\sum_{j=1}^{n} c_{j} f_{j}
\end{aligned}
$$

where the abbreviation $f_{j}=f(t-(j-1) h, x(t-(j-1) h))$ has been used. In the last line of the above equation, we have brought in a suitable numerical integration formula. The simplest case of such a formula will be for the interval $[0,1]$ and will use values of the integrand at points $0,-1,-2, \ldots, 1-n$ in the case of an Adams-Bashforth formula. Once we have such a basic rule, a change of variable will produce the rule for any other interval with any other uniform spacing.

Let us find a rule of the form

$$
\int_{0}^{1} F(r) d r \approx c_{1} F(0)+c_{2} F(-1)+\cdots+c_{n} F(1-n)
$$

There are n coefficients c_{j} at our disposal. We know from interpolation theory that the formula can be made exact for all polynomials of degree $n-1$. It suffices that we insist on integrating each function $1, r, r^{2}, \ldots, r^{n-1}$ exactly. Hence, we write down the appropriate equation:

$$
\int_{0}^{1} r^{i-1} d t=\sum_{j=1}^{n} c_{j}(1-j)^{i-1} \quad(1 \leqq i \leqq n)
$$

This is a system $\boldsymbol{A} \boldsymbol{u}=\boldsymbol{b}$ of n equations in n unknowns. The elements of the matrix \boldsymbol{A} are $A_{i j}=(1-j)^{i-1}$, and the right-hand side is $b_{i}=1 / i$.

When this program is run, the output is the vector of coefficients $\left(\frac{55}{24},-\frac{59}{24}, \frac{37}{24},-\frac{3}{8}\right)$. Of course, higher-order formulas are obtained by changing the value of n in the code. To get the Adams-Moulton formulas, we start with a quadrature rule of the form

$$
\int_{0}^{1} G(r) d r \approx \sum_{j=1}^{n} C_{j} G(2-j)
$$

A program similar to the one above yields the coefficients $\left(\frac{9}{24}, \frac{19}{24},-\frac{5}{24}, \frac{1}{24}\right)$. The distinction between the two quadrature rules is that one involves the value of the integrand at 1 and the other does not.

How do we arrive at formulas for $\int_{t}^{t+h} g(s) d s$ from the work already done? Use the change of variable from s to σ given by $s=h \sigma-t$. In these considerations, think of t as a constant. The new integral will be $h \int_{0}^{1} g(h \sigma+t) d \sigma$, which can be treated with either of the two formulas already designed for the interval [0,1$]$. For example,

$$
\begin{aligned}
& \int_{t}^{t+h} F(r) d r \approx \frac{h}{24}[55 F(t)-59 F(t-h)+37 F(t-2 h)-9 F(t-3 h)] \\
& \int_{t}^{t+h} G(r) d r \approx \frac{h}{24}[9 G(t+h)+19 G(t)-5 G(t-h)+G(t-2 h)]
\end{aligned}
$$

The method of undetermined coefficients used here to obtain the quadrature formulas does not, by itself, provide the error terms that we would like to have. An assessment of the error can be made from interpolation theory, because the methods considered here come from integrating an interpolating polynomial. Details can be found in more advanced books. You can experiment with some of the Adams-Bashforth-Moulton formulas in Computer Problems 10.3.2-10.3.4. These methods are taken up again in Section 11.3.

Stability Analysis

Let us now resume the discussion of errors that inevitably occur in the numerical solution of an initial-value problem

$$
\left\{\begin{array}{l}
x^{\prime}=f(t, x) \tag{2}\\
x(a)=s
\end{array}\right.
$$

The exact solution is a function $x(t)$. It depends on the initial value s, and to show this, we write $x(t, s)$. The differential equation therefore gives rise to a family of solution curves, each corresponding to one value of the parameter s. For example, the differential equation

$$
\left\{\begin{array}{l}
x^{\prime}=x \\
x(a)=s
\end{array}\right.
$$

gives rise to the family of solution curves $x=s e^{(t-a)}$ that differ in their initial values $x(a)=s$. A few such curves are shown in Figure 10.4. The fact that the curves there diverge from one another as t increases has important numerical significance. Suppose, for instance, that initial value s is read into the computer with some roundoff error. Then even if all subsequent calculations are precise and no truncation errors occur, the computed solution will be wrong. An error made at the beginning has the effect of selecting the wrong curve from the family of all solution curves. Since these curves diverge from one another, any minute error made at the beginning is responsible for an eventual complete loss of accuracy. This phenomenon is not restricted to errors made in the first step, because each point in the numerical solution can be interpreted as the initial value for succeeding points.

FIGURE 10.4
Solution curves to $x^{\prime}=x$ with

$$
x(a)=s
$$

For an example in which this difficulty does not arise, consider

$$
\left\{\begin{array}{l}
x^{\prime}=-x \\
x(a)=s
\end{array}\right.
$$

Its solutions are $x=s e^{-(t-a)}$. As t increases, these curves come closer together, as in Figure 10.5. Thus, errors made in the numerical solution still result in selecting the wrong curve, but the effect is not as serious because the curves coalesce.

At a given step, the global error of an approximate solution to an ordinary differential equation contains both the local error at that step and the accumulative effect of all the local errors at all previous steps. For divergent solution curves, the local errors at each step are magnified over time, and the global error may be greater than the sum of all the local errors. In Figure 10.4 and Figure 10.5, the steps in the numerical solution are indicated by dots connected by dark lines. Also, the local errors are indicated by small vertical bars and the global error by a vertical bar at the right end of the curves.

For convergent solution curves, the local errors at each step are reduced over time, and the global error may be less than the sum of all the local errors. For the general differential

FIGURE 10.5
Solution curves to $x^{\prime}=-x$ with $x(a)=s$

Equation (2), how can the two modes of behavior just discussed be distinguished? It is simple. If $f_{x}>\delta$ for some positive δ, the curves diverge. However, if $f_{x}<-\delta$, they converge. To see why, consider two nearby solution curves that correspond to initial values s and $s+h$. By Taylor series, we have

$$
x(t, s+h)=x(t, s)+h \frac{\partial}{\partial s} x(t, s)+\frac{1}{2} h^{2} \frac{\partial^{2}}{\partial s^{2}} x(t, s)+\cdots
$$

whence

$$
x(t, s+h)-x(t, s) \approx h \frac{\partial}{\partial s} x(t, s)
$$

Thus, the divergence of the curves means that

$$
\lim _{t \rightarrow \infty}|x(t, s+h)-x(t, s)|=\infty
$$

and can be written as

$$
\lim _{t \rightarrow \infty}\left|\frac{\partial}{\partial s} x(t, s)\right|=\infty
$$

To calculate this partial derivative, start with the differential equation satisfied by $x(t, s)$:

$$
\frac{\partial}{\partial t} x(t, s)=f(t, x(t, s))
$$

and differentiate partially with respect to s :

$$
\frac{\partial}{\partial s} \frac{\partial}{\partial t} x(t, s)=\frac{\partial}{\partial s} f(t, x(t, s))
$$

Hence,

$$
\begin{equation*}
\frac{\partial}{\partial t} \frac{\partial}{\partial s} x(t, s)=f_{x}(t, x(t, s)) \frac{\partial}{\partial s} x(t, s)+f_{t}(t, x(t, s)) \frac{\partial t}{\partial s} \tag{3}
\end{equation*}
$$

But s and t are independent variables (a change in s produces no change in t), so $\partial t / \partial s=0$. If s is now fixed and if we put $u(t)=(\partial / \partial s) x(t, s)$ and $q(t)=f_{x}(t, x(t, s))$, then Equation (3) becomes

$$
\begin{equation*}
u^{\prime}=q u \tag{4}
\end{equation*}
$$

This is a linear differential equation with solution $u(t)=c e^{Q(t)}$, where Q is the indefinite integral (antiderivative) of q. The condition $\lim _{t \rightarrow \infty}|u(t)|=\infty$ is met if $\lim _{t \rightarrow \infty} Q(t)=\infty$.

This situation, in turn, occurs if $q(t)$ is positive and bounded away from zero because then

$$
Q(t)=\int_{a}^{t} q(\theta) d \theta>\int_{a}^{t} \delta d \theta=\delta(t-a) \rightarrow \infty
$$

as $t \rightarrow \infty$ if $f_{x}=q>\delta>0$.
To illustrate, consider the differential equation $x^{\prime}=t+\tan x$. The solution curves diverge from one another as $t \rightarrow \infty$ because $f_{x}(t, x)=\sec ^{2} x>1$.

Summary

(1) The Runge-Kutta-Fehlberg method is

$$
\begin{aligned}
\widetilde{x}(t) & =x(t)+\frac{25}{216} K_{1}+\frac{1408}{2565} K_{3}+\frac{2197}{4104} K_{4}-\frac{1}{5} K_{5} \\
x(t+h) & =x(t)+\frac{16}{135} K_{1}+\frac{6656}{12825} K_{3}+\frac{28561}{56430} K_{4}-\frac{9}{50} K_{5}+\frac{2}{55} K_{6}
\end{aligned}
$$

where

$$
\left\{\begin{array}{l}
K_{1}=h f(t, x) \\
K_{2}=h f\left(t+\frac{1}{4} h, x+\frac{1}{4} K_{1}\right) \\
K_{3}=h f\left(t+\frac{3}{8} h, x+\frac{3}{32} K_{1}+\frac{9}{32} K_{2}\right) \\
K_{4}=h f\left(t+\frac{12}{13} h, x+\frac{1932}{2197} K_{1}-\frac{7200}{2197} K_{2}+\frac{7296}{2197} K_{3}\right) \\
K_{5}=h f\left(t+h, x+\frac{439}{216} K_{1}-8 K_{2}+\frac{3680}{513} K_{3}-\frac{845}{4104} K_{4}\right) \\
K_{6}=h f\left(t+\frac{1}{2} h, x-\frac{8}{27} K_{1}+2 K_{2}-\frac{3544}{2565} K_{3}+\frac{1859}{4104} K_{4}-\frac{11}{40} K_{5}\right)
\end{array}\right.
$$

The quantity $\varepsilon=|x(t+h)-\widetilde{x}|$ can be used in an adaptive step-size procedure.
(2) A fourth-order multistep method is the Adams-Bashforth-Moulton method:

$$
\begin{aligned}
& \begin{aligned}
& \widetilde{x}(t+h)=x(t)+\frac{h}{24}[55 f(t, x(t))-59 f(t-h, x(t-h)) \\
& \quad\quad 37 f(t-2 h, x(t-2 h))-9 f(t-3 h, x(t-3 h))]
\end{aligned} \\
& \begin{array}{r}
\left.x(t+h)=x(t)+\frac{h}{24}[9 f(t+h, \widetilde{x}(t+h))+19 f(t, x) t)\right) \\
\quad \\
\quad-5 f(t-h, x(t-h))+f(t-2 h, x(t-2 h))]
\end{array}
\end{aligned}
$$

The value $\widetilde{x}(t+h)$ is the predicted value, and $x(t+h)$ is the corrected value. The truncation errors for these two formulas are $\mathcal{O}\left(h^{5}\right)$. Since the value of $x(a)$ is given, the values for $x(a+h), x(a+2 h), x(a+3 h), x(a+4 h)$ are computed by some single-step method such as the fourth-order Runge-Kutta method.

Additional References

See Aiken [1985], Butcher [1987], Dekker and Verwer [1984], England [1969], Fehlberg [1969], Henrici [1962], Hundsdorfer [1985], Lambert [1973], Lapidus and Seinfeld [1971], Miranker [1981], Moulton [1930], Shampine and Gordon [1975], and Stetter [1973].

Problems 10.3

${ }^{a}$ 1. Solve the problem

$$
\left\{\begin{array}{l}
x^{\prime}=-x \\
x(0)=1
\end{array}\right.
$$

by using the Trapezoid Rule, as discussed at the beginning of this chapter. Compare the true solution at $t=1$ to the approximate solution obtained with n steps. Show, for example, that for $n=5$, the error is 0.00123 .
${ }^{a}$ 2. Derive an implicit multistep formula based on Simpson's rule, involving uniformly spaced points $x(t-h), x(t)$, and $x(t+h)$, for numerically solving the ordinary differential equation $x^{\prime}=f$.
3. An alert student noticed that the coefficients in the Adams-Bashforth formula add up to 1 . Why is that so?
${ }^{a}$ 4. Derive a formula of the form

$$
x(t+h)=a x(t)+b x(t-h)+h\left[c x^{\prime}(t+h)+d x^{\prime \prime}(t)+e x^{\prime \prime \prime}(t-h)\right]
$$

that is accurate for polynomials of as high a degree as possible. Hint: Use polynomials $1, t, t^{2}$, and so on.
${ }^{a}$ 5. Determine the coefficients of an implicit, one-step, ordinary differential equation method of the form

$$
x(t+h)=a x(t)+b x^{\prime}(t)+c x^{\prime}(t+h)
$$

so that it is exact for polynomials of as high a degree as possible. What is the order of the error term?
6. The differential equation that is used to illustrate the adaptive Runge-Kutta program can be solved with an integrating factor. Do so.
7. Establish Equation (4).
${ }^{a}$ 8. The initial-value problem $x^{\prime}=\left(1+t^{2}\right) x$ with $x(0)=1$ is to be solved on the interval $[0,9]$. How sensitive is $x(9)$ to perturbations in the initial value $x(0)$?
9. For each differential equation, determine regions in which the solution curves tend to diverge from one another as t increases:
${ }^{a}$ a. $x^{\prime}=\sin t+e^{x}$
b. $x^{\prime}=x+t e^{-t}$
${ }^{a}$ c. $x^{\prime}=x t$
d. $x^{\prime}=x^{3}\left(t^{2}+1\right)$
${ }^{a}$ e. $x^{\prime}=\cos t-e^{x}$
f. $x^{\prime}=\left(1-x^{3}\right)\left(1+t^{2}\right)$
${ }^{a}$ 10. For the differential equation $x^{\prime}=t\left(x^{3}-6 x^{2}+15 x\right)$, determine whether the solution curves diverge from one another as $t \rightarrow \infty$.
${ }^{a}$ 11. Determine whether the solution curves of $x^{\prime}=\left(1+t^{2}\right)^{-1} x$ diverge from one another as $t \rightarrow \infty$.

Computer Problems 10.3

1. Use mathematical software to solve systems of linear equations whose solutions are
a. Adams-Bahforth coefficients
b. Adams-Moulton coefficients
2. The second-order Adams-Bashforth-Moulton method is given by

$$
\begin{aligned}
& \widetilde{x}(t+h)=x(t)+\frac{h}{2}[3 f(t, x(t))-f(t-h, x(t-h))] \\
& x(t+h)=x(t)+\frac{h}{2}[f(t+h, \widetilde{x}(t+h))+f(t, x(t))]
\end{aligned}
$$

The approximate single-step error is $\varepsilon \equiv K|x(t+h)-\widetilde{x}(t+h)|$, where $K=\frac{1}{6}$. Using ε to monitor the convergence, write and test an adaptive procedure for solving an ODE of your choice using these formulas.
3. (Continuation) Carry out the instructions of the previous computer problem for the third-order Adams-Bashforth-Moulton method:

$$
\begin{gathered}
\widetilde{x}(t+h)=x(t)+\frac{h}{12}[23 f(t, x(t))-16 f(t-h, x(t-h)) \\
\quad+5 f(t-2 h, x(t-2 h))] \\
x(t+h)=x(t)+\frac{h}{12}[5 f(t+h, \widetilde{x}(t+h))+8 f(t, x(t)) \\
-f(t-h, x(t-h))]
\end{gathered}
$$

where $K=\frac{1}{10}$ in the expression for the approximate single-step error.
4. (Predictor-corrector scheme) Using the fourth-order Adams-Bashforth-Moulton method, derive the predictor-corrector scheme given by the following equations:

$$
\left.\begin{array}{rl}
\widetilde{x}(t+h)=x(t)+\frac{h}{24}[55 f(t, x(t))-59 f(t-h, x(t-h)) \\
& \quad+37 f(t-2 h, x(t-2 h))-9 f(t-3 h, x(t-3 h))]
\end{array}\right] \begin{aligned}
x(t+h)=x(t)+\frac{h}{24}[9 f(t & +h, \widetilde{x}(t+h))+19 f(t, x(t)) \\
& \quad-5 f(t-h, x(t-h))+f(t-2 h, x(t-2 h))]
\end{aligned}
$$

Write and test a procedure for the Adams-Bashforth-Moulton method. Note: This is a multistep process because values of x at $t, t-h, t-2 h$, and $t-3 h$ are used to determine the predicted value $\widetilde{x}(t+h)$, which, in turn, is used with values of x at $t, t-h$, and $t-2 h$ to obtain the corrected value $x(t+h)$. The error terms for these formulas are $(251 / 720) h^{5} f^{(4)}(\xi)$ and $-(19 / 720) h^{5} f^{(4)}(\eta)$, respectively. (See Section 9.3 for additional discussion of these methods.)
${ }^{a}$ 5. Solve

$$
\left\{\begin{array}{l}
x^{\prime}=\frac{3 x}{t}+\frac{9}{2} t-13 \\
x(3)=6
\end{array}\right.
$$

at $x\left(\frac{1}{2}\right)$ using procedure RK45_Adaptive to obtain the desired solution to nine decimal places. Compare with the true solution:

$$
x=t^{3}-\frac{9}{2} t^{2}+\frac{13}{2} t
$$

${ }^{a} 6$. (Continuation) Repeat the previous problem for $x\left(-\frac{1}{2}\right)$.
7. It is known that the fourth-order Runge-Kutta method described in Equation (12) of Section 10.2 has a local truncation error that is $\mathcal{O}\left(h^{5}\right)$. Devise and carry out a numerical experiment to test this. Suggestions: Take just one step in the numerical solution of a nontrivial differential equation whose solution is known beforehand. However, use a variety of values for h, such as 2^{-n}, where $1 \leqq n \leqq 24$. Test whether the ratio of errors to h^{5} remains bounded as $h \rightarrow 0$. A multiple-precision calculation may be needed. Print the indicated ratios.
8. Compute the numerical solution of

$$
\left\{\begin{array}{l}
x^{\prime}=-x \\
x(0)=1
\end{array}\right.
$$

using the midpoint method

$$
x_{n+1}=x_{n-1}+2 h x_{n}^{\prime}
$$

with $x_{0}=1$ and $x_{1}=-h+\sqrt{1+h^{2}}$. Are there any difficulties in using this method for this problem? Carry out an analysis of the stability of this method. Hint: Consider fixed h and assume $x_{n}=\lambda^{n}$.
${ }^{a} 9$. Tabulate and graph the function $[1-\ln v(x)] v(x)$ on $[0, e]$, where $v(x)$ is the solution of the initial-value problem $(d v / d x)[\ln v(x)]=2 x, v(0)=1$. Check value: $v(1)=e$.
10. Determine the numerical value of

$$
2 \pi \int_{4}^{5} \frac{e^{s}}{s} d s
$$

in three ways: solving the integral, an ordinary differential equation, and using the exact formula.
11. Compute and print a table of the function

$$
f(\phi)=\int_{0}^{\phi} \sqrt{1-\frac{1}{4} \sin ^{2} \theta} d \theta
$$

by solving an appropriate initial-value problem. Cover the interval $\left[0,90^{\circ}\right]$ with steps of 1° and use the Runge-Kutta method of order 4. Check values: Use $f\left(30^{\circ}\right)=$ 0.51788193 and $f\left(90^{\circ}\right)=1.46746221$. Note: This is an example of an elliptic integral of the second kind. It arises in finding an arc length on an ellipse and in many engineering problems.
${ }^{a}$ 12. By solving an appropriate initial-value problem, make a table of the function

$$
f(x)=\int_{1 / x}^{\infty} \frac{d t}{t e^{t}}
$$

on the interval $[0,1]$. Determine how well f is approximated by $x e^{-1 / x}$. Hint: Let $t=-\ln s$.
${ }^{a}$ 13. By solving an appropriate initial-value problem, make a table of the function

$$
f(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t
$$

on the interval $0 \leqq x \leqq 2$. Determine how accurately $f(x)$ is approximated on this interval by the function

$$
g(x)=1-\left(a y+b y^{2}+c y^{3}\right) \frac{2}{\sqrt{\pi}} e^{-x^{2}}
$$

where

$$
\begin{cases}a=0.3084284 & b=-0.0849713 \\ c=0.6627698 & y=(1+0.47047 x)^{-1}\end{cases}
$$

14. Use the Runge-Kutta method to compute $\int_{0}^{1} \sqrt{1+s^{3}} d s$.
${ }^{a}$ 15. Write and run a program to print an accurate table of the sine integral

$$
\operatorname{Si}(x)=\int_{0}^{x} \frac{\sin r}{r} d r
$$

The table should cover the interval $0 \leqq x \leqq 1$ in steps of size 0.01 . [Use $\sin (0) / 0=1$. See Computer Problem 5.1.2]
16. Compute a table of the function

$$
\operatorname{Shi}(x)=\int_{0}^{x} \frac{\sinh t}{t} d t
$$

by finding an initial-value problem that it satisfies and then solving the initial-value problem. Your table should be accurate to nearly machine precision. [Use $\sinh (0) /$ $0=1$.]
17. Design and carry out a numerical experiment to verify that a slight perturbation in an initial-value problem can cause catastrophic errors in the numerical solution. Note: An initial-value problem is an ordinary differential equation with conditions specified only at the initial point. (Compare this with a boundary value problem as given in Chapter 12.)
18. Run example programs for solving the industrial example in Equation (1), compare the solutions, and produce the plots.
19. Another adaptive Runge-Kutta method was developed by England [1969]. The Runge-Kutta-England method is similar to the Runge-Kutta-Fehlberg method in that it combines a fourth-order Runge-Kutta formula and a companion fifth-order one. To reduce the number of function evaluations, the formulas are derived so that some of the same function evaluations are used in each pair of formulas. (A fourth-order Runge-Kutta
formula requires at least four function evaluations, and a fifth-order one requires at least six.) The Runge-Kutta-England method uses the fourth-order Runge-Kutta methods in Computer Problem 10.2.14a and takes two half steps as follows:

$$
x\left(t+\frac{1}{2} h\right)=x(t)+\frac{1}{6}\left(K_{1}+4 K_{3}+K_{4}\right)
$$

where

$$
\left\{\begin{array}{l}
K_{1}=\frac{1}{2} h f(t, x(t)) \\
K_{2}=\frac{1}{2} h f\left(t+\frac{1}{4} h, x(t)+\frac{1}{2} K_{1}\right) \\
K_{3}=\frac{1}{2} h f\left(t+\frac{1}{4} h, x(t)+\frac{1}{4} K_{1}+\frac{1}{4} K_{2}\right) \\
K_{4}=\frac{1}{2} h f\left(t+\frac{1}{2} h, x(t)-K_{2}+2 K_{3}\right)
\end{array}\right.
$$

and

$$
x(t+h)=x\left(t+\frac{1}{2} h\right)+\frac{1}{6}\left(K_{5}+4 K_{7}+K_{8}\right)
$$

where

$$
\left\{\begin{array}{l}
K_{5}=\frac{1}{2} h f\left(t+\frac{1}{2} h, x\left(t+\frac{1}{2} h\right)\right) \\
K_{6}=\frac{1}{2} h f\left(t+\frac{3}{4} h, x\left(t+\frac{1}{2} h\right)+\frac{1}{2} K_{5}\right) \\
K_{7}=\frac{1}{2} h f\left(t+\frac{3}{4} h, x\left(t+\frac{1}{2} h\right)+\frac{1}{4} K_{5}+\frac{1}{4} K_{6}\right) \\
K_{8}=\frac{1}{2} h f\left(t+h, x\left(t+\frac{1}{2} h\right)-K_{6}+2 K_{7}\right)
\end{array}\right.
$$

With these two half steps, there are enough function evaluations so that only one more

$$
\begin{aligned}
K_{9}=\frac{1}{2} h f\left(t+h, x(t)-\frac{1}{12}\left(K_{1}\right.\right. & +96 K_{2}-92 K_{3}+121 K_{4} \\
& \left.\left.-144 K_{5}-6 K_{6}+12 K_{7}\right)\right)
\end{aligned}
$$

is needed to obtain a fifth-order Runge-Kutta method:

$$
\widehat{x}(t+h)=x(t)+\frac{1}{90}\left(14 K_{1}+64 K_{3}+32 K_{3}-8 K_{5}+64 K_{7}+15 K_{8}-K_{9}\right)
$$

An adaptive procedure can be developed by using an error estimation based on the two values $x(t+h)$ and $\widehat{x}(t+h)$. Program and test such a procedure. (See, for example, Shampine, Allen, and Pruess [1997].)
20. Investigate the numerical solution of the initial-value problem

$$
\left\{\begin{array}{l}
x^{\prime}=-\sqrt{1-x^{2}} \\
x(0)=1
\end{array}\right.
$$

This problem is ill-conditioned, since $x(t)=\cos t$ is a solution and $x(t)=1$ is also. For more information on this and other test problems, see Cash [2003] or www.ma.ic.ac .uk/~jcash/.
21. (Student research project) Learn about algebraic differential equations.
22. Write software to implement the following pseudocodes and verify the numerical results given in the text:
a. Test_RK45 and RK45
b. Test_RK45_Adaptive and RK45_Adaptive

Systems of Ordinary Differential Equations

A simple model to account for the way in which two different animal species sometimes interact is the predator-prey model. If $u(t)$ is the number of individuals in the predator species and $v(t)$ the number of individuals in the prey species, then under suitable simplifying assumptions and with appropriate constants a, b, c, and d,

$$
\left\{\begin{array}{l}
\frac{d u}{d t}=a(v+b) u \\
\frac{d v}{d t}=c(u+d) v
\end{array}\right.
$$

This is a pair of nonlinear ordinary differential equations (ODEs) that govern the populations of the two species (as functions of time t). In this chapter, numerical procedures are developed for solving such problems.

11.1 Methods for First-Order Systems

In Chapter 10, ordinary differential equations were considered in the simplest context; that is, we restricted our attention to a single differential equation of the first order with an accompanying auxiliary condition. Scientific and technological problems often lead to more complicated situations, however. The next degree of complication occurs with systems of several first-order equations.

Uncoupled and Coupled Systems

The sun and the nine planets form a system of particles moving under the jurisdiction of Newton's law of gravitation. The position vectors of the planets constitute a system of 27 functions, and the Newtonian laws of motion can be written, then, as a system of 54 first-order ordinary differential equations. In principle, the past and future positions of the planets can be obtained by solving these equations numerically.

Taking an example of more modest scope, we consider two equations with two auxiliary conditions. Let x and y be two functions of t subject to the system

$$
\left\{\begin{array}{l}
x^{\prime}(t)=x(t)-y(t)+2 t-t^{2}-t^{3} \tag{1}\\
y^{\prime}(t)=x(t)+y(t)-4 t^{2}+t^{3}
\end{array}\right.
$$

with initial conditions

$$
\left\{\begin{array}{l}
x(0)=1 \\
y(0)=0
\end{array}\right.
$$

This is an example of an initial-value problem that involves a system of two first-order differential equations. Note that in the example given, it is not possible to solve either of the two differential equations by itself because the first equation governing x^{\prime} involves the unknown function y, and the second equation governing y^{\prime} involves the unknown function x. In this situation, we say that the two differential equations are coupled.

The reader is invited to verify that the analytic solution is

$$
\left\{\begin{array}{l}
x(t)=e^{t} \cos (t)+t^{2}=\cos (t)[\cosh (t)+\sinh (t)]+t^{2} \\
y(t)=e^{t} \sin (t)-t^{3}=\sin (t)[\cosh (t)+\sinh (t)]-t^{3}
\end{array}\right.
$$

Let us look at another example that is superficially similar to the first but is actually simpler:

$$
\left\{\begin{array}{l}
x^{\prime}(t)=x(t)+2 t-t^{2}-t^{3} \tag{2}\\
y^{\prime}(t)=y(t)-4 t^{2}+t^{3}
\end{array}\right.
$$

with initial conditions

$$
\left\{\begin{array}{l}
x(0)=1 \\
y(0)=0
\end{array}\right.
$$

These two equations are not coupled and can be solved separately as two unrelated initialvalue problems (using, for instance, the methods of Chapter 10). Naturally, our concern here is with systems that are coupled, although methods that solve coupled systems also solve those that are not. The procedures discussed in Chapter 10 extend to systems whether coupled or uncoupled.

Taylor Series Method

We illustrate the Taylor series method for System (1) and begin by differentiating the equations constituting it:

$$
\begin{aligned}
& \left\{\begin{array}{l}
x^{\prime}=x-y+2 t-t^{2}-t^{3} \\
y^{\prime}=x+y-4 t^{2}+t^{3}
\end{array}\right. \\
& \left\{\begin{array}{l}
x^{\prime \prime}=x^{\prime}-y^{\prime}+2-2 t-3 t^{2} \\
y^{\prime \prime}=x^{\prime}+y^{\prime}-8 t+3 t^{2}
\end{array}\right. \\
& \left\{\begin{array}{l}
x^{\prime \prime \prime}=x^{\prime \prime}-y^{\prime \prime}-2-6 t \\
y^{\prime \prime \prime}=x^{\prime \prime}+y^{\prime \prime}-8+6 t
\end{array}\right. \\
& \left\{\begin{array}{l}
x^{(4)}=x^{\prime \prime \prime}-y^{\prime \prime \prime}-6 \\
y^{(4)}=x^{\prime \prime \prime}+y^{\prime \prime \prime}+6
\end{array}\right.
\end{aligned}
$$

etc.

A program to proceed from $x(t)$ to $x(t+h)$ and from $y(t)$ to $y(t+h)$ is easily written by using a few terms of the Taylor series:

$$
\begin{aligned}
& x(t+h)=x+h x^{\prime}+\frac{h^{2}}{2} x^{\prime \prime}+\frac{h^{3}}{6} x^{\prime \prime \prime}+\frac{h^{4}}{24} x^{(4)}+\cdots \\
& y(t+h)=y+h y^{\prime}+\frac{h^{2}}{2} y^{\prime \prime}+\frac{h^{3}}{6} y^{\prime \prime \prime}+\frac{h^{4}}{24} y^{(4)}+\cdots
\end{aligned}
$$

together with equations for the various derivatives. Here, x and y and all their derivatives are functions of t; that is, $x=x(t), y=y(t), x^{\prime}=x^{\prime}(t), y^{\prime \prime}=y^{\prime \prime}(t)$, and so on.

A pseudocode program that generates and prints a numerical solution from 0 to 1 in 100 steps is as follows. Terms up to h^{4} have been used in the Taylor series.

```
program Taylor_System1
integer \(k\); real \(h, t, x, y, x^{\prime}, y^{\prime}, x^{\prime \prime}, y^{\prime \prime}, x^{\prime \prime \prime}, y^{\prime \prime \prime}, x^{(4)}, y^{(4)}\)
integer nsteps \(\leftarrow 100\); real \(a \leftarrow 0, b \leftarrow 1\)
\(x \leftarrow 1 ; \quad y \leftarrow 0 ; \quad t \leftarrow a\)
output \(0, t, x, y\)
\(h \leftarrow(b-a) / n s t e p s\)
for \(k=1\) to nsteps do
    \(x^{\prime} \leftarrow x-y+t(2-t(1+t))\)
    \(y^{\prime} \leftarrow x+y+t^{2}(-4+t)\)
    \(x^{\prime \prime} \leftarrow x^{\prime}-y^{\prime}+2-t(2+3 t)\)
    \(y^{\prime \prime} \leftarrow x^{\prime}+y^{\prime}+t(-8+3 t)\)
    \(x^{\prime \prime \prime} \leftarrow x^{\prime \prime}-y^{\prime \prime}-2-6 t\)
    \(y^{\prime \prime \prime} \leftarrow x^{\prime \prime}+y^{\prime \prime}-8+6 t\)
    \(x^{(4)} \leftarrow x^{\prime \prime \prime}-y^{\prime \prime \prime}-6\)
    \(y^{(4)} \leftarrow x^{\prime \prime \prime}+y^{\prime \prime \prime}+6\)
    \(x \leftarrow x+h\left[x^{\prime}+\frac{1}{2} h\left[x^{\prime \prime}+\frac{1}{3} h\left[x^{\prime \prime \prime}+\frac{1}{4} h\left[x^{(4)}\right]\right]\right]\right]\)
    \(y \leftarrow y+h\left[y^{\prime}+\frac{1}{2} h\left[y^{\prime \prime}+\frac{1}{3} h\left[y^{\prime \prime \prime}+\frac{1}{4} h\left[y^{(4)}\right]\right]\right]\right]\)
    \(t \leftarrow t+h\)
    output \(k, t, x, y\)
end for
end program Taylor_System1
```


Vector Notation

Observe that System (1) can be written in vector notation as

$$
\left[\begin{array}{l}
x^{\prime} \tag{3}\\
y^{\prime}
\end{array}\right]=\left[\begin{array}{l}
x-y+2 t-t^{2}-t^{3} \\
x+y-4 t^{2}+t^{3}
\end{array}\right]
$$

with initial conditions

$$
\left[\begin{array}{l}
x(0) \\
y(0)
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

This is a special case of a more general problem that can be written as

$$
\left\{\begin{array}{l}
X^{\prime}=\boldsymbol{F}(t, \boldsymbol{X}) \tag{4}\\
\boldsymbol{X}(a)=S, \text { given }
\end{array}\right.
$$

where

$$
\boldsymbol{X}=\left[\begin{array}{l}
x \\
y
\end{array}\right] \quad \boldsymbol{X}^{\prime}=\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]
$$

and \boldsymbol{F} is the vector whose two components are given by the right-hand sides in Equation (1). Since \boldsymbol{F} depends on t and \boldsymbol{X}, we write $\boldsymbol{F}(t, \boldsymbol{X})$.

Systems of ODEs

We can continue this idea in order to handle a system of n first-order differential equations. First, we write them as

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=f_{1}\left(t, x_{1}, x_{2}, \ldots, x_{n}\right) \\
x_{2}^{\prime}=f_{2}\left(t, x_{1}, x_{2}, \ldots, x_{n}\right) \\
\quad \vdots \\
x_{n}^{\prime}=f_{n}\left(t, x_{1}, x_{2}, \ldots, x_{n}\right) \\
x_{1}(a)=s_{1}, x_{2}(a)=s_{2}, \ldots, x_{n}(a)=s_{n} \quad \text { all given }
\end{array}\right.
$$

Then we let

$$
\boldsymbol{X}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \quad \boldsymbol{X}^{\prime}=\left[\begin{array}{c}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
\vdots \\
x_{n}^{\prime}
\end{array}\right] \quad \boldsymbol{F}=\left[\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{n}
\end{array}\right] \quad \boldsymbol{S}=\left[\begin{array}{c}
s_{1} \\
s_{2} \\
\vdots \\
s_{n}
\end{array}\right]
$$

and we obtain Equation (4), which is an ordinary differential equation written in vector notation.

Taylor Series Method: Vector Notation

The \boldsymbol{m}-order Taylor series method would be written as

$$
\begin{equation*}
\boldsymbol{X}(t+h)=\boldsymbol{X}+h \boldsymbol{X}^{\prime}+\frac{h^{2}}{2} \boldsymbol{X}^{\prime \prime}+\cdots+\frac{h^{m}}{m!} \boldsymbol{X}^{(m)} \tag{5}
\end{equation*}
$$

where $\boldsymbol{X}=\boldsymbol{X}(t), \boldsymbol{X}^{\prime}=\boldsymbol{X}^{\prime}(t), \boldsymbol{X}^{\prime \prime}=\boldsymbol{X}^{\prime \prime}(t)$, and so on.
A pseudocode for the Taylor series method of order 4 applied to the preceding problem can be easily rewritten by a simple change of variables and the introduction of an array and an inner loop.

```
program Taylor_System2
integer i,k; real }h,t;\quad\mathrm{ real array }(\mp@subsup{x}{i}{}\mp@subsup{)}{1:n}{},(\mp@subsup{d}{ij}{}\mp@subsup{)}{1:n\times1:4}{
integer }n\leftarrow2\mathrm{ , nsteps }\leftarrow10
real }a\leftarrow0,b\leftarrow
t\leftarrow0; (x
output 0, t, ( }\mp@subsup{x}{i}{}
h
```

```
for \(k=1\) to nsteps do
    \(d_{11} \leftarrow x_{1}-x_{2}+t(2-t(1+t))\)
    \(d_{21} \leftarrow x_{1}+x_{2}+t^{2}(-4+t)\)
    \(d_{12} \leftarrow d_{11}-d_{21}+2-t(2+3 t)\)
    \(d_{22} \leftarrow d_{11}+d_{21}+t(-8+3 t)\)
    \(d_{13} \leftarrow d_{12}-d_{22}-2-6 t\)
    \(d_{23} \leftarrow d_{12}+d_{22}-8+6 t\)
    \(d_{14} \leftarrow d_{13}-d_{23}-6\)
    \(d_{24} \leftarrow d_{13}+d_{23}+6\)
    for \(i=1\) to \(n\) do
        \(x_{i} \leftarrow x_{i}+h\left[d_{i 1}+\frac{1}{2} h\left[d_{i 2}+\frac{1}{3} h\left[d_{i 3}+\frac{1}{4} h\left[d_{i 4}\right]\right]\right]\right]\)
    end for
    \(t \leftarrow t+h\)
    output \(k, t,\left(x_{i}\right)\)
end for
end program Taylor System 2
```

Here, a two-dimensional array is used instead of all the different derivative variables; that is, $d_{i j} \leftrightarrow x_{i}^{(j)}$. In fact, this and other methods in this chapter become particularly easy to program if the computer language supports vector operations.

Runge-Kutta Method

The Runge-Kutta methods of Chapter 10 also extend to systems of differential equations. The classical fourth-order Runge-Kutta method for System (4) uses these formulas:

$$
\begin{equation*}
\boldsymbol{X}(t+h)=\boldsymbol{X}+\frac{h}{6}\left(\boldsymbol{K}_{1}+2 \boldsymbol{K}_{2}+2 \boldsymbol{K}_{3}+\boldsymbol{K}_{4}\right) \tag{6}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
\boldsymbol{K}_{1}=\boldsymbol{F}(t, \boldsymbol{X}) \\
\boldsymbol{K}_{2}=\boldsymbol{F}\left(t+\frac{1}{2} h, \boldsymbol{x}+\frac{1}{2} h \boldsymbol{k}_{1}\right) \\
\boldsymbol{K}_{3}=\boldsymbol{F}\left(t+\frac{1}{2} h, \boldsymbol{x}+\frac{1}{2} h \boldsymbol{k}_{2}\right) \\
\boldsymbol{K}_{4}=\boldsymbol{F}\left(t+h, \boldsymbol{X}+h \boldsymbol{K}_{3}\right)
\end{array}\right.
$$

Here, $\boldsymbol{X}=\boldsymbol{X}(t)$, and all quantities are vectors with n components except variables t and h.

A procedure for carrying out the Runge-Kutta procedure is given next. It is assumed that the system to be solved is in the form of Equation (4) and that there are n equations in the system. The user furnishes the initial value of t, the initial value of \boldsymbol{X}, the step size h, and the number of steps to be taken, nsteps. Furthermore, procedure XP_System $\left(n, t,\left(x_{i}\right),\left(f_{i}\right)\right)$ is needed, which evaluates the right-hand side of Equation (4) for a given value of array $\left(x_{i}\right)$ and stores the result in array $\left(f_{i}\right)$. (The name XP_System2 is chosen as an abbreviation of \boldsymbol{X}^{\prime} for a system.)

```
procedure RK4_Systeml ( \(n, h, t,\left(x_{i}\right)\), nsteps)
integer \(i, j, n\); real \(h, t ; \quad\) real array \(\left(x_{i}\right)_{1: n}\)
allocate real array \(\left(y_{i}\right)_{1: n},\left(K_{i, j}\right)_{1: n \times 1: 4}\)
output \(0, t,\left(x_{i}\right)\)
for \(j=1\) to nsteps do
    call \(X P \operatorname{System}\left(n, t,\left(x_{i}\right),\left(K_{i, 1}\right)\right)\)
    for \(i=1\) to \(n\) do
        \(y_{i} \leftarrow x_{i}+\frac{1}{2} h K_{i, 1}\)
    end for
    call \(X P S \operatorname{System}\left(n, t+h / 2,\left(y_{i}\right),\left(K_{i, 2}\right)\right)\)
    for \(i=1\) to \(n\) do
        \(y_{i} \leftarrow x_{i}+\frac{1}{2} h K_{i, 2}\)
    end for
    call XP_System \(\left(n, t+h / 2,\left(y_{i}\right),\left(K_{i, 3}\right)\right)\)
    for \(i=1\) to \(n\) do
        \(y_{i} \leftarrow x_{i}+h K_{i, 3}\)
    end for
    call \(X P\) _System \(\left(n, t+h,(y)_{i},\left(K_{i, 4}\right)\right)\)
    for \(i=1\) to \(n\) do
        \(x_{i} \leftarrow x_{i}+\frac{1}{6} h\left[K_{i, 1}+2 K_{i, 2}+2 K_{i, 3}+K_{i, 4}\right]\)
    end for
    \(t \leftarrow t+h\)
    output \(j, t,\left(x_{i}\right)\)
end for
deallocate array \(\left(y_{i}\right),\left(K_{i, j}\right)\)
end procedure RK4_System1
```

To illustrate the use of this procedure, we again use System (1) for our example. Of course, it must be rewritten in the form of Equation (4). A suitable main program and a procedure for computing the right-hand side of Equation (4) follow:

```
program Test_RK4_System1
integer }n\leftarrow2\mathrm{ , nsteps }\leftarrow10
real }a\leftarrow0,b\leftarrow
real h,t; real array (xi) 1:n
t \leftarrow 0
(\mp@subsup{x}{i}{})\leftarrow(1,0)
h\leftarrow(b-a)/nsteps
call RK4_System1 (n, h,t, ( }\mp@subsup{x}{i}{}),nsteps
end program Test_RK4_System1
procedure XP_System(n,t,( (xi),(fi))
real array ( }\mp@subsup{x}{i}{}\mp@subsup{)}{1:n}{\prime},(\mp@subsup{f}{i}{}\mp@subsup{)}{1:n}{
integer }
```

```
real t
f
f
end procedure XP_System
```

A numerical experiment to compare the results of the Taylor series method and the Runge-Kutta method with the analytic solution of System (1) is suggested in Computer Problem 11.1.1. At the point $t=1.0$, the results are as follows:

Taylor Series	Runge-Kutta	Analytic Solution
$x(1.0) \approx 2.4686940$	2.4686942	2.4686939399
$y(1.0) \approx 1.2873546$	1.2873561	1.2873552872

We can use mathematical software routines found in Matlab, Maple, or Mathematica to obtain the numerical solution of the system of ordinary differential equations (1). For t over the interval $[0,1]$, we invoke an ODE procedure to march from $t=0$ at which $x(0)=1$ and $y(0)=0$ to $t=1$ at which $x(1)=2.468693912$ and $y(1)=1.287355325$.

To obtain the numerical solution of the ordinary differential equation defined for t over the interval $[1,1.5]$, invoke an ordinary differential equation solving procedure to march from $t=0$ at which $x(1)=2$ and $y(1)=-2$ to $t=1.5$ at which $x(1.5) \approx 15.5028$ and $y(1.5) \approx 6.15486$.

Autonomous ODE

When we wrote the system of differential equations in vector form

$$
\boldsymbol{X}^{\prime}=\boldsymbol{F}(t, \boldsymbol{X})
$$

we assumed that the variable t was explicitly separated from the other variables and treated differently. It is not necessary to do this. Indeed, we can introduce a new variable x_{0} that is t in disguise and add a new differential equation $x_{0}^{\prime}=1$. A new initial condition must also be provided, $x_{0}(a)=a$. In this way, we increase the number of differential equations from n to $n+1$ and obtain a system written in the more elegant vector form

$$
\left\{\begin{array}{l}
X^{\prime}=F(X) \\
X(a)=S \text {, given }
\end{array}\right.
$$

Consider the system of two equations given by Equation (1). We write it as a system with three variables by letting

$$
x_{0}=t, \quad x_{1}=x, \quad x_{2}=y
$$

Thus, we have

$$
\left[\begin{array}{l}
x_{0}^{\prime} \\
x_{1}^{\prime} \\
x_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{l}
1 \\
x_{1}-x_{2}+2 x_{0}-x_{0}^{2}-x_{0}^{3} \\
x_{1}+x_{2}-4 x_{0}^{2}+x_{0}^{3}
\end{array}\right]
$$

The auxiliary condition for the vector \boldsymbol{X} is $\boldsymbol{X}(0)=[0,1,0]^{T}$.

As a result of the preceding remarks, we sacrifice no generality in considering a system of $n+1$ first-order differential equations written as

$$
\left\{\begin{array}{l}
x_{0}^{\prime}=f_{0}\left(x_{0}, x_{1}, x_{2}, \ldots, x_{n}\right) \\
x_{1}^{\prime}=f_{1}\left(x_{0}, x_{1}, x_{2}, \ldots, x_{n}\right) \\
x_{2}^{\prime}=f_{2}\left(x_{0}, x_{1}, x_{2}, \ldots, x_{n}\right) \\
\quad \vdots \\
x_{n}^{\prime}=f_{n}\left(x_{0}, x_{1}, x_{2}, \ldots, x_{n}\right) \\
x_{0}(a)=s_{0}, x_{1}(a)=s_{1}, x_{2}(a)=s_{2}, \ldots, x_{n}(a)=s_{n} \quad \text { all given }
\end{array}\right.
$$

We can write this system in general vector notation as

$$
\left\{\begin{array}{l}
\boldsymbol{X}^{\prime}=\boldsymbol{F}(\boldsymbol{X}) \tag{7}\\
\boldsymbol{X}(a)=\boldsymbol{S}, \quad \text { given }
\end{array}\right.
$$

where

$$
\boldsymbol{X}=\left[\begin{array}{c}
x_{0} \\
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \quad \boldsymbol{X}^{\prime}=\left[\begin{array}{c}
x_{0}^{\prime} \\
x_{1}^{\prime} \\
x_{2}^{\prime} \\
\vdots \\
x_{n}^{\prime}
\end{array}\right] \quad \boldsymbol{F}=\left[\begin{array}{c}
f_{0} \\
f_{1} \\
f_{2} \\
\vdots \\
f_{n}
\end{array}\right] \quad \boldsymbol{S}=\left[\begin{array}{c}
s_{0} \\
s_{1} \\
s_{2} \\
\vdots \\
s_{n}
\end{array}\right]
$$

A system of differential equations without the t variable explicitly present is said to be autonomous. The numerical methods that we discuss do not require that $x_{0}=t$ or $f_{0}=1$ or $s_{0}=a$.

For an autonomous system, the classical fourth-order Runge-Kutta method for System (6) uses these formulas:

$$
\begin{equation*}
\boldsymbol{X}(t+h)=\boldsymbol{X}+\frac{h}{6}\left(\boldsymbol{K}_{1}+2 \boldsymbol{K}_{2}+2 \boldsymbol{K}_{3}+\boldsymbol{K}_{4}\right) \tag{8}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
\boldsymbol{K}_{1}=\boldsymbol{F}(\boldsymbol{X}) \\
\boldsymbol{K}_{2}=\boldsymbol{F}\left(\boldsymbol{X}+\frac{1}{2} h \boldsymbol{K}_{1}\right) \\
\boldsymbol{K}_{3}=\boldsymbol{F}\left(\boldsymbol{X}+\frac{1}{2} h \boldsymbol{K}_{2}\right) \\
\boldsymbol{K}_{4}=\boldsymbol{F}\left(\boldsymbol{X}+h \boldsymbol{K}_{3}\right)
\end{array}\right.
$$

Here, $\boldsymbol{X}=\boldsymbol{X}(t)$, and all quantities are vectors with $n+1$ components except the variables h.
In the previous example, the procedure RK4_Systeml would need to be modified by beginning the arrays with 0 rather than 1 and omitting the variable t. (We call it RK4_System 2 and leave it as Computer Problem 11.1.4.) Then the calling programs would be as follows:

```
program Test_RK4_System2
real }h,t;\quad\mathrm{ real array (}\mp@subsup{x}{i}{}\mp@subsup{)}{0:n}{m
integer }n\leftarrow2\mathrm{ , nsteps }\leftarrow10
real }a\leftarrow0,b\leftarrow
(\mp@subsup{x}{i}{})\leftarrow(0,1,0)
h}\leftarrow(b-a)/nstep
call RK4_System2(n, h, ( }\mp@subsup{x}{i}{})\mathrm{ , nsteps)
end program Test_RK4_System2
```

```
procedure XP_System(n, (xi),( fi ))
real array ( }\mp@subsup{x}{i}{}\mp@subsup{)}{0:n}{},(\mp@subsup{f}{i}{}\mp@subsup{)}{0:n}{
integer n
f0}\leftarrow
f
f}\mp@subsup{2}{2}{\leftarrow}\mp@subsup{x}{1}{}+\mp@subsup{x}{2}{}-\mp@subsup{x}{0}{2}(4-\mp@subsup{x}{0}{}
end procedure XP_System
```

It is typical in ordinary differential equation solvers, such as those found in mathematical software libraries, for the user to interface with them by writing a subprogram in a nonautonomous format. In other words, the ordinary differential equation solver takes as input both the independent variable and the dependent variable and returns values for the right-hand side to the ordinary differential equation. Consequently, the nonautonomous programming convention may seem more natural to those who are using these software packages.

It is a useful exercise to find a physical application in your field of study or profession involving the solution of an ordinary differential equation. It is instructive to analyze and solve the physical problem by determining the appropriate numerical method and translating the problem into the format that is compatible with the available software.

Summary

(1) A system of ordinary differential equations

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=f_{1}\left(t, x_{1}, x_{2}, \ldots, x_{n}\right) \\
x_{2}^{\prime}=f_{2}\left(t, x_{1}, x_{2}, \ldots, x_{n}\right) \\
\quad \vdots \\
x_{n}^{\prime}=f_{n}\left(t, x_{1}, x_{2}, \ldots, x_{n}\right) \\
x_{1}(a)=s_{1}, x_{2}(a)=s_{2}, \ldots, x_{n}(a)=s_{n}, \quad \text { all given }
\end{array}\right.
$$

can be written in vector notation as

$$
\left\{\begin{array}{l}
\boldsymbol{X}^{\prime}=\boldsymbol{F}(t, \boldsymbol{X}) \\
\boldsymbol{X}(a)=\boldsymbol{S}, \quad \text { given }
\end{array}\right.
$$

where we define the following n component vectors

$$
\left\{\begin{aligned}
\boldsymbol{X} & =\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{T} \\
\boldsymbol{X}^{\prime} & =\left[x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right]^{T} \\
\boldsymbol{F} & =\left[f_{1}, f_{2}, \ldots, f_{n}\right]^{T} \\
\boldsymbol{X}(a) & =\left[x_{1}(a), x_{2}(a), \ldots, x_{n}(a)\right]^{T}
\end{aligned}\right.
$$

(2) The Taylor series method of order \boldsymbol{m} is

$$
\boldsymbol{X}(t+h)=\boldsymbol{X}+h \boldsymbol{X}^{\prime}+\frac{h^{2}}{2} \boldsymbol{X}^{\prime \prime}+\cdots+\frac{h^{m}}{m!} \boldsymbol{X}^{(m)}
$$

where $\boldsymbol{X}=\boldsymbol{X}(t), X^{\prime}=X^{\prime}(t), X^{\prime \prime}=X^{\prime \prime}(t)$, and so on.

(3) The Runge-Kutta method of order 4 is

$$
\boldsymbol{X}(t+h)=\boldsymbol{X}+\frac{h}{6}\left(\boldsymbol{K}_{1}+2 \boldsymbol{K}_{2}+2 \boldsymbol{K}_{3}+\boldsymbol{K}_{4}\right)
$$

where

$$
\left\{\begin{array}{l}
\boldsymbol{K}_{1}=\boldsymbol{F}(t, \boldsymbol{X}) \\
\boldsymbol{K}_{2}=\boldsymbol{F}\left(t+\frac{1}{2} h, \boldsymbol{X}+\frac{1}{2} h \boldsymbol{K}_{1}\right) \\
\boldsymbol{K}_{3}=\boldsymbol{F}\left(t+\frac{1}{2} h, \boldsymbol{X}+\frac{1}{2} h \boldsymbol{K}_{2}\right) \\
\boldsymbol{K}_{4}=\boldsymbol{F}\left(t+h, \boldsymbol{X}+h \boldsymbol{K}_{3}\right)
\end{array}\right.
$$

Here, $\boldsymbol{X}=\boldsymbol{X}(t)$, and all quantities are vectors with n components except variables t and h.
(4) We can absorb the t variable into the vector by letting $x_{0}=t$ and then writing the autonomous form for the system of ordinary differential equations in vector notation as

$$
\left\{\begin{array}{l}
\boldsymbol{X}^{\prime}=\boldsymbol{F}(\boldsymbol{X}) \\
\boldsymbol{X}(a)=\boldsymbol{S}, \quad \text { given }
\end{array}\right.
$$

where vectors are defined to have $n+1$ components. Then

$$
\left\{\begin{aligned}
\boldsymbol{X} & =\left[x_{0}, x_{1}, x_{2}, \ldots, x_{n}\right]^{T} \\
\boldsymbol{X}^{\prime} & =\left[x_{0}^{\prime}, x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right]^{T} \\
\boldsymbol{F} & =\left[1, f_{1}, f_{2}, \ldots, f_{n}\right]^{T} \\
\boldsymbol{X}(a) & =\left[a, x_{1}(a), x_{2}(a), \ldots, x_{n}(a)\right]^{T}
\end{aligned}\right.
$$

(5) The Runge-Kutta method of order $\mathbf{4}$ for the system of ordinary differential equations in autonomous form is

$$
\boldsymbol{X}(t+h)=\boldsymbol{X}+\frac{h}{6}\left(\boldsymbol{K}_{1}+2 \boldsymbol{K}_{2}+2 \boldsymbol{K}_{3}+\boldsymbol{K}_{4}\right)
$$

where

$$
\left\{\begin{array}{l}
\boldsymbol{K}_{1}=\boldsymbol{F}(\boldsymbol{X}) \\
\boldsymbol{K}_{2}=\boldsymbol{F}\left(\boldsymbol{X}+\frac{1}{2} h \boldsymbol{K}_{1}\right) \\
\boldsymbol{K}_{3}=\boldsymbol{F}\left(\boldsymbol{X}+\frac{1}{2} h \boldsymbol{K}_{2}\right) \\
\boldsymbol{K}_{4}=\boldsymbol{F}\left(\boldsymbol{X}+h \boldsymbol{K}_{3}\right)
\end{array}\right.
$$

Here, $\boldsymbol{X}=\boldsymbol{X}(t)$, and all quantities \boldsymbol{F} and \boldsymbol{K}_{i} are vectors with $n+1$ components except the variables t and h.

Problems 11.1

${ }^{a}$ 1. Consider

$$
\left\{\begin{array} { l }
{ x ^ { \prime } = y } \\
{ y ^ { \prime } = x }
\end{array} \quad \text { with } \quad \left\{\begin{array}{l}
x(0)=-1 \\
y(0)=0
\end{array}\right.\right.
$$

Write down the equations, without derivatives, to be used in the Taylor series method of order 5 .
${ }^{a}$ 2. How would you solve this system of differential equations numerically?

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=x_{1}^{2}+e^{t}-t^{2} \\
x_{2}^{\prime}=x_{2}-\cos t \\
x_{1}(0)=0 \quad x_{2}(1)=0
\end{array}\right.
$$

${ }^{a} 3$. How would you solve the initial-value problem

$$
\left\{\begin{array}{l}
x_{1}^{\prime}(t)=x_{1}(t) e^{t}+\sin t-t^{2} \\
x_{2}^{\prime}(t)=\left[x_{2}(t)\right]^{2}-e^{t}+x_{2}(t) \\
x_{1}(1)=2 \quad x_{2}(1)=4
\end{array}\right.
$$

if a computer program were available to solve an initial-value problem of the form $x^{\prime}=f(t, x)$ involving a single unknown function $x=x(t)$?
${ }^{a}$ 4. Write an equivalent system of first-order differential equations without t appearing on the right-hand side:

$$
\left\{\begin{array}{l}
x^{\prime}=x^{2}+\log (y)+t^{2} \\
y^{\prime}=e^{y}-\cos (x)+\sin (t x)-(x y)^{7} \\
x(0)=1 \quad y(0)=3
\end{array}\right.
$$

Computer Problems 11.1

${ }^{a}$ 1. Solve the system of differential equations (1) by using two different methods given in this section and compare the results with the analytic solution.
${ }^{a}$ 2. Solve the initial-value problem

$$
\left\{\begin{array}{l}
x^{\prime}=t+x^{2}-y \\
y^{\prime}=t^{2}-x+y^{2} \\
x(0)=3 \quad y(0)=2
\end{array}\right.
$$

by means of the Taylor series method using $h=1 / 128$ on the interval [$0,0.38$]. Include terms involving three derivatives in x and y. How accurate are the computed function values?
3. Write the Runge-Kutta procedure to solve

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=-3 x_{2} \\
x_{2}^{\prime}=\frac{1}{3} x_{1} \\
x_{1}(0)=0 \quad x_{2}(0)=1
\end{array}\right.
$$

on the interval $0 \leqq t \leqq 4$. Plot the solution.
${ }^{a}$ 4. Write procedure RK4_System 2 and a driver program for solving the ordinary differential equation system given by Equation (2). Use $h=-10^{-2}$, and print out the values of x_{0}, x_{1}, and x_{2}, together with the true solution on the interval $[-1,0]$. Verify that the true solution is $x(t)=e^{t}+6+6 t+4 t^{2}+t^{3}$ and $y(t)=e^{t}-t^{3}+t^{2}+2 t+2$.
${ }^{a}$ 5. Using the Runge-Kutta procedure, solve the following initial-value problem on the interval $0 \leqq t \leqq 2 \pi$. Plot the resulting curves $\left(x_{1}(t), x_{2}(t)\right)$ and $\left(x_{3}(t), x_{4}(t)\right)$. They should be circles.

$$
\left\{\begin{array}{l}
\boldsymbol{X}^{\prime}=\left[\begin{array}{l}
x_{3} \\
x_{4} \\
-x_{1}\left(x_{1}^{2}+x_{2}^{2}\right)^{-3 / 2} \\
-x_{2}\left(x_{1}^{2}+x_{2}^{2}\right)^{-3 / 2}
\end{array}\right] \\
\boldsymbol{X}(0)=[1,0,0,1]^{T}
\end{array}\right.
$$

6. Solve the problem

$$
\left\{\begin{array}{l}
x_{0}^{\prime}=1 \\
x_{1}^{\prime}=-x_{2}+\cos x_{0} \\
x_{2}^{\prime}=x_{1}+\sin x_{0} \\
x_{0}(1)=1 \quad x_{1}(1)=0 \quad x_{2}(1)=-1
\end{array}\right.
$$

Use the Runge-Kutta method and the interval $-1 \leqq t \leqq 2$.
${ }^{a}$ 7. Write and test a program, using the Taylor series method of order 5, to solve the system

$$
\left\{\begin{array}{l}
x^{\prime}=t x-y^{2}+3 t \\
y^{\prime}=x^{2}-t y-t^{2} \\
x(5)=2 \quad y(5)=3
\end{array}\right.
$$

on the interval [5, 6] using $h=10^{-3}$. Print values of x and y at steps of 0.1.
8. Print a table of $\sin t$ and $\cos t$ on the interval $[0, \pi / 2]$ by numerically solving the system

$$
\left\{\begin{array}{l}
x^{\prime}=y \\
y^{\prime}=-x \\
x(0)=0 \quad y(0)=1
\end{array}\right.
$$

9. Write a program for using the Taylor series method of order 3 to solve the system

$$
\left\{\begin{array}{l}
x^{\prime}=t x+y^{\prime}-t^{2} \\
y^{\prime}=t y+3 t \\
z^{\prime}=t z-y^{\prime}+6 t^{3} \\
x(0)=1 \quad y(0)=2 \quad z(0)=3
\end{array}\right.
$$

on the interval $[0,0.75]$ using $h=0.01$.
10. Write and test a short program for solving the system of differential equations

$$
\left\{\begin{array}{l}
y^{\prime}=x^{3}-t^{2} y-t^{2} \\
x^{\prime}=t x^{2}-y^{4}+3 t \\
y(2)=5 \quad x(2)=3
\end{array}\right.
$$

over the interval [2,5] with $h=0.25$. Use the Taylor series method of order 4.
11. Recode and test procedure RK4_System 2 using a computer language that supports vector operations.
12. Verify the numerical results given in the text for the system of differential equations (1) from programs Test_RK4_System1 and RK4_System2.
13. (Continuation) Using mathematical software such as Matlab, Maple, or Mathematica containing symbolic manipulation capabilities to verify the analytic solution for the system of differential equations (1).
14. (Continuation) Use mathematical software routines such as are found in Matlab, Maple, or Mathematica to verify the numerical solutions given in the text. Plot the resulting solution curve. Compare with the results from programs Test_RK4_Systeml and Test_RK4_System2.

11.2 Higher-Order Equations and Systems

Consider the initial-value problem for ordinary differential equations of order higher than 1. A differential equation of order n is normally accompanied by n auxiliary conditions. This many initial conditions are needed to specify the solution of the differential equation precisely (assuming certain smoothness conditions are present). Take, for example, a particular second-order initial-value problem

$$
\left\{\begin{array}{l}
x^{\prime \prime}(t)=-3 \cos ^{2}(t)+2 \tag{1}\\
x(0)=0 \quad x^{\prime}(0)=0
\end{array}\right.
$$

Without the auxiliary conditions, the general analytic solution is

$$
x(t)=\frac{1}{4} t^{2}+\frac{3}{8} \cos (2 t)+c_{1} t+c_{2}
$$

where c_{1} and c_{2} are arbitrary constants. To select one specific solution, c_{1} and c_{2} must be fixed, and two initial conditions allow this to be done. In fact, $x(0)=0$ yields $c_{2}=-\frac{3}{8}$, and $x^{\prime}(0)=0$ forces $c_{1}=0$.

Higher-Order Differential Equations

In general, higher-order problems can be much more complicated than this simple example because System (1) has the special property that the function on the right-hand side of the differential equation does not involve x. The most general form of an ordinary differential equation with initial conditions that we shall consider is

$$
\left\{\begin{array}{l}
x^{(n)}=f\left(t, x, x^{\prime}, x^{\prime \prime}, \ldots, x^{(n-1)}\right) \tag{2}\\
x(a), x^{\prime}(a), x^{\prime \prime}(a), \ldots, x^{(n-1)}(a) \text { all given }
\end{array}\right.
$$

This can be solved numerically by turning it into a system of first-order differential equations. To do so, we define new variables $x_{1}, x_{2}, \ldots, x_{n}$ as follows:

$$
x_{1}=x \quad x_{2}=x^{\prime} \quad x_{3}=x^{\prime \prime} \quad \ldots \quad x_{n-1}=x^{(n-2)} \quad x_{n}=x^{(n-1)}
$$

Consequently, the original initial-value problem (2) is equivalent to

$$
\left\{\begin{array}{c}
x_{1}^{\prime}=x_{2} \\
x_{2}^{\prime}=x_{3} \\
\vdots \\
x_{n-1}^{\prime}= \\
x_{n} \\
x_{n}^{\prime}=f\left(t, x_{1}, x_{2}, \ldots, x_{n}\right) \\
x_{1}(a), x_{2}(a), \ldots, x_{n}(a) \text { all given }
\end{array}\right.
$$

or, in vector notation,

$$
\left\{\begin{array}{l}
\boldsymbol{X}^{\prime}=\boldsymbol{F}(t, \boldsymbol{X}) \tag{3}\\
\boldsymbol{X}(a)=S, \quad \text { given }
\end{array}\right.
$$

where

$$
\begin{aligned}
\boldsymbol{X} & =\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{T} \\
\boldsymbol{X}^{\prime} & =\left[x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right]^{T} \\
\boldsymbol{F} & =\left[x_{2}, x_{3}, x_{4}, \ldots, x_{n}, f\right]^{T}
\end{aligned}
$$

and

$$
\boldsymbol{X}(a)=\left[x_{1}(a), x_{2}(a), \ldots, x_{n}(a)\right]
$$

Whenever a problem must be transformed by introducing new variables, it is recommended that a dictionary be provided to show the relationship between the new and the old variables. At the same time, this information, together with the differential equations and the initial values, can be displayed in a chart. Such systematic bookkeeping can be helpful in a complicated situation.

To illustrate, let us transform the initial-value problem

$$
\left\{\begin{array}{l}
x^{\prime \prime \prime}=\cos x+\sin x^{\prime}-e^{x^{\prime \prime}}+t^{2} \tag{4}\\
x(0)=3 \quad x^{\prime}(0)=7 \quad x^{\prime \prime}(0)=13
\end{array}\right.
$$

into a form suitable for solution by the Runge-Kutta procedure. A chart summarizing the transformed problem is as follows:

Old Variable	New Variable	Initial Value	Differential Equation
x	x_{1}	3	$x_{1}^{\prime}=x_{2}$
x^{\prime}	x_{2}	7	$x_{2}^{\prime}=x_{3}$
$x^{\prime \prime}$	x_{3}	13	$x_{3}^{\prime}=\cos x_{1}+\sin x_{2}-e^{x_{3}}+t^{2}$

So the corresponding first-order system is

$$
\boldsymbol{X}^{\prime}=\left[\begin{array}{c}
x_{2} \\
x_{3} \\
\cos x_{1}+\sin x_{2}-e^{x_{3}}+t^{2}
\end{array}\right]
$$

and $\boldsymbol{X}(0)=[3,7,13]^{T}$.

Systems of Higher-Order Differential Equations

By systematically introducing new variables, we can transform a system of differential equations of various orders into a larger system of first-order equations. For instance, the system

$$
\left\{\begin{array}{l}
x^{\prime \prime}=x-y-\left(3 x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{3}+6 y^{\prime \prime}+2 t \tag{5}\\
y^{\prime \prime \prime}=y^{\prime \prime}-x^{\prime}+e^{x}-t \\
x(1)=2 \quad x^{\prime}(1)=-4 \quad y(1)=-2 \quad y^{\prime}(1)=7 \quad y^{\prime \prime}(1)=6
\end{array}\right.
$$

can be solved by the Runge-Kutta procedure if we first transform it according to the following chart:

Old Variable	New Variable	Initial Value	Differential Equation
x	x_{1}	2	$x_{1}^{\prime}=x_{2}$
x^{\prime}	x_{2}	-4	$x_{2}^{\prime}=x_{1}-x_{3}-9 x_{2}^{2}+x_{4}^{3}+6 x_{5}+2 t$
y	x_{3}	-2	$x_{3}^{\prime}=x_{4}$
y^{\prime}	x_{4}	7	$x_{4}^{\prime}=x_{5}$
$y^{\prime \prime}$	x_{5}	6	$x_{5}^{\prime}=x_{5}-x_{2}+e^{x_{1}}-t$

Hence, we have

$$
\boldsymbol{X}^{\prime}=\left[\begin{array}{c}
x_{2} \\
x_{1}-x_{3}-9 x_{2}^{2}+x_{4}^{3}+6 x_{5}+2 t \\
x_{4} \\
x_{5} \\
x_{5}-x_{2}+e^{x_{1}}-t
\end{array}\right]
$$

and $\boldsymbol{X}(1)=[2,-4,-2,7,6]^{T}$.

Autonomous ODE Systems

We notice that t is present on the right-hand side of Equation (3) and that therefore the equations $x_{0}=t$ and $x_{0}^{\prime}=1$ can be introduced to form an autonomous system of ordinary differential equations in vector notation. It is easy to show that a higher-order system of differential equations having the form in Equation (2) can be written in vector notation as

$$
\left\{\begin{array}{l}
\boldsymbol{X}^{\prime}=\boldsymbol{F}(\boldsymbol{X}) \\
\boldsymbol{X}(a)=\boldsymbol{S}, \quad \text { given }
\end{array}\right.
$$

where

$$
\begin{aligned}
\boldsymbol{X} & =\left[x_{0}, x_{1}, x_{2}, \ldots, x_{n}\right]^{T} \\
\boldsymbol{X}^{\prime} & =\left[x_{0}^{\prime}, x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right]^{T} \\
\boldsymbol{F} & =\left[1, x_{2}, x_{3}, x_{4}, \ldots, x_{n}, f\right]^{T}
\end{aligned}
$$

and

$$
\boldsymbol{X}(a)=\left[a, x_{1}(a), x_{2}(a), \ldots, x_{n}(a)\right]
$$

As an example, the ordinary differential equation system in Equation (4) can be written in autonomous form as

$$
\boldsymbol{X}^{\prime}=\left[\begin{array}{c}
1 \\
x_{2} \\
x_{1}-x_{3}-9 x_{2}^{2}+x_{4}^{3}+6 x_{5}+2 x_{0} \\
x_{4} \\
x_{5} \\
x_{5}-x_{2}+e^{x_{1}}-x_{0}
\end{array}\right]
$$

and $\boldsymbol{X}(1)=[1,2,-4,-2,7,6]^{T}$.

Summary

(1) A single n th-order ordinary differential equation with initial values has the form

$$
\left\{\begin{array}{l}
x^{(n)}=f\left(t, x, x^{\prime}, x^{\prime \prime}, \ldots, x^{(n-1)}\right) \\
x(a), x^{\prime}(a), x^{\prime \prime}(a), \ldots, x^{(n-1)}(a), \quad \text { all given }
\end{array}\right.
$$

It can be turned into a system of first-order equations of the form

$$
\left\{\begin{array}{l}
X^{\prime}=\boldsymbol{F}(t, \boldsymbol{X}) \\
\boldsymbol{X}(a)=S, \quad \text { given }
\end{array}\right.
$$

where

$$
\left\{\begin{aligned}
\boldsymbol{X} & =\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{T} \\
\boldsymbol{X}^{\prime} & =\left[x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right]^{T} \\
\boldsymbol{F} & =\left[x_{2}, x_{3}, x_{4}, \ldots, x_{n}, f\right]^{T} \\
\boldsymbol{X}(a) & =\left[x_{1}(a), x_{2}(a), \ldots, x_{n}(a)\right]^{T}
\end{aligned}\right.
$$

(2) We can absorb the variable t into the vector notation by letting $x_{0}=t$ and extending the vectors to length $n+1$. Thus, a single n th-order ordinary differential equation can be written as

$$
\left\{\begin{array}{l}
\boldsymbol{X}^{\prime}=\boldsymbol{F}(\boldsymbol{X}) \\
\boldsymbol{X}(a)=\boldsymbol{S}, \quad \text { given }
\end{array}\right.
$$

where

$$
\left\{\begin{aligned}
\boldsymbol{X} & =\left[x_{0}, x_{1}, x_{2}, \ldots, x_{n}\right]^{T} \\
\boldsymbol{X}^{\prime} & =\left[x_{0}^{\prime}, x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right]^{T} \\
\boldsymbol{F} & =\left[1, x_{2}, x_{3}, x_{4}, \ldots, x_{n}, f\right]^{T} \\
\boldsymbol{X}(a) & =\left[a, x_{1}(a), x_{2}(a), \ldots, x_{n}(a)\right]
\end{aligned}\right.
$$

Problems 11.2

${ }^{a}$ 1. Turn this differential equation into a system of first-order equations suitable for applying the Runge-Kutta method:

$$
\left\{\begin{array}{l}
x^{\prime \prime \prime}=2 x^{\prime}+\log \left(x^{\prime \prime}\right)+\cos (x) \\
x(0)=1 \quad x^{\prime}(0)=-3 \quad x^{\prime \prime}(0)=5
\end{array}\right.
$$

2. a. Assuming that a program is available for solving initial-value problems of the form in Equation (3), how can it be used to solve the following differential equation?

$$
\left\{\begin{array}{l}
x^{\prime \prime \prime}=t+x+2 x^{\prime}+3 x^{\prime \prime} \\
x(1)=3 \quad x^{\prime}(1)=-7 \quad x^{\prime \prime}(1)=4
\end{array}\right.
$$

b. How would this problem be solved if the initial conditions were $x(1)=3, x^{\prime}(1)=$ -7 , and $x^{\prime \prime \prime}(1)=0$?
${ }^{a}$ 3. How would you solve this differential equation problem numerically?

$$
\left\{\begin{array}{l}
x_{1}^{\prime \prime}=x_{1}^{\prime}+x_{1}^{2}-\sin t \\
x_{2}^{\prime \prime}=x_{2}-\left(x_{2}^{\prime}\right)^{1 / 2}+t \\
x_{1}(0)=1 \quad x_{2}(1)=3 \quad x_{1}^{\prime}(0)=0 \quad x_{2}^{\prime}(1)=-2
\end{array}\right.
$$

${ }^{a}$ 4. Convert to a first-order system the orbital equations

$$
\left\{\begin{array}{l}
x^{\prime \prime}+x\left(x^{2}+y^{2}\right)^{-3 / 2}=0 \\
y^{\prime \prime}+y\left(x^{2}+y^{2}\right)^{-3 / 2}=0
\end{array}\right.
$$

with initial conditions

$$
x(0)=0.5 \quad x^{\prime}(0)=0.75 \quad y(0)=0.25 \quad y^{\prime}(0)=1.0
$$

${ }^{a}$ 5. Rewrite the following equation as a system of first-order differential equations without t appearing on the right-hand side:

$$
\left\{\begin{array}{l}
x^{(4)}=\left(x^{\prime \prime \prime}\right)^{2}+\cos \left(x^{\prime} x^{\prime \prime}\right)-\sin (t x)+\log \left(\frac{x}{t}\right) \\
x(0)=1 \quad x^{\prime}(0)=3 \quad x^{\prime \prime}(0)=4 \quad x^{\prime \prime \prime}(0)=5
\end{array}\right.
$$

${ }^{a} 6$. Express the system of ordinary differential equations

$$
\left\{\begin{array}{l}
\frac{d^{2} z}{d t^{2}}-2 t \frac{d z}{d t}=2 t e^{x z} \\
\frac{d^{2} x}{d t^{2}}-2 x z \frac{d x}{d t}=3 x^{2} y t^{2} \\
\frac{d^{2} y}{d t^{2}}-e^{y} \frac{d y}{d t}=4 x t^{2} z \\
z(1)=x^{\prime \prime}(1)=y^{\prime}(1)=2 \quad z^{\prime}(1)=x(1)=y(1)=3
\end{array}\right.
$$

as a system of first-order ordinary differential equations.
7. Determine a system of first-order equations equivalent to each of the following:
${ }^{a}$ a. $x^{\prime \prime \prime}+x^{\prime \prime} \sin x+t x^{\prime}+x=0$
b. $x^{(4)}+x^{\prime \prime} \cos x^{\prime}+t x x^{\prime}=0$
c. $\left\{\begin{array}{l}x^{\prime \prime}=3 x^{2}-7 y^{2}+\sin t+\cos \left(x^{\prime} y^{\prime}\right) \\ y^{\prime \prime \prime}=y+x^{2}-\cos t-\sin \left(x y^{\prime \prime}\right)\end{array}\right.$
${ }^{a}$ 8. Consider

$$
\left\{\begin{array}{l}
x^{\prime \prime}=x^{\prime}-x \\
x(0)=0 \quad x^{\prime}(0)=1
\end{array}\right.
$$

Determine the associated first-order system and its auxiliary initial conditions.
${ }^{a} 9$. The problem

$$
\left\{\begin{array}{l}
x^{\prime \prime}(t)=x+y-2 x^{\prime}+3 y^{\prime}+\log t \\
y^{\prime \prime}(t)=2 x-3 y+5 x^{\prime}+t y^{\prime}-\sin t \\
x(0)=1 \quad x^{\prime}(0)=2 \\
y(0)=3 \quad y^{\prime}(0)=4
\end{array}\right.
$$

is to be put into the form of an autonomous system of five first-order equations. Give the resulting system and the appropriate initial values.
10. Write procedure XP_System for use with the fourth-order Runge-Kutta routine RK4_Systeml for the following differential equation:

$$
\left\{\begin{array}{l}
x^{\prime \prime \prime}=10 e^{x^{\prime \prime}}-x^{\prime \prime \prime} \sin \left(x^{\prime} x\right)-(x t)^{10} \\
x(2)=6.5 \quad x^{\prime}(2)=4.1 \quad x^{\prime \prime}(2)=3.2
\end{array}\right.
$$

11. If we are going to solve the initial-value problem

$$
\left\{\begin{array}{l}
x^{\prime \prime \prime}=x^{\prime}-t x^{\prime \prime}+x+\ln t \\
x(1)=x^{\prime}(1)=x^{\prime \prime}(1)=1
\end{array}\right.
$$

using Runge-Kutta formulas, how should the problem be transformed?
12. Convert this problem involving differential equations into an autonomous system of first-order equations (with initial values):

$$
\left\{\begin{array}{l}
3 x^{\prime}+\tan x^{\prime \prime}-x^{2}=\sqrt{t^{2}+1}+y^{2}+\left(y^{\prime}\right)^{2} \\
-3 y^{\prime}+\cot y^{\prime \prime}+y^{2}=t^{2}+(x+1)^{1 / 2}+4 x^{\prime} \\
x(1)=2 \quad x^{\prime}(1)=-2 \quad y(1)=7 \quad y^{\prime}(1)=3
\end{array}\right.
$$

13. Follow the instructions in the preceding problem on this example:

$$
\left\{\begin{array}{l}
t x y z+x^{\prime} y^{\prime} / t=t x^{2}+x / y^{\prime \prime}+z \\
t^{2} x / z+y^{\prime} z^{\prime} t=y^{2}-\left(z^{\prime \prime}\right)^{2} x+x^{\prime} y^{\prime} \\
t y z-x^{\prime} z^{\prime} y^{\prime}=z^{2}-z x^{\prime \prime}-(y z)^{\prime} \\
x(3)=1
\end{array} \quad y(3)=2 \quad z(3)=4 \quad x^{\prime}(3)=5 \quad y^{\prime}(3)=6 \quad z^{\prime}(3)=7\right.
$$

14. Turn this pair of differential equations into a second order differential equation involving x alone:

$$
\left\{\begin{array}{l}
x^{\prime}=-x+a x y \\
y^{\prime}=3 y-x y
\end{array}\right.
$$

Computer Problems 11.2

1. Use RK4_Systeml to solve each of the following for $0 \leqq t \leqq 1$. Use $h=2^{-k}$ with $k=5$, 6 , and 7 , and compare results.
a. $\left\{\begin{array}{l}x^{\prime \prime}=2\left(e^{2 t}-x^{2}\right)^{1 / 2} \\ x(0)=0\end{array} \quad x^{\prime}(0)=1 \quad\right.$ b. $\left\{\begin{array}{l}x^{\prime \prime}=x^{2}-y+e^{t} \\ y^{\prime \prime}=x-y^{2}-e^{t} \\ x(0)=0 \\ x(0)=1 \\ y(0)=0\end{array} \quad y^{\prime}(0)=-2 ~ \$ ~ \$\right.$
2. Solve the Airy differential equation

$$
\left\{\begin{array}{l}
x^{\prime \prime}=t x \\
x(0)=0.355028053887817 \\
x^{\prime}(0)=-0.258819403792807
\end{array}\right.
$$

on the interval $[0,4.5]$ using the Runge-Kutta method. Check value: The value $x(4.5)=$ 0.0003302503 is correct.
3. Solve

$$
\left\{\begin{array}{l}
x^{\prime \prime}+x^{\prime}+x^{2}-2 t=0 \\
x(0)=0 \quad x^{\prime}(0)=0.1
\end{array}\right.
$$

on $[0,3]$ by any convenient method. If a plotter is available, graph the solution.
4. Solve

$$
\left\{\begin{array}{l}
x^{\prime \prime}=2 x^{\prime}-5 x \\
x(0)=0 \quad x^{\prime}(0)=0.4
\end{array}\right.
$$

on the interval $[-2,0]$.
5. Write computer programs based on the pseudocode in the text to find the numerical solution of these ordinary differential equation systems:
a. (1)
b. (4)
c. (5)
6. (Continuation) Use mathematical software such as Matlab, Maple, or Mathematica with symbolic manipulation capabilities to find their analytical solutions.
7. (Continuation) Use mathematical software routines such as are found in Matlab, Maple, or Mathematica to verify the numerical solutions for these ordinary differential equation systems. Plot the resulting solution curves.

11.3 Adams-Bashforth-Moulton Methods

A Predictor-Corrector Scheme

The procedures explained so far have solved the initial-value problem

$$
\left\{\begin{array}{l}
X^{\prime}=\boldsymbol{F}(\boldsymbol{X}) \tag{1}\\
\boldsymbol{X}(a)=S, \quad \text { given }
\end{array}\right.
$$

by means of single-step numerical methods. In other words, if the solution $\boldsymbol{X}(t)$ is known at a particular point t, then $\boldsymbol{X}(t+h)$ can be computed with no knowledge of the solution at points earlier than t. The Runge-Kutta and Taylor series methods compute $\boldsymbol{X}(t+h)$ in terms of $\boldsymbol{X}(t)$ and various values of \boldsymbol{F}.

More efficient methods can be devised if several values $\boldsymbol{X}(t), \boldsymbol{X}(t-h), \boldsymbol{X}(t-2 h), \ldots$ are used in computing $\boldsymbol{X}(t+h)$. Such methods are called multistep methods. They have the obvious drawback that at the beginning of the numerical solution, no prior values of \boldsymbol{X} are available. So it is usual to start a numerical solution with a single-step method, such as the Runge-Kutta procedure, and transfer to a multistep procedure for efficiency as soon as enough starting values have been computed.

An example of a multistep formula is known as the Adams-Bashforth method (see Section 10.3 and the related problem). It is

$$
\begin{align*}
\widetilde{\boldsymbol{X}}(t+h)=\boldsymbol{X}(t)+\frac{h}{24} & \{55 \boldsymbol{F}[\boldsymbol{X}(t)]-59 \boldsymbol{F}[\boldsymbol{X}(t-h)]+37 \boldsymbol{F}[\boldsymbol{X}(t-2 h)] \\
& -9 \boldsymbol{F}[\boldsymbol{X}(t-3 h)]\} \tag{2}
\end{align*}
$$

Here, $\widetilde{\boldsymbol{X}}(t+h)$ is the predicted value of $\boldsymbol{X}(t+h)$ computed by using Formula (2). If the solution X has been computed at the four points $t, t-h, t-2 h$, and $t-3 h$, then Formula (2) can be used to compute $\widetilde{\boldsymbol{X}}(t+h)$. If this is done systematically, then only one evaluation of \boldsymbol{F} is required for each step. This represents a considerable savings over the fourth-order Runge-Kutta procedure; the latter requires four evaluations of \boldsymbol{F} per step. (Of course, a consideration of truncation error and stability might permit a larger step size in the Runge-Kutta method and make it much more competitive.)

In practice, Formula (2) is never used by itself. Instead, it is used as a predictor, and then another formula is used as a corrector. The corrector that is usually used with Formula (2) is the Adams-Moulton formula:

$$
\begin{gather*}
\boldsymbol{X}(t+h)=\boldsymbol{X}(t)+\frac{h}{24}\{9 \boldsymbol{F}[\widetilde{\boldsymbol{X}}(t+h)]+19 \boldsymbol{F}[\boldsymbol{X}(t)]-5 \boldsymbol{F}[\boldsymbol{X}(t-h)] \\
+\boldsymbol{F}[\boldsymbol{X}(t-2 h)]\} \tag{3}
\end{gather*}
$$

Thus, Equation (2) predicts a tentative value of $\boldsymbol{X}(t+h)$, and Equation (3) computes this \boldsymbol{X} value more accurately. The combination of the two formulas results in a predictor-corrector scheme.

With initial values of \boldsymbol{X} specified at a, three steps of a Runge-Kutta method can be performed to determine enough \boldsymbol{X} values that the Adams-Bashforth-Moulton procedure can begin. The fourth-order Adams-Bashforth and Adams-Moulton formulas, started with the fourth-order Runge-Kutta method, are referred to as the Adams-Moulton method. Predictor and corrector formulas of the same order are used so that only one application of the corrector formula is needed. Some suggest iterating the corrector formula, but experience has demonstrated that the best overall approach is only one application per step.

Pseudocode

Storage of the approximate solution at previous steps in the Adams-Moulton method is usually handled either by storing in an array of dimension larger than the total number of steps to be taken or by physically shifting data after each step (discarding the oldest data and storing the newest in their place). If an adaptive process is used, the total number of steps to be taken cannot be determined beforehand. Physical shifting of data can be eliminated by cycling the indices of a storage array of fixed dimension. For the Adams-Moulton method, the x_{i} data for $\boldsymbol{X}(t)$ are stored in a two-dimensional array with entries $z_{i m}$ in locations $m=1,2,3,4,5,1,2, \ldots$ for $t=a, a+h, a+2 h, a+3 h, a+4 h, a+5 h, a+6 h, \ldots$, respectively. The sketch in Figure 11.1 shows the first several t values with corresponding m values and abbreviations for the formulas used.

An error analysis can be conducted after each step of the Adams-Moulton method. If $x_{i}^{(p)}$ is the numerical approximation of the i th equation in System (1) at $t+h$ obtained by

FIGURE 11.1
Starting values for applications of RK and AB/AM methods

predictor Formula (2) and x_{i} is that from corrector Formula (3) at $t+h$, then it can be shown that the single-step error for the i th component at $t+h$ is given approximately by

$$
\varepsilon_{i}=\frac{19}{270} \frac{\left|x_{i}-x_{i}^{(p)}\right|}{\left|x_{i}\right|}
$$

So we compute

$$
\mathrm{est}=\max _{1 \leqq i \leqq n}\left|\varepsilon_{i}\right|
$$

in the Adams-Moulton procedure AM_System to obtain an estimate of the maximum singlestep error at $t+h$.

A control procedure is needed that calls the Runge-Kutta procedure three times and then calls the Adams-Moulton predictor-corrector scheme to compute the remaining steps. Such a procedure for doing nsteps steps with a fixed step size h follows:

```
procedure AMRK(n,h,( }\mp@subsup{x}{i}{}),\mathrm{ nsteps)
integer i,k,m,n; real est,h; real array (xi)}\mp@subsup{)}{0:n}{
allocate real array }(\mp@subsup{f}{ij}{}\mp@subsup{)}{0:n\times0:4}{},(\mp@subsup{z}{ij}{}\mp@subsup{)}{0:n\times0:4}{
m}\leftarrow
output }
output 0, (xi)
for i=0 to }n\mathrm{ do
    zim}\leftarrow\mp@subsup{x}{i}{
end for
for }k=1\mathrm{ to }3\mathrm{ do
    call RK_System(m,n,h, (zij),( fij))
    output }k,(\mp@subsup{z}{im}{}
end for
for }k=4\mathrm{ to nsteps do
    call AM_System(m, n, h, est, (zij),( fij),)
    output }k,(\mp@subsup{z}{im}{}
    output est
end for
for i=0 to }n\mathrm{ do
    xi}\leftarrow\mp@subsup{z}{im}{
end for
deallocate array (f,z)
end procedure AMRK
```

The Adams-Moulton method for a system and the computation of the single-step error are accomplished in the following pseudocode:

```
procedure \(A M_{-} \operatorname{System}\left(m, n, h\right.\), est, \(\left.\left(z_{i j}\right),\left(f_{i j}\right)\right)\)
integer \(i, j, k, m, m p l ; \quad\) real \(d, d_{\text {max }}\), est, \(h\)
real array \(\left(z_{i j}\right)_{0: n \times 0: 4},\left(f_{i j}\right)_{0: n \times 0: 4}\)
allocate real array \(\left(s_{i}\right)_{0: n},\left(y_{i}\right)_{0: n}\)
real array \(\left(a_{i}\right)_{1: 4} \leftarrow(55,-59,37,-9)\)
real array \(\left(b_{i}\right)_{1: 4} \leftarrow(9,19,-5,1)\)
\(m p 1 \leftarrow(1+m) \bmod 5\)
call XP_System \(\left(n,\left(z_{i m}\right),\left(f_{i m}\right)\right)\)
for \(i=0\) to \(n\) do
        \(s_{i} \leftarrow 0\)
end for
for \(k=1\) to 4 do
    \(j \leftarrow(m-k+6) \bmod 5\)
    for \(i=0\) to \(n\) do
        \(s_{i} \leftarrow s_{i}+a_{k} f_{i j}\)
        end for
end for
for \(i=0\) to \(n\) do
    \(y_{i} \leftarrow z_{i m}+h s_{i} / 24\)
end for
call XP_System \(\left(n,\left(y_{i}\right),\left(f_{i, m p 1}\right)\right)\)
for \(i=0\) to \(n\) do
    \(s_{i} \leftarrow 0\)
end for
for \(k=1\) to 4 do
    \(j \leftarrow(m p l-k+6) \bmod 5\)
    for \(i=0\) to \(n\) do
        \(s_{i} \leftarrow s_{i}+b_{k} f_{i j}\)
    end for
end for
for \(i=0\) to \(n\) do
    \(z_{i, m p l} \leftarrow z_{i m}+h s_{i} / 24\)
end for
\(m \leftarrow m p 1\)
\(d_{\text {max }} \leftarrow 0\)
for \(i=0\) to \(n\) do
    \(d \leftarrow\left|z_{i m}-y_{i}\right| /\left|z_{i m}\right|\)
    if \(d>d_{\text {max }}\) then
        \(d_{\text {max }} \leftarrow d\)
        \(j \leftarrow i\)
    end if
end for
est \(\leftarrow 19 d_{\text {max }} / 270\)
deallocate array \((s, y)\)
end procedure AM_System
```

Here, the function evaluations are stored cyclically in $f_{i m}$ for use by Formulas (2) and (3). Various optimization techniques are possible in this pseudocode. For example, the programmer may wish to move the computation of $\frac{1}{24} h$ outside of the loops.

A companion Runge-Kutta procedure is needed, which is a modification of procedure RK4_System2 from Section 11.1:

```
procedure \(R K_{-} \operatorname{System}\left(m, n, h,\left(z_{i j}\right),\left(f_{i j}\right)\right)\)
integer \(i, m, m p 1, n ; \quad\) real \(h ; \quad\) real array \(\left(z_{i j}\right)_{0: n \times 0: 4},\left(f_{i j}\right)_{0: n \times 0: 4}\)
allocate real array \(\left(g_{i j}\right)_{0: n \times 0: 3},\left(y_{i}\right)_{0: n}\)
\(m p 1 \leftarrow(1+m) \bmod 5\)
call XP_System \(\left(n,\left(z_{i m}\right),\left(f_{i m}\right)\right)\)
for \(i=0\) to \(n\) do
    \(y_{i} \leftarrow z_{i m}+\frac{1}{2} h f_{i m}\)
end for
call \(X P_{-} \operatorname{System}\left(n,\left(y_{i}\right),\left(g_{i, 1}\right)\right)\)
for \(i=0\) to \(n\) do
    \(y_{i} \leftarrow z_{i m}+\frac{1}{2} h g_{i, 1}\)
end for
call \(X P_{-} \operatorname{System}\left(n,\left(y_{i}\right),\left(g_{i, 2}\right)\right)\)
for \(i=0\) to \(n\) do
    \(y_{i} \leftarrow z_{i m}+h g_{i, 2}\)
end for
call \(X P_{-} \operatorname{System}\left(n,\left(y_{i}\right),\left(g_{i, 3}\right)\right)\)
for \(i=0\) to \(n\) do
    \(z_{i, m p l} \leftarrow z_{i m}+h\left[f_{i m}+2 g_{i, 1}+2 g_{i, 2}+g_{i, 3}\right] / 6\)
end for
\(m \leftarrow m p 1\)
deallocate array \(\left(g_{i j}\right),\left(y_{i}\right)\)
end procedure RK_System
```

As before, the programmer may wish to move $\frac{1}{6} h$ out of the loop.
To use the Adams-Moulton pseudocode, we supply the procedure $X P_{-}$System that defines the system of ordinary differential equations and write a driver program with a call to procedure $A M R K$. The complete program then consists of the following five parts: the main program and procedures $X P_{-}$System, $A M R K, R K_{-}$System, and $A M_{-}$System.

As an illustration, the pseudocode for the last example in Section $11.2(\mathrm{p} .479)$ is as follows:

```
program Test_AMRK
real }h\mathrm{ ; real array ( }\mp@subsup{x}{i}{}\mp@subsup{)}{0:n}{
integer }n\leftarrow5\mathrm{ , nsteps }\leftarrow10
real }a\leftarrow0,b\leftarrow
(xi)\leftarrow(1,2,-4, -2, 7, 6)
h}\leftarrow(b-a)/nstep
call AMRK(n,h, ( }\mp@subsup{x}{i}{}),nsteps
end program Test_AMRK
```

```
procedure \(X P\) _System \(\left(n,\left(x_{i}\right),\left(f_{i}\right)\right)\)
integer \(n\); real array \(\left(x_{i}\right)_{0: n},\left(f_{i}\right)_{0: n}\)
\(f_{0} \leftarrow 1\)
\(f_{1} \leftarrow x_{2}\)
\(f_{2} \leftarrow x_{1}-x_{3}-9 x_{2}^{2}+x_{4}^{3}+6 x_{5}+2 x_{0}\)
\(f_{3} \leftarrow x_{4}\)
\(f_{4} \leftarrow x_{5}\)
\(f_{5} \leftarrow x_{5}-x_{2}+e^{x_{1}}-x_{0}\)
end procedure XP_System
```

Here, we have programmed this procedure for an autonomous system of ordinary differential equations.

An Adaptive Scheme

Since an estimate of the error is available from the Adams-Moulton method, it is natural to replace procedure $A M R K$ with one that employs an adaptive scheme-that is, one that changes the step size. A procedure similar to the one used in Section 10.3 is outlined here. The Runge-Kutta method is used to compute the first three steps, and then the AdamsMoulton method is used. If the error test determines that halving or doubling of the step size is necessary in the first step using the Adams-Moulton method, then the step size is halved or doubled, and the whole process starts again with the initial values-so at least one step of the Adams-Moulton method must take place. If during this process the error test indicates that halving is required at some point within the interval $[a, b]$, then the step size is halved. A retreat is made back to a previously computed value, and after three Runge-Kutta steps have been computed, the process continues, using the Adams-Moulton method again but with the new step size. In other words, the point at which the error was too large should be computed by the Adams-Moulton method, not the Runge-Kutta method. Doubling the step size is handled in an analogous manner. Doubling the step size requires only saving an appropriate number of previous values; however, one can simplify this process (whether halving or doubling the step size) by always backing up two steps with the old step size and then using this as the beginning point of a new initial-value problem with the new step size. Other, more complicated procedures can be designed and can be the subject of numerical experimentation. (See Computer Problem 11.3.3.)

An Engineering Example

In chemical engineering, a complicated production activity may involve several reactors connected with inflow and outflow pipes. The concentration of a certain chemical in the i th reactor is an unknown quantity, x_{i}. Each x_{i} is a function of time. If there are n reactors, the whole process is governed by a system of n differential equations of the form

$$
\begin{aligned}
& X^{\prime}=A X+V \\
& \boldsymbol{X}(0)=\boldsymbol{S}, \quad \text { given }
\end{aligned}
$$

where \boldsymbol{X} is the vector containing the unknown quantities x_{i}, \boldsymbol{A} is an $n \times n$ matrix, and \boldsymbol{V} is a constant vector. The entries in \boldsymbol{A} depend on the flow rates permitted between different reactors of the system.

There are several approaches to solving this problem. One is to diagonalize the matrix \boldsymbol{A} by finding a nonsingular matrix \boldsymbol{P} for which is $\boldsymbol{P}^{-1} \boldsymbol{A} \boldsymbol{P}$ is diagonal and then using the matrix exponential function to solve the system in an analytic form. This is a task that mathematical software can handle. On the other hand, we can simply turn the problem over to an $O D E$ solver and get the numerical solution. One piece of information that is always wanted in such a problem is a description of the steady state of the system. That means the values of all variables at $t=\infty$. Each function x_{i} should be a linear combination of exponential functions of the form $t \mapsto e^{\lambda t}$, in which $\lambda<0$. Here is a simple example that can illustrate all of this:

$$
\left[\begin{array}{l}
x_{1}^{\prime} \tag{4}\\
x_{2}^{\prime} \\
x_{3}^{\prime}
\end{array}\right]=\left[\begin{array}{rrr}
-8 / 3 & -4 / 3 & 1 \\
-17 / 3 & -4 / 3 & 1 \\
-35 / 3 & 14 / 3 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{c}
12 \\
29 \\
48
\end{array}\right]
$$

Using mathematical software such as Matlab, Maple, or Mathematica, we can obtain a closed-form solution:

$$
\begin{aligned}
& x(t)=\frac{1}{6} e^{-3 t}\left(6-50 e^{t}+10 e^{2 t}+34 e^{3 t}\right) \\
& y(t)=\frac{1}{6} e^{-3 t}\left(12-125 e^{t}+40 e^{2 t}+73 e^{3 t}\right) \\
& z(t)=\frac{1}{6} e^{-3 t}\left(14-200 e^{t}+70 e^{2 t}+116 e^{3 t}\right)
\end{aligned}
$$

For a system of ordinary differential equations with a large number of variables, it may be more convenient to represent them in a computer program with an array such as $x(i, t)$ rather than by separate variables names. To see the numerical value of the analytic solution at a single point, say, $t=2.5$, we obtain $x(2.5) \approx 5.74788, y(2.5) \approx 12.5746, z(2.5) \approx$ 20.0677. Also, we can produce a graphing of the analytic solution to the problem.

Finally, the programs presented in this section can be used to generate a numerical solution on a prescribed interval with a prescribed number of points.

Some Remarks about Stiff Equations

In many applications of differential equations there are several functions to be tracked together as functions of time. A system of ordinary differential equations may be used to model the physical phenomena. In such a situation, it can happen that different solution functions (or different components of a single solution) have quite disparate behavior that makes the selection of the step size in the numerical solution problematic. For example, one component of a function may require a small step in the numerical solution because it is varying rapidly, whereas another component may vary slowly and not require a small step size for its computation. Such a system is said to be stiff. Figure 11.2 illustrates a slowly varying solution surrounded by other solutions with rapidly decaying transients.

An example will illustrate this possibility. Consider a system of two differential equations with initial conditions:

$$
\begin{cases}x^{\prime}=-20 x-19 y & x(0)=2 \tag{5}\\ y^{\prime}=-19 x-20 y & y(0)=0\end{cases}
$$

Solution curves

 for a stiff ode

The solution is easily seen to be

$$
\begin{aligned}
& x(t)=e^{-39 t}+e^{-t} \\
& y(t)=e^{-39 t}-e^{-t}
\end{aligned}
$$

The component $e^{-39 t}$ quickly becomes negligible as t increases, starting at 0 . The solution is then approximately given by $x(t)=-y(t)=e^{-t}$, and this function is smooth and decreasing to 0 . It would seem that in almost any numerical solution, a large step size could be used. However, let us examine the simplest of numerical procedures: Euler's method. It generates the solution by using the following equations:

$$
\begin{array}{ll}
x_{n+1}=x_{n}+h\left(-20 x_{n}-19 y_{n}\right) & x_{0}=2 \\
y_{n+1}=y_{n}+h\left(-19 x_{n}-20 y_{n}\right) & y_{0}=0
\end{array}
$$

These difference equations can be solved in closed form, and we have

$$
\begin{aligned}
& x_{n}=(1-39 h)^{n}+(1-h)^{n} \\
& y_{n}=(1-39 h)^{n}-(1-h)^{n}
\end{aligned}
$$

For the numerical solution to converge to 0 (and thus imitate the actual solution), it is necessary that $h<\frac{2}{39}$. If we were solving only the differential equation $x^{\prime}=-x$ to get the solution $x(t)=e^{-t}$, the step size could be as large as $h=2$ to get the correct behavior as t increased. (See Problem 11.3.2.)

To see that numerical success (in the sense of being able to use a reasonable step size) depends on the method used, let us consider the implicit Euler method. For a single differential equation, this employs the formula

$$
x_{n+1}=x_{n}+h f\left(t_{n+1}, x_{n+1}\right)
$$

Since x_{n+1} appears on both sides of this equation, the equation must be solved for x_{n+1}. In the example being considered, the Euler equations are

$$
\begin{aligned}
& x_{n+1}=x_{n}+h\left(-20 x_{n+1}-19 y_{n+1}\right) \\
& y_{n+1}=y_{n}+h\left(-19 x_{n+1}-20 y_{n+1}\right)
\end{aligned}
$$

This pair of equations has the form $\boldsymbol{X}_{n+1}=\boldsymbol{X}_{n}+\boldsymbol{A} \boldsymbol{X}_{n+1}$, where \boldsymbol{A} is the 2×2 matrix in the previous pair of equations and \boldsymbol{X}_{n} is the vector having components x_{n} and y_{n}. This matrix equation can be written $(\boldsymbol{I}-\boldsymbol{A}) \boldsymbol{X}_{n+1}=\boldsymbol{X}_{n}$ or $\boldsymbol{X}_{n+1}=(\boldsymbol{I}-\boldsymbol{A})^{-1} \boldsymbol{X}_{n}$. A consequence is that the explicit solution is $\boldsymbol{X}_{n}=(\boldsymbol{I}-\boldsymbol{A})^{-n} \boldsymbol{X}_{0}$. At this point, it is necessary to appeal to a result concerning such iterative processes. For \boldsymbol{X}_{n} to converge to 0 for any choice of initial vector \boldsymbol{X}_{0}, it is necessary and sufficient that all eigenvalues of $(\boldsymbol{I}-\boldsymbol{A})^{-1}$ be less than one in
modulus (see Kincaid and Cheney [2002]). Equivalently, the eigenvalues of $\boldsymbol{I}-\boldsymbol{A}$ should be greater than 1 in modulus. An easy calculation shows that for positive h this condition is met, without further hypotheses. Thus, the implicit Euler method can be used with any reasonable step size on this problem. In the literature on stiff equations, much more information can be found, and there are books that address this topic thoroughly. Some essential references are Dekker and Verwer [1984], Gear [1971], Miranker [1981], and Shampine and Gordon [1975].

In general, stiff ordinary differential equations are rather difficult to solve. This is compounded by the fact that in most cases, one does not know beforehand whether an ordinary differential equation that one is trying to solve numerically is stiff. Software packages usually have ordinary differential equation solvers specifically designed to handle stiff ordinary differential equations. Some of these procedures may vary both the step size and the order of the method. In such algorithms, the Jacobian matrix $\partial \boldsymbol{F} / \partial X y$ may play a role. Solving an associated linear system involving the Jacobian matrix is critical to the reliability and efficiency of the code. The Jacobian matrix may be sparse, an indication that the function F does not depend on some of the variables in the problem.

For readers who are interested in the history of numerical analysis, we recommend the book by Goldstine [1977]. The textbook on differential equations by Moulton [1930] gives some insight into the numerical methods used prior to the advent of high-speed computing machines. He also (page 224) gives some of the history, going back to Newton! The calculation of orbits in celestial mechanics has always been a stimulus for the invention of numerical methods; so also have been the needs of ballistic science. Moulton mentions that the retardation of a projectile by air resistance is a very complicated function of velocity that necessitates numerical solution of the otherwise simple equations of ballistics.

Summary

(1) For the autonomous form for a system of ordinary differential equations in vector notation

$$
\left\{\begin{array}{l}
\boldsymbol{X}^{\prime}=\boldsymbol{F}(\boldsymbol{X}) \\
\boldsymbol{X}(a)=\boldsymbol{S}, \quad \text { given }
\end{array}\right.
$$

the Adams-Bashforth-Moulton method of fourth order is

$$
\begin{aligned}
\widetilde{\boldsymbol{X}}(t+h)=\boldsymbol{X}(t)+\frac{h}{24}\{ & 55 \boldsymbol{F}[\boldsymbol{X}(t)]-59 \boldsymbol{F}[\boldsymbol{X}(t-h)]+37 \boldsymbol{F}[\boldsymbol{X}(t-2 h)] \\
& -9 \boldsymbol{F}[\boldsymbol{X}(t-3 h)]\} \\
\boldsymbol{X}(t+h)=\boldsymbol{X}(t)+\frac{h}{24}\{ & 9 \boldsymbol{F}[\widetilde{\boldsymbol{X}}(t+h)]+19 \boldsymbol{F}[\boldsymbol{X}(t)]-5 \boldsymbol{F}[\boldsymbol{X}(t-h)] \\
& +\boldsymbol{F}[\boldsymbol{X}(t-2 h)]\}
\end{aligned}
$$

Here, $\widetilde{\boldsymbol{X}}(t+h)$ is the predictor, and $\boldsymbol{X}(t+h)$ is the corrector. The Adams-BashforthMoulton method needs five evaluations of \boldsymbol{F} per step. With the initial vector $\boldsymbol{X}(a)$ given, the values for $\boldsymbol{X}(a+h), \boldsymbol{X}(a+2 h), \boldsymbol{X}(a+3 h)$ are computed by the Runge-Kutta method of fourth order. Then the Adams-Bashforth-Moulton method can be used repeatedly. The predicted value $\widetilde{\boldsymbol{X}}$ is computed from the four \boldsymbol{X} values at $t, t-h, t-2 h$, and $t-3 h$, and then the corrected value $\boldsymbol{X}(t+h)$ can be computed by using the predictor value $\widetilde{\boldsymbol{X}}(t+h)$ and previously evaluated values of \boldsymbol{F} at $t, t-h$, and $t-2 h$.

Additional References

See Aiken [1985], Ascher and Petzold [1998], Boyce and DiPrima [2003], Butcher [1987], Carrier and Pearson [1991], Chicone [2006], Collatz [1966], Dekker and Verwer [1984], Edwards and Penny [2004], England [1969], Enright [2006], Fehlberg [1969], Gear [1971], Golub and Ortega [1992], Henrici [1962], Hull et al. [1972], Hundsdorfer [1985], Lambert [1973, 1991], Lapidus and Seinfeld [1971], Miranker [1981], Moulton [1930], and Shampine and Gordon [1975].

Problems 11.3

${ }^{a}$ 1. Find the general solution of this system by turning it into a first-order system of four equations:

$$
\left\{\begin{array}{l}
x^{\prime \prime}=\alpha y \\
y^{\prime \prime}=\beta x
\end{array}\right.
$$

2. Verify the assertions made about the step size h in the discussion of stiff equations.

Computer Problems 11.3

1. Test the procedure $A M R K$ on the system given in Computer Problem 11.2.2.
2. The single-step error is closely controlled by using fourth-order formulas; however, the roundoff error in performing the computations in Equations (3) and (4) can be large. It is logical to carry these out in what is known as partial double-precision arithmetic. The function \boldsymbol{F} would be evaluated in single precision at the desired points $\boldsymbol{X}(t+i h)$, but the linear combination $\sum_{i} c_{i} \boldsymbol{F}(\boldsymbol{X}(t+i h))$ would be accumulated in double precision. Also, the addition of $\boldsymbol{X}(t)$ to this result is done in double precision. Recode the Adams-Moulton method so that partial double-precision arithmetic is used. Compare this code with that in the text for a system with a known solution. How do they compare with regard to roundoff error at each step?
3. Write and test an adaptive process similar to RK45 Adaptive in Section 10.3 with calling sequence
procedure $A M R K$ Adaptive $\left(n, h, t_{a}, t_{b},\left(x_{i}\right)\right.$, itmax, $\varepsilon_{\min }, \varepsilon_{\text {max }}, h_{\text {min }}, h_{\text {max }}$, iflag $)$
This routine should carry out the adaptive procedure outlined in this section and be used in place of the $A M R K$ procedure.
4. Solve the predator-prey problem in the example at the beginning of this chapter with $a=-10^{-2}, b=-\frac{1}{4} \times 10^{2}, c=10^{-2}$ and $d=-10^{2}$ and with initial values $u(0)=80$, $v(0)=30$. Plot u (the prey) and v (the predator) as functions of time t.
5. Solve and plot the numerical solution of the system of ordinary differential equations given by Equation (4) using mathematical software such as Matlab, Maple, or Mathematica.
6. (Continuation) Repeat for Equation (5) using a routine specifically designed to handle stiff ordinary differential equations.
7. Solve the following test problems and plot their solution curves.
a. This problem corresponds to a recently discovered stable orbit that arises in the restricted three-body problem in which the orbits are co-planar. The two spatial coordinates of the j th body are $x_{1 j}$ and $x_{2 j}$ for $j=1,2,3$. Each of the six coordinates satisfies a second-order differential equation:

$$
x_{i j}^{\prime \prime}=\sum_{\substack{k=1 \\ k \neq j}}^{3} m_{k}\left(x_{i k}-x_{i j}\right) / d_{j k}^{3}
$$

where $d_{j k}^{2}=\sum_{i=1}^{2}\left(x_{i j}-x_{i k}\right)^{2}$ for $k, j=1,2,3$. Assume that the bodies have equal mass, say, $m_{1}=m_{2}=m_{3}=1$, and with the appropriate starting conditions, they will follow the same figure-eight orbit as a periodic steady-state solution. When the system is rewritten as a first order system, the dimension of the problem is 12 , and the initial conditions at $t=0$ are given by

$$
\begin{cases}x_{11}=-0.97000436 & x_{11}^{\prime}=0.466203685 \\ x_{21}=0.24308753 & x_{21}^{\prime}=0.43236573 \\ x_{12}=0.0 & x_{12}^{\prime}=-0.93240737 \\ x_{22}=0.0 & x_{22}^{\prime}=-0.86473146 \\ x_{13}=0.97000436 & x_{13}^{\prime}=0.466203685 \\ x_{23}=-0.24308753 & x_{23}^{\prime}=0.43236573\end{cases}
$$

Solve the problem for $t \in[0,20]$.
b. The Lorenz problem is well known, and it arises in the study of dynamical systems:

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=10\left(x_{2}-x_{1}\right) \\
x_{2}^{\prime}=x_{1}\left(28-x_{3}\right)-x_{2} \\
x_{3}^{\prime}=x_{1} x_{2}-\frac{8}{3} x_{3} \\
x_{1}(0)=15, x_{2}(0)=15, x_{3}(0)=36
\end{array}\right.
$$

Solve the problem for $t \in[0,20]$. It is known to have solutions that are potentially poorly conditioned.

For additional details on these problems, see Enright [2006].
8. Write a computer program based on pseudocode Test_AMRK to find the numerical solution to the ordinary differential equation systems, and compare the results with that by using a built-in routine such as can be found in Matlab, Maple, or Mathematica. Plot the resulting solution curves.
9. (Tacoma Narrows Bridge project) In 1940, the third longest suspension bridge in the world collapsed in a high wind. The following system of differential equations is a mathematical model that attempts to explain how twisting oscillations can be magnified
and cause such a calamity:

$$
\left\{\begin{array}{l}
y^{\prime \prime}=-y^{\prime} d-[K /(m a)]\left[e^{a(y-\ell \sin \theta)}-1+e^{a(y+\ell \sin \theta)}-1\right]+0.2 W \sin \omega t \\
\theta^{\prime \prime}=-\theta y^{\prime} d+(3 \cos \theta / \ell)[K /(m a)]\left[e^{a(y-\ell \sin \theta)}-e^{a(y+\ell \sin \theta)}\right]
\end{array}\right.
$$

The last term in the y equation is the forcing term for the wind W, which adds a strictly vertical oscillation to the bridge. Here, the roadway has width 2ℓ hanging between two suspended cables, y is the current distance from the center of the roadway as it hangs below its equilibrium point, and θ is the angle the roadway makes with the horizontal. Also, Newton's Law $F=m a$ is used and Hooke's constant K. Explore how ODE solvers are used to generate numerical trajectories for various parameter settings. Illustrate different types of phenomena that are available in this model. For additional details, see McKenna and Tuama [2001] and Sauer [2006].

Smoothing of Data and the Method of Least Squares

Surface tension S in a liquid is known to be a linear function of temperature T. For a particular liquid, measurements have been made of the surface tension at certain temperatures. The results were as follows:

T	0	10	20	30	40	80	90	95
S	68.0	67.1	66.4	65.6	64.6	61.8	61.0	60.0

How can the most probable values of the constants in the equation

$$
S=a T+b
$$

be determined? Methods for solving such problems are developed in this chapter.

12.1 Method of Least Squares

Linear Least Squares

In experimental, social, and behavioral sciences, an experiment or survey often produces a mass of data. To interpret the data, the investigator may resort to graphical methods. For instance, an experiment in physics might produce a numerical table of the form

x	x_{0}	x_{1}	\cdots	x_{m}
y	y_{0}	y_{1}	\cdots	y_{m}

and from it, $m+1$ points on a graph could be plotted. Suppose that the resulting graph looks like Figure 12.1. A reasonable tentative conclusion is that the underlying function is linear and that the failure of the points to fall precisely on a straight line is due to experimental error. If one proceeds on this assumption-or if theoretical reasons exist for believing that the function is indeed linear-the next step is to determine the correct function. Assuming that

$$
y=a x+b
$$

what are the coefficients a and b ? Thinking geometrically, we ask: What line most nearly passes through the eight points plotted?

FIGURE 12.1

To answer this question, suppose that a guess is made about the correct values of a and b. This is equivalent to deciding on a specific line to represent the data. In general, the data points will not fall on the line $y=a x+b$. If by chance the k th datum falls on the line, then

$$
a x_{k}+b-y_{k}=0
$$

If it does not, then there is a discrepancy or error of magnitude

$$
\left|a x_{k}+b-y_{k}\right|
$$

The total absolute error for all $m+1$ points is therefore

$$
\sum_{k=0}^{m}\left|a x_{k}+b-y_{k}\right|
$$

This is a function of a and b, and it would be reasonable to choose a and b so that the function assumes its minimum value. This problem is an example of $\boldsymbol{\ell}_{1}$ approximation and can be solved by the techniques of linear programming, a subject dealt with in Chapter 17. (The methods of calculus do not work on this function because it is not generally differentiable.)

In practice, it is common to minimize a different error function of a and b :

$$
\begin{equation*}
\varphi(a, b)=\sum_{k=0}^{m}\left(a x_{k}+b-y_{k}\right)^{2} \tag{2}
\end{equation*}
$$

This function is suitable because of statistical considerations. Explicitly, if the errors follow a normal probability distribution, then the minimization of φ produces a best estimate of a and b. This is called an ℓ_{2} approximation. Another advantage is that the methods of calculus can be used on Equation (2).

The ℓ_{1} and ℓ_{2} approximations are related to specific cases of the ℓ_{p} norm defined by

$$
\|x\|_{p}=\left\{\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right\}^{1 / p} \quad(1 \leqq p<\infty)
$$

for the vector $x=\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{T}$.
Let us try to make $\varphi(a, b)$ a minimum. By calculus, the conditions

$$
\frac{\partial \varphi}{\partial a}=0 \quad \frac{\partial \varphi}{\partial b}=0
$$

(partial derivatives of φ with respect to a and b, respectively) are necessary at the minimum. Taking derivatives in Equation (2), we obtain

$$
\left\{\begin{aligned}
\sum_{k=0}^{m} 2\left(a x_{k}+b-y_{k}\right) x_{k} & =0 \\
\sum_{k=0}^{m} 2\left(a x_{k}+b-y_{k}\right) & =0
\end{aligned}\right.
$$

This is a pair of simultaneous linear equations in the unknowns a and b. They are called the normal equations and can be written as

$$
\left\{\begin{array}{l}
\left(\sum_{k=0}^{m} x_{k}^{2}\right) a+\left(\sum_{k=0}^{m} x_{k}\right) b=\sum_{k=0}^{m} y_{k} x_{k} \tag{3}\\
\left(\sum_{k=0}^{m} x_{k}\right) a+\quad(m+1) b=\sum_{k=0}^{m} y_{k}
\end{array}\right.
$$

Here, of course, $\sum_{k=0}^{m} 1=m+1$, which is the number of data points. To simplify the notation, we set

$$
p=\sum_{k=0}^{n} x_{k} \quad q=\sum_{k=0}^{n} y_{k} \quad r=\sum_{k=0}^{n} x_{k} y_{k} \quad s=\sum_{k=0}^{n} x_{k}^{2}
$$

The system of Equations (3) is now

$$
\left[\begin{array}{cc}
s & p \\
p & m+1
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
r \\
q
\end{array}\right]
$$

We solve this pair of equations by Gaussian elimination and obtain the following algorithm. Alternatively, since this is a 2×2 linear system, we can use Cramer's Rule* to solve it. The determinant of the coefficient matrix is

$$
d=\operatorname{Det}\left[\begin{array}{cc}
s & p \\
p & m+1
\end{array}\right]=(m+1) s-p^{2}
$$

Moreover, we obtain

$$
\begin{aligned}
& a=\frac{1}{d} \operatorname{Det}\left[\begin{array}{cc}
r & p \\
q & m+1
\end{array}\right]=\frac{1}{d}[(m+1) r-p q] \\
& b=\frac{1}{d} \operatorname{Det}\left[\begin{array}{ll}
s & r \\
p & q
\end{array}\right]=\frac{1}{d}[s q-p r]
\end{aligned}
$$

We can write this as an algorithm:

ALGORITHM 1 Linear Least Squares

The coefficients in the least-squares line $y=a x+b$ through the set of $m+1$ data points (x_{k}, y_{k}) for $k=0,1,2, \ldots, m$ are computed (in order) as follows:

1. $p=\sum_{k=0}^{m} x_{k}$
2. $q=\sum_{k=0}^{m} y_{k}$
3. $r=\sum_{k=0}^{m} x_{k} y_{k}$
4. $s=\sum_{k=0}^{m} x_{k}^{2}$
5. $d=(m+1) s-p^{2}$
6. $a=[(m+1) r-p q] / d$
7. $b=[s q-p r] / d$

Another form of this result is

$$
\begin{align*}
& a=\frac{1}{d}\left[(m+1)\left(\sum_{k=0}^{m} x_{k} y_{k}\right)-\left(\sum_{k=0}^{m} x_{k}\right)\left(\sum_{k=0}^{m} y_{k}\right)\right] \\
& b=\frac{1}{d}\left[\left(\sum_{k=0}^{m} x_{k}^{2}\right)\left(\sum_{k=0}^{m} y_{k}\right)-\left(\sum_{k=0}^{m} x_{k}\right)\left(\sum_{k=0}^{m} x_{k} y_{k}\right)\right] \tag{4}
\end{align*}
$$

where

$$
d=(m+1)\left(\sum_{k=0}^{m} x_{k}^{2}\right)-\left(\sum_{k=0}^{m} x_{k}\right)^{2}
$$

Linear Example

The preceding analysis illustrates the least-squares procedure in the simple linear case.
EXAMPLE 1 As a concrete example, find the linear least-squares solution for the following table of values:

x	4	7	11	13	17
y	2	0	2	6	7

Plot the original data points and the line using a finer set of grid points.
Solution The equations in Algorithm 1 leads to this system of two equations:

$$
\left\{\begin{aligned}
644 a+52 b & =227 \\
52 a+5 b & =17
\end{aligned}\right.
$$

whose solution is $a=0.4864$ and $b=-1.6589$. By Equation (3), we obtain the value $\varphi(a, b)=10.7810$. Figure 12.2 is a plot of the given data and the linear least squares straight line.

FIGURE 12.2

We can use mathematical software such as Matlab, Maple, or Mathematica to fit a linear least-squares polynomial to the data and verify the value of φ. (See Computer Problem 12.1.5.)

To understand what is going on here, we want to determine the equation of a line of the form $y=a x+b$ that fits the data best in the least-squares sense. With four data points $\left(x_{i}, y_{i}\right)$, we have four equations $y_{i}=a x_{i}+b$ for $i=1,2,3,4$ that can be written as

$$
A x=y
$$

where

$$
\left[\begin{array}{ll}
x_{1} & 1 \\
x_{2} & 1 \\
x_{3} & 1 \\
x_{4} & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right]
$$

In general, we want to solve a linear system

$$
A x=b
$$

where \boldsymbol{A} is an $m \times n$ matrix and $m>n$. The solution coincides with the solution of the normal equations

$$
\boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{A}^{T} \boldsymbol{b}
$$

This corresponds to minimizing $\|\boldsymbol{A x}-\boldsymbol{b}\|_{2}^{2}$.

Nonpolynomial Example

The method of least squares is not restricted to linear (first-degree) polynomials or to any specific functional form. Suppose, for instance, that we want to fit a table of values $\left(x_{k}, y_{k}\right)$, where $k=0,1, \ldots, m$, by a function of the form

$$
y=a \ln x+b \cos x+c e^{x}
$$

in the least-squares sense. The unknowns in this problem are the three coefficients a, b, and c. We consider the function

$$
\varphi(a, b, c)=\sum_{k=0}^{m}\left(a \ln x_{k}+b \cos x_{k}+c e^{x_{k}}-y_{k}\right)^{2}
$$

and set $\partial \varphi / \partial a=0, \partial \varphi / \partial b=0$, and $\partial \varphi / \partial c=0$. This results in the following three normal equations:

$$
\left\{\begin{array}{lll}
a \sum_{k=0}^{m}\left(\ln x_{k}\right)^{2}+b \sum_{k=0}^{m}\left(\ln x_{k}\right)\left(\cos x_{k}\right)+c \sum_{k=0}^{m}\left(\ln x_{k}\right) e^{x_{k}} & =\sum_{k=0}^{m} y_{k} \ln x_{k} \\
a \sum_{k=0}^{m}\left(\ln x_{k}\right)\left(\cos x_{k}\right)+b \sum_{k=0}^{m}\left(\cos x_{k}\right)^{2}+c \sum_{k=0}^{m}\left(\cos x_{k}\right) e^{x_{k}} & =\sum_{k=0}^{m} y_{k} \cos x_{k} \\
a \sum_{k=0}^{m}\left(\ln x_{k}\right) e^{x_{k}}+b \sum_{k=0}^{m}\left(\cos x_{k}\right) e^{x_{k}}+c \sum_{k=0}^{m}\left(e^{x_{k}}\right)^{2} & =\sum_{k=0}^{m} y_{k} e^{x_{k}}
\end{array}\right.
$$

EXAMPLE 2 Fit a function of the form $y=a \ln x+b \cos x+c e^{x}$ to the following table values:

x	0.24	0.65	0.95	1.24	1.73	2.01	2.23	2.52	2.77	2.99
y	0.23	-0.26	-1.10	-0.45	0.27	0.10	-0.29	0.24	0.56	1.00

Solution Using the table and the equations above, we obtain the 3×3 system

$$
\left\{\begin{aligned}
6.79410 a-5.34749 b+63.25889 c & =1.61627 \\
-5.34749 a+5.10842 b-49.00859 c & =-2.38271 \\
63.25889 a-49.00859 b+1002.50650 c & =26.77277
\end{aligned}\right.
$$

It has the solution $a=-1.04103, b=-1.26132$, and $c=0.03073$. So the curve

$$
y=-1.04103 \ln x-1.26132 \cos x+0.03073 e^{x}
$$

has the required form and fits the table in the least-squares sense. The value of $\varphi(a, b, c)$ is 0.92557 . Figure 12.3 is a plot of the given data and the nonpolynomial least squares curve.

FIGURE 12.3
Nonpolynomial least squares

We can use mathematical software such as Matlab, Maple, or Mathematica to verify these results and to plot the solution curve. (See Computer Problem 12.1.6.)

Basis Functions $\left\{g_{0}, g_{1}, \ldots, g_{n}\right\}$

The principle of least squares, illustrated in these two simple cases, can be extended to general linear families of functions without involving any new ideas. Suppose that the data in Equation (1) are thought to conform to a relationship such as

$$
\begin{equation*}
y=\sum_{j=0}^{n} c_{j} g_{j}(x) \tag{5}
\end{equation*}
$$

in which the functions $g_{0}, g_{1}, \ldots, g_{n}$ (called basis functions) are known and held fixed. The coefficients $c_{0}, c_{1}, \ldots, c_{n}$ are to be determined according to the principle of least squares.

In other words, we define the expression

$$
\begin{equation*}
\varphi\left(c_{0}, c_{1}, \ldots, c_{n}\right)=\sum_{k=0}^{m}\left[\sum_{j=0}^{n} c_{j} g_{j}\left(x_{k}\right)-y_{k}\right]^{2} \tag{6}
\end{equation*}
$$

and select the coefficients to make it as small as possible. Of course, the expression $\varphi\left(c_{0}, c_{1}, \ldots, c_{n}\right)$ is the sum of the squares of the errors associated with each entry $\left(x_{k}, y_{k}\right)$ in the given table.

Proceeding as before, we write down as necessary conditions for the minimum the n equations

$$
\frac{\partial \varphi}{\partial c_{i}}=0 \quad(0 \leqq i \leqq n)
$$

These partial derivatives are obtained from Equation (7). Indeed,

$$
\frac{\partial \varphi}{\partial c_{i}}=\sum_{k=0}^{m} 2\left[\sum_{j=0}^{n} c_{j} g_{j}\left(x_{k}\right)-y_{k}\right] g_{i}\left(x_{k}\right) \quad(0 \leqq i \leqq n)
$$

When set equal to zero, the resulting equations can be rearranged as

$$
\begin{equation*}
\sum_{j=0}^{n}\left[\sum_{k=0}^{m} g_{i}\left(x_{k}\right) g_{j}\left(x_{k}\right)\right] c_{j}=\sum_{k=0}^{m} y_{k} g_{i}\left(x_{k}\right) \quad(0 \leqq i \leqq n) \tag{7}
\end{equation*}
$$

These are the normal equations in this situation and serve to determine the best values of the parameters $c_{0}, c_{1}, \ldots, c_{n}$. The normal equations are linear in c_{i}; thus, in principle, they can be solved by the method of Gaussian elimination (see Chapter 7).

In practice, the normal equations may be difficult to solve if care is not taken in choosing the basis functions $g_{0}, g_{1}, \ldots, g_{n}$. First, the set $\left\{g_{0}, g_{1}, \ldots, g_{n}\right\}$ should be linearly independent. This means that no linear combination $\sum_{i=0}^{n} c_{i} g_{i}$ can be the zero function (except in the trivial case when $c_{0}=c_{1}=\cdots=c_{n}=0$). Second, the functions $g_{0}, g_{1}, \ldots, g_{n}$ should be appropriate to the problem at hand. Finally, one should choose a set of basis functions that is well conditioned for numerical work. We elaborate on this aspect of the problem in the next section.

Summary

(1) We wish to find a line $y=a x+b$ that most nearly passes through the $m+1$ pairs of points $\left(x_{i}, y_{i}\right)$ for $0 \leqq i \leqq m$. An example of $\boldsymbol{\ell}_{1}$ approximation is to choose a and b so that the total absolute error for all these points is minimized:

$$
\sum_{k=0}^{m}\left|a x_{k}+b-y_{k}\right|
$$

This can be solved by the techniques of linear programming.
(2) An ℓ_{2} approximation will minimize a different error function of a and b :

$$
\varphi(a, b)=\sum_{k=0}^{m}\left(a x_{k}+b-y_{k}\right)^{2}
$$

The minimization of φ produces a best estimate of a and b in the least-squares sense. One solves the normal equations

$$
\left\{\begin{array}{l}
\left(\sum_{k=0}^{m} x_{k}^{2}\right) a+\left(\sum_{k=0}^{m} x_{k}\right) b=\sum_{k=0}^{m} y_{k} x_{k} \\
\left(\sum_{k=0}^{m} x_{k}\right) a+\quad(m+1) b=\sum_{k=0}^{m} y_{k}
\end{array}\right.
$$

(3) In a more general case, the data points conform to a relationship such as

$$
y=\sum_{j=0}^{n} c_{j} g_{j}(x)
$$

in which the basis functions $g_{0}, g_{1}, \ldots, g_{n}$ are known and held fixed. The coefficients $c_{0}, c_{1}, \ldots, c_{n}$ are to be determined according to the principle of least squares. The normal equations in this situation are

$$
\sum_{j=0}^{n}\left[\sum_{k=0}^{m} g_{i}\left(x_{k}\right) g_{j}\left(x_{k}\right)\right] c_{j}=\sum_{k=0}^{m} y_{k} g_{i}\left(x_{k}\right) \quad(0 \leqq i \leqq n)
$$

and can be solved, in principle, by the method of Gaussian elimination to determine the best values of the parameters $c_{0}, c_{1}, \ldots, c_{n}$.

Problems 12.1

${ }^{a}$ 1. Using the method of least squares, find the constant function that best fits the following data:

x	-1	2	3
y	$\frac{5}{4}$	$\frac{4}{3}$	$\frac{5}{12}$

${ }^{a}$ 2. Determine the constant function c that is produced by the least-squares theory applied to the Table on p .495 . Does the resulting formula involve the points x_{k} in any way? Apply your general formula to the preceding problem.
${ }^{a}$ 3. Find an equation of the form $y=a e^{x^{2}}+b x^{3}$ that best fits the points $(-1,0),(0,1)$, and $(1,2)$ in the least-squares sense.
4. Suppose that the x points in Table (1) are situated symmetrically about 0 on the x-axis. In this case, there is an especially simple formula for the line that best fits the points. Find it.
${ }^{a}$ 5. Find the equation of a parabola of form $y=a x^{2}+b$ that best represents the following data. Use the method of least squares.

x	-1	0	1
y	3.1	0.9	2.9

6. Suppose that Table (1) is known to conform to a function like $y=x^{2}-x+c$. What value of c is obtained by the least-squares theory?
${ }^{a} 7$. Suppose that Table (1) is thought to be represented by a function $y=c \log x$. If so, what value for c emerges from the least-squares theory?
7. Show that Equation (4) is the solution of Equation (3).
8. (Continuation) How do we know that divisor d is not zero? In fact, show that d is positive for $m \geqq 1$. Hint: Show that

$$
d=\sum_{k=0}^{m} \sum_{l=0}^{k-1}\left(x_{k}-x_{l}\right)^{2}
$$

by induction on m. The Cauchy-Schwarz inequality can also be used to prove that $d>0$.
10. (Continuation) Show that a and b can also be computed as follows:

$$
\left.\begin{array}{rlrl}
\widehat{x} & =\frac{1}{m+1} \sum_{k=0}^{m} x_{k} & \widehat{y} & =\frac{1}{m+1} \sum_{k=0}^{m} y_{k} \\
c & =\sum_{k=0}^{m}\left(x_{k}-\widehat{x}\right)^{2} & a & =\frac{1}{c} \sum_{k=0}^{m}\left(x_{k}-\widehat{x}\right)\left(y_{k}-\widehat{y}\right)
\end{array} b=\widehat{y}-a \widehat{x}\right) ~ l
$$

Hint: Show that $d=(m+1) c$.
${ }^{a}$ 11. How do we know that the coefficients $c_{0}, c_{1}, \ldots, c_{n}$ that satisfy the normal Equations (7) do not lead to a maximum in the function defined by Equation (6)?
${ }^{a}$ 12. If Table (1) is thought to conform to a relationship $y=\log (c x)$, what is the value of c obtained by the method of least squares?
${ }^{a}$ 13. What straight line best fits the following data

x	1	2	3	4
y	0	1	1	2

in the least-squares sense?
14. In analytic geometry, we learn that the distance from a point $\left(x_{0}, y_{0}\right)$ to a line represented by the equation $a x+b y=c$ is $\left(a x_{0}+b y_{0}-c\right)\left(a^{2}+b^{2}\right)^{-1 / 2}$. Determine a straight line that fits a table of data points $\left(x_{i}, y_{i}\right)$, for $0 \leqq i \leqq m$, in such a way that the sum of the squares of the distances from the points to the line is minimized.
15. Show that if a straight line is fitted to a table $\left(x_{i}, y_{i}\right)$ by the method of least squares, then the line will pass through the point $\left(x^{*}, y^{*}\right)$, where x^{*} and y^{*} are the averages of the x_{i} 's and y_{i} 's, respectively.
${ }^{a}$ 16. The viscosity V of a liquid is known to vary with temperature according to a quadratic law $V=a+b T+c T^{2}$. Find the best values of a, b, and c for the following table:

T	1	2	3	4	5	6	7
V	2.31	2.01	1.80	1.66	1.55	1.47	1.41

17. An experiment involves two independent variables x and y and one dependent variable z. How can a function $z=a+b x+c y$ be fitted to the table of points $\left(x_{k}, y_{k}, z_{k}\right)$? Give the normal equations.
${ }^{a}$ 18. Find the best function (in the least-squares sense) that fits the following data points and is of the form $f(x)=a \sin \pi x+b \cos \pi x$:

x	-1	$-\frac{1}{2}$	0	$\frac{1}{2}$	1
y	-1	0	1	2	1

${ }^{a}$ 19. Find the quadratic polynomial that best fits the following data in the sense of least squares:

x	-2	-1	0	1	2
y	2	1	1	1	2

${ }^{a}$ 20. What line best represents the following data in the least-squares sense?

x	0	1	2
y	5	-6	7

${ }^{a}$ 21. What constant c makes the expression

$$
\sum_{k=0}^{m}\left[f\left(x_{k}\right)-c e^{x_{k}}\right]^{2}
$$

as small as possible?
22. Show that the formula for the best line to fit data $\left(k, y_{k}\right)$ at the integers k for $1 \leqq k \leqq n$ is

$$
y=a x+b
$$

where

$$
\begin{aligned}
& a=\frac{6}{n\left(n^{2}-1\right)}\left[2 \sum_{k=1}^{n} k y_{k}-(n+1) \sum_{k=1}^{n} y_{k}\right] \\
& b=\frac{2}{n(n-1)}\left[(2 n+1) \sum_{k=1}^{n} y_{k}-3 \sum_{k=1}^{n} k y_{k}\right]
\end{aligned}
$$

23. Establish the normal equations and verify the results in Example 1.
24. A vector \boldsymbol{v} is asserted to be the least-squares solution of an inconsistent system $\boldsymbol{A x}=\boldsymbol{b}$. How can we test \boldsymbol{v} without going through the entire least-squares procedure?
25. Find the normal equations for the following data points:

x	1.0	2.0	2.5	3.0
y	3.7	4.1	4.3	5.0

Determine the straight line that best fits the data in the least-squares sense. Plot the data point and the least-squares line.
26. For the case $n=4$, show directly that by forming the normal equations from the data points (x_{i}, y_{i}), we obtain the results in Theorem 1.

Computer Problems 12.1

1. Write a procedure that sets up the normal Equations (7). Using that procedure and other routines, such as Gauss and Solve from Chapter 7, verify the solution given for the problem involving $\ln x, \cos x$, and e^{x} in the subsection entitled "Nonpolynomial Example."
2. Write a procedure that fits a straight line to Table (1). Use this procedure to find the constants in the equation $S=a T+b$ for the table in the example that begins this chapter. Also, verify the results obtained for the problem in the subsection entitled "Linear Example."
3. Write and test a program that takes $m+1$ points in the plane (x_{i}, y_{i}), where $0 \leqq i \leqq m$, with $x_{0}<x_{1}<\cdots<x_{m}$, and computes the best linear fit by the method of least squares. Then the program should create a plot of the points and the best line determined by the least-squares method.
4. The Internal Revenue Service (IRS) publishes the following table of values having to do with minimal distributions of pension plans:

x	1	2	3	4	5	6	7	8
y	29.9	29.0	28.1	27.1	26.2	25.3	24.4	23.6

What simple function represents the data? Use Equation (5), and plot the data and the results using either plotting software such as gnuplot or some mathematics software system such as Maple, Matlab, or Mathematica.
5. Using mathematical software such as Matlab, Maple, or Mathematica, fit a linear leastsquares polynomial to the data in Example 1. Then plot the original data and the polynomial using a fine set of grid points.
6. (Continuation) Verify the results in Example 2 and plot the curve.

12.2 Orthogonal Systems and Chebyshev Polynomials
 Orthonormal Basis Functions $\left\{\boldsymbol{g}_{0}, \boldsymbol{g}_{1}, \ldots, \boldsymbol{g}_{n}\right\}$

Once the functions $g_{0}, g_{1}, \ldots g_{n}$ of Equation (5) in Section 12.1 have been chosen, the least-squares problem can be interpreted as follows: The set of all functions g that can be expressed as linear combinations of $g_{0}, g_{1}, \ldots, g_{n}$ is a vector space \mathcal{G}. (Familiarity with vector spaces is not essential to understanding the discussion here.) In symbols, we have

$$
\mathcal{G}=\left\{g: \text { there exist } c_{0}, c_{1}, \ldots, c_{n} \text { such that } g(x)=\sum_{j=0}^{n} c_{j} g_{j}(x)\right\}
$$

The function that is being sought in the least-squares problem is thus an element of the vector space \mathcal{G}. Since the functions $g_{0}, g_{1}, \ldots, g_{n}$ form a basis for \mathcal{G}, the set is not linearly dependent. However, a given vector space has many different bases, and they can differ drastically in their numerical properties.

Let us turn our attention away from the given basis $\left\{g_{0}, g_{1}, \ldots, g_{n}\right\}$ to the vector space \mathcal{G} generated by that basis. Without changing \mathcal{G}, we ask: What basis for \mathcal{G} should be chosen for numerical work? In the present problem, the principal numerical task is to solve the normal equations-that is, Equation (7) in Section 12.1:

$$
\begin{equation*}
\sum_{j=0}^{n}\left[\sum_{k=0}^{m} g_{i}\left(x_{k}\right) g_{j}\left(x_{k}\right)\right] c_{j}=\sum_{k=0}^{m} y_{k} g_{i}\left(x_{k}\right) \quad(0 \leqq i \leqq n) \tag{1}
\end{equation*}
$$

The nature of this system obviously depends on the basis $\left\{g_{0}, g_{1}, \ldots, g_{n}\right\}$. We want these equations to be easily solved or to be capable of being accurately solved. The ideal situation occurs when the coefficient matrix in Equation (1) is the identity matrix. This happens if the basis $\left\{g_{0}, g_{1}, \ldots, g_{n}\right\}$ has the property of orthonormality:

$$
\sum_{k=0}^{m} g_{i}\left(x_{k}\right) g_{j}\left(x_{k}\right)=\delta_{i j}= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

In the presence of this property, Equation (1) simplifies dramatically to

$$
c_{j}=\sum_{k=0}^{m} y_{k} g_{j}\left(x_{k}\right) \quad(0 \leqq j \leqq n)
$$

which is no longer a system of equations to be solved but rather an explicit formula for the coefficients c_{j}.

Under rather general conditions, the space \mathcal{G} has a basis that is orthonormal in the sense just described. A procedure known as the Gram-Schmidt process can be used to obtain such a basis. There are some situations in which the effort of obtaining an orthonormal basis is justified, but simpler procedures often suffice. We describe one such procedure now.

Remember that our goal is to make Equation (1) well disposed for numerical solution. We want to avoid any matrix of coefficients that involves the difficulties encountered in connection with the Hilbert matrix (see Computer Problem 7.2.4). This objective can be met if the basis for the space \mathcal{G} is well chosen.

We now consider the space \mathcal{G} that consists of all polynomials of degree $\leqq n$, which is an important example of the least-squares theory. It may seem natural to use the following $n+1$ functions as a basis for \mathcal{G} :

$$
\begin{array}{lllll}
g_{0}(x)=1 & g_{1}(x)=x & g_{2}(x)=x^{2} & \ldots & g_{n}(x)=x^{n}
\end{array}
$$

Using this basis, we write a typical element of the space \mathcal{G} in the form

$$
g(x)=\sum_{j=0}^{n} c_{j} g_{j}(x)=\sum_{j=0}^{n} c_{j} x^{j}=c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{n} x^{n}
$$

This basis, however natural, is almost always a poor choice for numerical work. For many purposes, the Chebyshev polynomials (suitably defined for the interval involved) do form a good basis.

Figure 12.4 gives an indication of why the monomials x^{j} do not form a good basis for numerical work: These functions are too much alike! If a function g is given and we wish

FIGURE 12.4
Polynomials x^{k} and Chebyshev polynomials T_{k}

to express it as a linear combination of the monomials, $g(x)=\sum_{j=0}^{n} c_{j} x^{j}$, it is difficult to determine the coefficients c_{j} precisely. Figure 12.4 also shows a few of the Chebyshev polynomials; they are quite different from one another.

For simplicity, assume that the points in our least-squares problem have the property

$$
-1=x_{0}<x_{1}<\cdots<x_{m}=1
$$

Then the Chebyshev polynomials for the interval $[-1,1]$ can be used. The traditional notation is

$$
\left\{\begin{array}{lll}
T_{0}(x)=1 & T_{1}(x)=x & T_{2}(x)=2 x^{2}-1 \\
T_{3}(x)=4 x^{3}-3 x & T_{4}(x)=8 x^{4}-8 x^{2}+1 & \text { etc. }
\end{array}\right.
$$

A recursive formula for these polynomials is

$$
\begin{equation*}
T_{j}(x)=2 x T_{j-1}(x)-T_{j-2}(x) \quad(j \geqq 2) \tag{2}
\end{equation*}
$$

This formula, together with the equations $T_{0}(x)=1$ and $T_{1}(x)=x$, provides a formal definition of the Chebyshev polynomials. Alternatively, we can write $T_{k}(x)=\cos (k \arccos x)$.

Linear combinations of Chebyshev polynomials are easy to evaluate because a special nested multiplication algorithm applies. To describe this procedure, consider an arbitrary linear combination of $T_{0}, T_{1}, T_{2}, \ldots, T_{n}$:

$$
g(x)=\sum_{j=0}^{n} c_{j} T_{j}(x)
$$

An algorithm to compute $g(x)$ for any given x goes as follows:

$$
\left\{\begin{array}{l}
w_{n+2}=w_{n+1}=0 \tag{3}\\
w_{j}=c_{j}+2 x w_{j+1}-w_{j+2} \\
g(x)=w_{0}-x w_{1}
\end{array} \quad(j=n, n-1, \ldots, 0)\right.
$$

To see that this algorithm actually produces $g(x)$, we write down the series for g, shift some indices, and use Formulas (2) and (3):

$$
\begin{aligned}
g(x) & =\sum_{j=0}^{n} c_{j} T_{j}(x) \\
& =\sum_{j=0}^{n}\left(w_{j}-2 x w_{j+1}+w_{j+2}\right) T_{j} \\
& =\sum_{j=0}^{n} w_{j} T_{j}-2 x \sum_{j=0}^{n} w_{j+1} T_{j}+\sum_{j=0}^{n} w_{j+2} T_{j} \\
& =\sum_{j=0}^{n} w_{j} T_{j}-2 x \sum_{j=1}^{n+1} w_{j} T_{j-1}+\sum_{j=2}^{n+2} w_{j} T_{j-2} \\
& =\sum_{j=0}^{n} w_{j} T_{j}-2 x \sum_{j=1}^{n} w_{j} T_{j-1}+\sum_{j=2}^{n} w_{j} T_{j-2} \\
& =w_{0} T_{0}+w_{1} T_{1}+\sum_{j=2}^{n} w_{j} T_{j}-2 x w_{1} T_{0}-2 x \sum_{j=2}^{n} w_{j} T_{j-1}+\sum_{j=2}^{n} w_{j} T_{j-2} \\
& =w_{0}+x w_{1}-2 x w_{1}+\sum_{j=2}^{n} w_{j}\left(T_{j}-2 x T_{j-1}+T_{j-2}\right) \\
& =w_{0}-x w_{1}
\end{aligned}
$$

In general, it is best to arrange the data so that all the abscissas $\left\{x_{i}\right\}$ lie in the interval $[-1,1]$. Then, if the first few Chebyshev polynomials are used as a basis for the polynomials, the normal equations should be reasonably well conditioned. We have not given a technical definition of this term; it can be interpreted informally to mean that Gaussian elimination with pivoting produces an accurate solution to the normal equations.

If the original data do not satisfy $\min \left\{x_{k}\right\}=-1$ and $\max \left\{x_{k}\right\}=1$ but lie instead in another interval $[a, b]$, then the change of variable

$$
x=\frac{1}{2}(b-a) z+\frac{1}{2}(a+b)
$$

produces a variable z that traverses $[-1,1]$ as x traverses $[a, b]$.

Outline of Algorithm

Here is an outline of a procedure, based on the preceding discussion, that produces a polynomial of degree $\leqq(n+1)$ that best fits a given table of values $\left(x_{k}, y_{k}\right)(0 \leqq k \leqq m)$. Here, m is usually much greater than n.

ALGORITHM 1 Polynomial Fitting

1. Find the smallest interval $[a, b]$ that contains all the x_{k}. Thus, let $a=\min \left\{x_{k}\right\}$ and $b=\max \left\{x_{k}\right\}$.
2. Make a transformation to the interval $[-1,1]$ by defining

$$
z_{k}=\frac{2 x_{k}-a-b}{b-a} \quad(0 \leqq k \leqq m)
$$

3. Decide on the value of n to be used. In this situation, 8 or 10 would be a large value for n.
4. Using Chebyshev polynomials as a basis, generate the $(n+1) \times(n+1)$ normal equations

$$
\begin{equation*}
\sum_{j=0}^{n}\left[\sum_{k=0}^{m} T_{i}\left(z_{k}\right) T_{j}\left(z_{k}\right)\right] c_{j}=\sum_{k=0}^{m} y_{k} T_{i}\left(z_{k}\right) \quad(0 \leqq i \leqq n) \tag{4}
\end{equation*}
$$

5. Use an equation-solving routine to solve the normal equations for coefficients $c_{0}, c_{1}, \ldots, c_{n}$ in the function

$$
g(x)=\sum_{j=0}^{n} c_{j} T_{j}(x)
$$

6. The polynomial that is being sought is

$$
g\left(\frac{2 x-a-b}{b-a}\right)
$$

The details of step 4 are as follows: Begin by introducing a double-subscripted variable:

$$
t_{j k}=T_{j}\left(z_{k}\right) \quad 0 \leqq k \leqq m, 0 \leqq j \leqq n
$$

The matrix $\boldsymbol{T}=\left(t_{j k}\right)$ can be computed efficiently by using the recursive definition of the Chebyshev polynomials, Equation (2), as in the following segment of pseudocode:

```
integer \(j, k, m\); real array \(\left(t_{i j}\right)_{0: n \times 0: m},\left(z_{i}\right)_{0: n}\)
for \(k=0\) to \(m\) do
    \(t_{0 k} \leftarrow 1\)
    \(t_{1 k} \leftarrow z_{k}\)
    for \(j=2\) to \(n\) do
        \(t_{j k} \leftarrow 2 z_{k} t_{j-1, k}-t_{j-2, k}\)
    end for
end for
```

The normal equations have a coefficient matrix $\boldsymbol{A}=\left(a_{i j}\right)_{0: n \times 0: n}$ and a right-hand side $\boldsymbol{b}=$ $\left(b_{i}\right)_{0: n}$ given by

$$
\begin{align*}
a_{i j} & =\sum_{k=0}^{m} T_{i}\left(z_{k}\right) T_{j}\left(z_{k}\right)=\sum_{k=0}^{m} t_{i k} t_{j k} \quad(0 \leqq i, j \leqq n) \tag{5}\\
b_{i} & =\sum_{k=0}^{m} y_{k} T_{i}\left(z_{k}\right)=\sum_{k=0}^{m} y_{k} t_{i k} \quad(0 \leqq i \leqq n)
\end{align*}
$$

The pseudocode to calculate \boldsymbol{A} and \boldsymbol{b} follows:

```
real array \(\left(a_{i j}\right)_{0: n \times 0: n},\left(b_{i}\right)_{0: n},\left(t_{i j}\right)_{0: n \times 0: m},\left(y_{i}\right)_{0: n}\)
integer \(i, j, m, n\); real \(s\)
for \(i=0\) to \(n\) do
    \(s \leftarrow 0\)
    for \(k=0\) to \(m\) do
        \(s \leftarrow s+y_{k} t_{i k}\)
    end for
    \(b_{i} \leftarrow s\)
    for \(j=i\) to \(n\) do
        \(s \leftarrow 0\)
        for \(k=0\) to \(m\) do
            \(s \leftarrow s+t_{i k} t_{j k}\)
        end for
        \(a_{i j} \leftarrow s\)
        \(a_{j i} \leftarrow s\)
    end for
end for
```

To fit data with polynomials, other methods exist that employ systems of polynomials tailor-made for a given set of abscissas. The method outlined above is, however, simple and direct.

Smoothing Data: Polynomial Regression

One of the important applications of the least-squares procedure is in the smoothing of data. In this context, smoothing refers to the fitting of a "smooth" curve to a set of "noisy" values (that is, the values contain experimental errors). If one knows the type of function to which the data should conform, then the least-squares procedure can be used to compute any unknown parameters in the function. This has been amply illustrated in the examples given previously. However, if one simply wishes to smooth the data by fitting them with any convenient function, then polynomials of increasing degree can be used until a reasonable balance between good fit and smoothness is obtained.

This idea will be illustrated by the experimental data depicted in the table, which shows 20 points (x_{i}, y_{i}):

x	-1.0	-0.92	-0.84	-0.8	-0.72	-0.64	-0.56	-0.48	-0.36
y	4.0	1.0	5.0	7.0	6.0	3.0	2.0	2.0	5.0
-0.24	-0.12	0.0	0.12	0.2	0.32	0.4	0.52	0.64	0.76
12.0	13.0	11.0	7.0	4.0	-2.0	-6.0	-8.0	-2.0	4.0

Of course, a polynomial of degree 19 can be determined that passes through these points exactly. But if the points are contaminated by experimental errors, our purposes are better served by some lower-degree polynomial that fits the data approximately in the least-squares
sense. In statistical parlance, this is the problem of curvilinear regression. A good software library will contain code for the polynomial fitting of empirical data using a least-squares criterion. Such programs will determine the fitting polynomials of degrees $0,1,2, \ldots$ with a minimum of computing effort and with high precision. One can, of course, use the techniques illustrated already in this chapter, although they are not at all streamlined. Thus, with the Chebyshev polynomials as a basis, we can set up and solve the normal equations for $n=0,1,2, \ldots$ and plot the resulting functions. Some of the polynomials obtained in this way for the data of the table are shown in Figure 12.5.

FIGURE 12.5
Polynomial of degree 8 (dashed line) and polynomial of degree 13 (solid line)

An efficient procedure for polynomial regression, given by Forsythe [1957], is now explained. This procedure uses a system of orthogonal polynomials that are tailor-made for the problem at hand. We begin with a table of experimental values:

x	x_{0}	x_{1}	\ldots	x_{m}
y	y_{0}	y_{1}	\ldots	y_{m}

The ultimate objective is to replace this table by a suitable polynomial of modest degree, with the experimental errors of the table somehow suppressed. We do not know what degree of polynomial should be used.

For statistical purposes, a reasonable hypothesis is that there is a polynomial

$$
p_{N}(x)=\sum_{i=0}^{N} a_{i} x^{i}
$$

that represents the trend of the table and that the given tabular values obey the equation

$$
y_{i}=p_{N}\left(x_{i}\right)+\varepsilon_{i} \quad(0 \leqq i \leqq m)
$$

In this equation, ε_{i} represents an observational error that is present in y_{i}. A further reasonable hypothesis is that these errors are independent random variables that are normally distributed.

For a fixed value of n, we have already discussed a method of determining p_{n} by the method of least squares. Thus, a system of normal equations can be set up to determine the coefficients of p_{n}. Once these are known, a quantity called the variance can be computed from the formula

$$
\begin{equation*}
\sigma_{n}^{2}=\frac{1}{m-n} \sum_{i=0}^{m}\left[y_{i}-p_{n}\left(x_{i}\right)\right]^{2} \quad(m>n) \tag{6}
\end{equation*}
$$

Statistical theory tells us that if the trend of the table is truly a polynomial of degree N (but infected by noise), then

$$
\sigma_{0}^{2}>\sigma_{1}^{2}>\cdots>\sigma_{N}^{2}=\sigma_{N+1}^{2}=\sigma_{N+2}^{2}=\cdots=\sigma_{m-1}^{2}
$$

This fact suggests the following strategy for dealing with the case in which N is not known: Compute $\sigma_{0}^{2}, \sigma_{1}^{2}, \ldots$ in succession. As long as these are decreasing significantly, continue the calculation. When an integer N is reached for which $\sigma_{N}^{2} \approx \sigma_{N+1}^{2} \approx \sigma_{N+2}^{2} \approx \cdots$, stop and declare p_{N} to be the polynomial sought.

If $\sigma_{0}^{2}, \sigma_{1}^{2}, \ldots$ are to be computed directly from the definition in Equation (6), then each of the polynomials p_{0}, p_{1}, \ldots will have to be determined. The procedure described below can avoid the determination of all but the one desired polynomial.

In the remainder of the discussion, the abscissas x_{i} are to be held fixed. These points are assumed to be distinct, although the theory can be extended to include cases in which some points repeat. If f and g are two functions whose domains include the points $\left\{x_{0}, x_{1}, \ldots, x_{m}\right\}$, then the following notation is used:

$$
\begin{equation*}
\langle f, g\rangle=\sum_{i=0}^{m} f\left(x_{i}\right) g\left(x_{i}\right) \tag{7}
\end{equation*}
$$

This quantity is called the inner product of f and g. Much of our discussion does not depend on the exact form of the inner product but only on certain of its properties. An inner product $\langle\cdot, \cdot\rangle$ has the following properties:

PROPERTIES

Defining Properties of an Inner Product

1. $\langle f, g\rangle=\langle g, f\rangle$
2. $\langle f, f\rangle>0$ unless $f\left(x_{i}\right)=0$ for all i
3. $\langle a f, g\rangle=a\langle f, g\rangle$ where $a \in \mathbb{R}$
4. $\langle f, g+h\rangle=\langle f, g\rangle+\langle f, h\rangle$

The reader should verify that the inner product defined in Equation (7) has the properties listed.

A set of functions is now said to be orthogonal if $\langle f, g\rangle=0$ for any two different functions f and g in that set. An orthogonal set of polynomials can be generated recursively by the following formulas:

$$
\left\{\begin{aligned}
q_{0}(x) & =1 \\
q_{1}(x) & =x-\alpha_{0} \\
q_{n+1}(x) & =x q_{n}(x)-\alpha_{n} q_{n}(x)-\beta_{n} q_{n-1}(x)
\end{aligned}\right.
$$

where

$$
\left\{\begin{aligned}
\alpha_{n} & =\frac{\left\langle x q_{n}, q_{n}\right\rangle}{\left\langle q_{n}, q_{n}\right\rangle} \\
\beta_{n} & =\frac{\left\langle x q_{n}, q_{n-1}\right\rangle}{\left\langle q_{n-1}, q_{n-1}\right\rangle}
\end{aligned}\right.
$$

In these formulas, a slight abuse of notation occurs where " $x q_{n}$ " is used to denote the function whose value at x is $x q_{n}(x)$.

To understand how this definition leads to an orthogonal system, let's examine a few cases. First,

$$
\left\langle q_{1}, q_{0}\right\rangle=\left\langle x-\alpha_{0}, q_{0}\right\rangle=\left\langle x q_{0}-\alpha_{0} q_{0}, q_{0}\right\rangle=\left\langle x q_{0}, q_{0}\right\rangle-\alpha_{0}\left\langle q_{0}, q_{0}\right\rangle=0
$$

Notice that several properties of an inner product listed previously have been used here. Also, the definition of α_{0} was used. Another of the first few cases is this:

$$
\begin{aligned}
\left\langle q_{2}, q_{1}\right\rangle & =\left\langle x q_{1}-\alpha_{1} q_{1}-\beta_{1} q_{0}, q_{1}\right\rangle \\
& =\left\langle x q_{1}, q_{1}\right\rangle-\alpha_{1}\left\langle q_{1}, q_{1}\right\rangle-\beta_{1}\left\langle q_{0}, q_{1}\right\rangle=0
\end{aligned}
$$

Here, the definition of α_{1} has been used, as well as the fact (established above) that $\left\langle q_{1}, q_{0}\right\rangle=$ 0 . The next step in a formal proof is to verify that $\left\langle q_{2}, q_{0}\right\rangle=0$. Then an inductive proof completes the argument.

One part of this proof consists in showing that the coefficients α_{n} and β_{n} are well defined. This means that the denominators $\left\langle q_{n}, q_{n}\right\rangle$ are not zero. To verify that this is the case, suppose that $\left\langle q_{n}, q_{n}\right\rangle=0$. Then $\sum_{i=0}^{m}\left[q_{n}\left(x_{i}\right)\right]^{2}=0$, and consequently, $q_{n}\left(x_{i}\right)=0$ for each value of i. This means that the polynomial q_{n} has $m+1$ roots, $x_{0}, x_{1}, \ldots, x_{m}$. Since the degree n is less than m, we conclude that q_{n} is the zero polynomial. However, this is not possible because obviously

$$
\begin{aligned}
& q_{0}(x)=1 \\
& q_{1}(x)=x-\alpha_{0} \\
& \left.q_{2}(x)=x^{2}+\text { (lower-order terms }\right)
\end{aligned}
$$

and so on. Observe that this argument requires $n<m$.
The system of orthogonal polynomials $\left\{q_{0}, q_{1}, \ldots, q_{m-1}\right\}$ generated by the above algorithm is a basis for the vector space \prod_{m-1} of all polynomials of degree at most $m-1$. It is clear from the algorithm that each q_{n} starts with the highest term x^{n}. If it is desired to express a given polynomial p of degree $n(n \leqq m-1)$ as a linear combination of $q_{0}, q_{1}, \ldots, q_{n}$, this can be done as follows: Set

$$
\begin{equation*}
p=\sum_{i=0}^{n} a_{i} q_{i} \tag{8}
\end{equation*}
$$

On the right-hand side, only one summand contains x^{n}. It is the term $a_{n} q_{n}$. On the left-hand side, there is also a term in x^{n}. One chooses a_{n} so that $a_{n} x^{n}$ on the right is equal to the corresponding term in p. Now write

$$
p-a_{n} q_{n}=\sum_{i=0}^{n-1} a_{i} q_{i}
$$

On both sides of this equation, there are polynomials of degree at most $n-1$ (because of the choice of a_{n}). Hence, we can now choose a_{n-1} in the way we chose a_{n}; that is, choose a_{n-1} so that the terms in x^{n-1} are the same on both sides. By continuing in this way, we discover the unique values that the coefficients a_{i} must have. This establishes that $\left\{q_{0}, q_{1}, \ldots, q_{n}\right\}$ is a basis for \prod_{n}, for $n=0,1, \ldots, m-1$.

Another way of determining the coefficients a_{i} (once we know that they exist!) is to take the inner product of both sides of Equation (8) with q_{j}. The result is

$$
\left\langle p, q_{j}\right\rangle=\sum_{i=0}^{n} a_{i}\left\langle q_{i}, q_{j}\right\rangle \quad(0 \leqq j \leqq n)
$$

Since the set $q_{0}, q_{1}, \ldots, q_{n}$ is orthogonal, $\left\langle q_{i}, q_{j}\right\rangle=0$ for each i different from j. Hence, we obtain

$$
\left\langle p, q_{j}\right\rangle=a_{j}\left\langle q_{j}, q_{j}\right\rangle
$$

This gives a_{j} as a quotient of two inner products.
Now we return to the least-squares problem. Let F be a function that we wish to fit by a polynomial p_{n} of degree n. We shall find the polynomial that minimizes the expression

$$
\sum_{i=0}^{m}\left[F\left(x_{i}\right)-p_{n}\left(x_{i}\right)\right]^{2}
$$

The solution is given by the formulas

$$
\begin{equation*}
p_{n}=\sum_{i=0}^{n} c_{i} q_{i} \quad c_{i}=\frac{\left\langle F, q_{i}\right\rangle}{\left\langle q_{i}, q_{i}\right\rangle} \tag{9}
\end{equation*}
$$

It is especially noteworthy that c_{i} does not depend on n. This implies that the various polynomials p_{0}, p_{1}, \ldots that we are seeking can all be obtained by simply truncating one series-namely, $\sum_{i=0}^{m-1} c_{i} q_{i}$. To prove that p_{n}, as given in Equation (9), solves our problem, we return to the normal equations, Equation (1). The basic functions now being used are $q_{0}, q_{1}, \ldots, q_{n}$. Thus, the normal equations are

$$
\sum_{j=0}^{n}\left[\sum_{k=0}^{m} q_{i}\left(x_{k}\right) q_{j}\left(x_{k}\right)\right] c_{j}=\sum_{k=0}^{m} y_{k} q_{i}\left(x_{k}\right) \quad(0 \leqq i \leqq n)
$$

Using the inner product notation, we get

$$
\sum_{j=0}^{n}\left\langle q_{i}, q_{j}\right\rangle c_{j}=\left\langle F, q_{i}\right\rangle \quad(0 \leqq i \leqq n)
$$

where F is some function such that $F\left(x_{k}\right)=y_{k}$ for $0 \leqq k \leqq m$. Next, apply the orthogonality property $\left\langle q_{i}, q_{j}\right\rangle=0$ when $i \neq j$. The result is

$$
\begin{equation*}
\left\langle q_{i}, q_{i}\right\rangle c_{i}=\left\langle F, q_{i}\right\rangle \quad(0 \leqq i \leqq n) \tag{10}
\end{equation*}
$$

Now we return to the variance numbers $\sigma_{0}^{2}, \sigma_{1}^{2}, \ldots$ and show how they can be easily computed. First, an important observation: The set $\left\{q_{0}, q_{1}, \ldots, q_{n}, F-p_{n}\right\}$ is orthogonal!

The only new fact here is that $\left\langle F-p_{n}, q_{i}\right\rangle=0$ for $0 \leqq i \leqq n$. To check this, write

$$
\begin{aligned}
\left\langle F-p_{n}, q_{i}\right\rangle & =\left\langle F, q_{i}\right\rangle-\left\langle p_{n}, q_{i}\right\rangle \\
& =\left\langle F, q_{i}\right\rangle-\left\langle\sum_{j=0}^{n} c_{j} q_{j}, q_{i}\right\rangle \\
& =\left\langle F, q_{i}\right\rangle-\sum_{j=0}^{n} c_{j}\left\langle q_{j}, q_{i}\right\rangle \\
& =\left\langle F, q_{i}\right\rangle-c_{i}\left\langle q_{i}, q_{i}\right\rangle=0
\end{aligned}
$$

In this computation, we used Equations (9) and (10). Since p_{n} is a linear combination of $q_{0}, q_{1}, \ldots, q_{n}$, it follows easily that

$$
\left\langle F-p_{n}, p_{n}\right\rangle=0
$$

Now recall that the variance σ_{n}^{2} was defined by

$$
\sigma_{n}^{2}=\frac{\rho_{n}}{m-n} \quad \rho_{n}=\sum_{i=0}^{m}\left[y_{i}-p_{n}\left(x_{i}\right)\right]^{2}
$$

The quantities ρ_{n} can be written in another way:

$$
\begin{aligned}
\rho_{n} & =\left\langle F-p_{n}, F-p_{n}\right\rangle \\
& =\left\langle F-p_{n}, F\right\rangle \\
& =\langle F, F\rangle-\left\langle F, p_{n}\right\rangle \\
& =\langle F, F\rangle-\sum_{i=0}^{n} c_{i}\left\langle F, q_{i}\right\rangle \\
& =\langle F, F\rangle-\sum_{i=0}^{n} \frac{\left\langle F, q_{i}\right\rangle^{2}}{\left\langle q_{i}, q_{i}\right\rangle}
\end{aligned}
$$

Thus, the numbers $\rho_{0}, \rho_{1}, \ldots$ can be generated recursively by the algorithm

$$
\left\{\begin{array}{l}
\rho_{0}=\langle F, F\rangle-\frac{\left\langle F, q_{0}\right\rangle^{2}}{\left\langle q_{0}, q_{0}\right\rangle} \\
\rho_{n}=\rho_{n-1}-\frac{\left\langle F, q_{n}\right\rangle^{2}}{\left\langle q_{n}, q_{n}\right\rangle} \quad(n \geqq 1)
\end{array}\right.
$$

Summary

(1) We use Chebyshev polynomials $\left\{T_{j}\right\}$ as an orthogonal basis that can be generated recursively by

$$
T_{j}(x)=2 x T_{j-1}(x)-T_{j-2}(x) \quad(j \geqq 2)
$$

with $T_{0}(x)=1$ and $T_{1}(x)=x$. The coefficient matrix $\boldsymbol{A}=\left(a_{i j}\right)_{0: n \times 0: n}$ and the right-hand side $\boldsymbol{b}=\left(b_{i}\right)_{0: n}$ of the normal equations are

$$
\begin{aligned}
a_{i j} & =\sum_{k=0}^{m} T_{i}\left(z_{k}\right) T_{j}\left(z_{k}\right) \quad(0 \leqq i, j \leqq n) \\
b_{i} & =\sum_{k=0}^{m} y_{k} T_{i}\left(z_{k}\right) \quad(0 \leqq i \leqq n)
\end{aligned}
$$

A linear combination of Chebyshev polynomials

$$
g(x)=\sum_{j=0}^{n} c_{j} T_{j}(x)
$$

can be evaluated recursively:

$$
\left\{\begin{array}{l}
w_{n+2}=w_{n+1}=0 \\
w_{j}=c_{j}+2 x w_{j+1}-w_{j+2} \\
g(x)=w_{0}-x w_{1}
\end{array} \quad(j=n, n-1, \ldots, 0)\right.
$$

(2) We discuss smoothing of data by polynomial regression.

Problems 12.2

1. Let $g_{0}, g_{1}, \ldots, g_{n}$ be a set of functions such that $\sum_{k=0}^{m} g_{i}\left(x_{k}\right) g_{j}\left(x_{k}\right)=0$ if $i \neq j$. What linear combination of these functions best fits the data of Table (1) in Section 12.1?
${ }^{a}$ 2. Consider polynomials $g_{0}, g_{1}, \ldots, g_{n}$ defined by $g_{0}(x)=1, g_{1}(x)=x-1$, and $g_{j}(x)=$ $3 x g_{j-1}(x)+2 g_{j-2}(x)$. Develop an efficient algorithm for computing values of the function $f(x)=\sum_{j=0}^{n} c_{j} g_{j}(x)$.
${ }^{a}$ 3. Show that $\cos n \theta=2 \cos \theta \cos (n-1) \theta-\cos (n-2) \theta$. Hint: Use the familiar identity $\cos (A \mp B)=\cos A \cos B \pm \sin A \sin B$.
2. (Continuation) Show that if $f_{n}(x)=\cos (n \arccos x)$, then $f_{0}(x)=1, f_{1}(x)=x$, and $f_{n}(x)=2 x f_{n-1}(x)-f_{n-2}(x)$.
${ }^{a}$ 5. (Continuation) Show that an alternate definition of Chebyshev polynomials is $T_{n}(x)=$ $\cos (n \arccos x)$ for $-1 \leqq x \leqq 1$.
${ }^{a}$ 6. (Continuation) Give a one-line proof that $T_{n}\left(T_{m}(x)\right)=T_{n m}(x)$.
${ }^{a}$ 7. (Continuation) Show that $\left|T_{n}(x)\right| \leqq 1$ for x in the interval $[-1,1]$.
${ }^{a}$ 8. Define $g_{k}(x)=T_{k}\left(\frac{1}{2} x+\frac{1}{2}\right)$. What recursive relation do these functions satisfy?
3. Show that $T_{0}, T_{2}, T_{4}, \ldots$ are even and that T_{1}, T_{3}, \ldots are odd functions. Recall that an even function satisfies the equation $f(x)=f(-x)$; an odd function satisfies the equation $f(x)=-f(-x)$.
${ }^{a}$ 10. Count the number of operations involved in the algorithm used to compute $g(x)=$ $\sum_{j=0}^{n} c_{j} T_{j}(x)$.
4. Show that the algorithm for computing $g(x)=\sum_{j=0}^{n} c_{j} T_{j}(x)$ can be modified to read

$$
\left\{\begin{aligned}
w_{n-1} & =c_{n-1}+2 x c_{n} \\
w_{k} & =c_{k}+2 x w_{k+1}-w_{k-2} \quad(n-2 \geqq k \geqq 1) \\
g(x) & =c_{0}+x w_{1}-w_{2}
\end{aligned}\right.
$$

thus making w_{n+2}, w_{n+1}, and w_{0} unnecessary.
${ }^{a}$ 12. (Continuation) Count the operations for the algorithm in the preceding problem.
${ }^{a}$ 13. Determine $T_{6}(x)$ as a polynomial in x.
14. Verify the four properties of an inner product that were listed in the text, using Definition (7).
15. Verify these formulas:

$$
p_{0}(x)=\frac{1}{m+1} \sum_{i=0}^{m} y_{i} \quad \beta_{n}=\frac{\left\langle q_{n}, q_{n}\right\rangle}{\left\langle q_{n-1}, q_{n-1}\right\rangle} \quad c_{n}=\frac{\rho_{n-1}-\rho_{n}}{\left\langle F, q_{n}\right\rangle}
$$

16. Complete the proof that the algorithm for generating the orthogonal system of polynomials works.
${ }^{a}$ 17. There is a function f of the form

$$
f(x)=\alpha x^{12}+\beta x^{13}
$$

for which $f(0.1)=6 \times 10^{-13}$ and $f(0.9)=3 \times 10^{-2}$. What is it? Are α and β sensitive to perturbations in the two given values of $f(x)$?
18. (Multiple choice) Let $\boldsymbol{x}_{1}=[2,2,1]^{T}, \boldsymbol{x}_{2}=[1,1,5]^{T}$, and $\boldsymbol{x}_{3}=[-3,2,1]^{T}$. If the Gram-Schmidt process is applied to this ordered set of vectors to produce an orthonormal set $\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}\right\}$, what is \boldsymbol{u}_{1} ?
a. $\left[\frac{2}{3}, \frac{2}{3}, \frac{1}{3}\right]^{T}$
b. $[2,2,1]^{T}$
c. $\left[\frac{2}{5}, \frac{2}{5}, \frac{1}{5}\right]^{T}$
d. $[1,0,0]^{T}$
e. None of these.
19. (Multiple choice, continuation) What is \boldsymbol{u}_{2} ?
a. $\frac{1}{\sqrt{27}}[1,1,5]^{T}$
b. $\frac{1}{\sqrt{18}}[-1,-1,4]^{T}$
c. $[2,2,1]^{T}$
d. $[1,1,-4]^{T}$
e. None of these.

Computer Problems 12.2

1. Carry out an experiment in data smoothing as follows: Start with a polynomial of modest degree, say, 7. Compute 100 values of this polynomial at random points in the interval $[-1,1]$. Perturb these values by adding random numbers chosen from a small interval, say, $\left[-\frac{1}{8}, \frac{1}{8}\right]$. Try to recover the polynomial from these perturbed values by using the method of least squares.
2. Write real function $\operatorname{Cheb}(n, x)$ for evaluating $T_{n}(x)$. Use the recursive formula satisfied by Chebyshev polynomials. Do not use a subscripted variable. Test the program on these 15 cases: $n=0,1,3,6,12$ and $x=0,-1,0.5$.
3. Write real function $\operatorname{Cheb}\left(n, x,\left(y_{i}\right)\right)$ to calculate $T_{0}(x), T_{1}(x), \ldots, T_{n}(x)$, and store these numbers in the array $\left(y_{i}\right)$. Use your routine, together with suitable plotting routines, to obtain graphs of $T_{0}, T_{1}, T_{2}, \ldots, T_{8}$ on $[-1,1]$.
4. Write real function $F\left(n,\left(c_{i}\right), x\right)$ for evaluating $f(x)=\sum_{j=0}^{n} c_{j} T_{j}(x)$. Test your routine by means of the formula $\sum_{k=0}^{\infty} t^{k} T_{k}(x)=(1-t x) /\left(1-2 t x+t^{2}\right)$, valid for $|t|<1$. If $|t| \leqq \frac{1}{2}$, then only a few terms of the series are needed to give full machine precision. Add terms in ascending order of magnitude.
5. Obtain a graph of T_{n} for some reasonable value of n by means of the following idea: Generate 100 equally spaced angles θ_{i} in the interval $[0, \pi]$. Define $x_{i} \cos \theta_{i}$ and $y_{i}=$ $T_{n}\left(x_{i}\right)=\cos \left(n \arccos x_{i}\right)=\cos n \theta_{i}$. Send the points $\left(x_{i}, y_{i}\right)$ to a suitable plotting routine.
6. Write suitable code to carry out the procedure outlined in the text for fitting a table with a linear combination of Chebyshev polynomials. Test it in the manner of Computer Problem 12.2.1, first by using an unperturbed polynomial. Find out experimentally how large n can be in this process before roundoff errors become serious.
${ }^{a} 7$. Define $x_{k}=\cos [(2 k-1) \pi /(2 m)]$. Select modest values of n and $m>2 n$. Compute and print the matrix \boldsymbol{A} whose elements are

$$
a_{i j}=\sum_{k=0}^{m} T_{i}\left(x_{k}\right) T_{j}\left(x_{k}\right) \quad(0 \leqq i, j \leqq n)
$$

Interpret the results in terms of the least-squares polynomial-fitting problem.
8. Program the algorithm for finding $\sigma_{0}^{2}, \sigma_{1}^{2}, \ldots$ in the polynomial regression problem.
9. Program the complete polynomial regression algorithm. The output should be α_{n}, β_{n}, σ_{n}^{2}, and c_{n} for $0 \leqq n \leqq N$, where N is determined by the condition $\sigma_{N-1}^{2}>\sigma_{N}^{2} \approx \sigma_{N+1}^{2}$.
10. Using orthogonal polynomials, find the quadratic polynomial that fits the following data in the sense of least squares:

a. | x | -1 | $-\frac{1}{2}$ | 0 | $\frac{1}{2}$ | 1 |
| :--- | :--- | ---: | ---: | ---: | ---: |
| y | -1 | 0 | 1 | 2 | 1 |

b.

x	-2	-1	0	1	2
y	2	1	1	1	2

12.3 Other Examples of the Least-Squares Principle

The principle of least squares is also used in other situations. In one of these, we attempt to solve an inconsistent system of linear equations of the form

$$
\begin{equation*}
\sum_{j=0}^{n} a_{k j} x_{j}=b_{k} \quad(0 \leqq k \leqq m) \tag{1}
\end{equation*}
$$

in which $m>n$. Here, there are $m+1$ equations but only $n+1$ unknowns. If a given $n+1$-tuple ($x_{0}, x_{1}, \ldots, x_{n}$) is substituted on the left, the discrepancy between the two sides of the k th equation is termed the k th residual. Ideally, of course, all residuals should be zero. If it is not possible to select $\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ so as to make all residuals zero, System (1) is said to be inconsistent or incompatible. In this case, an alternative is to minimize the sum of the squares of the residuals. So we are led to minimize the expression

$$
\begin{equation*}
\varphi\left(x_{0}, x_{1}, \ldots, x_{n}\right)=\sum_{k=0}^{m}\left(\sum_{j=0}^{n} a_{k j} x_{j}-b_{k}\right)^{2} \tag{2}
\end{equation*}
$$

by making an appropriate choice of $\left(x_{0}, x_{1}, \ldots, x_{n}\right)$. Proceeding as before, we take partial derivatives with respect to x_{i} and set them equal to zero, thereby arriving at the normal equations

$$
\begin{equation*}
\sum_{j=0}^{n}\left(\sum_{k=0}^{m} a_{k i} a_{k j}\right) x_{j}=\sum_{k=0}^{m} b_{k} a_{k i} \quad(0 \leqq i \leqq n) \tag{3}
\end{equation*}
$$

This is a linear system of just $n+1$ equations involving unknowns $x_{0}, x_{1}, \ldots, x_{n}$. It can be shown that this system is consistent, provided that the column vectors in the original coefficient array are linearly independent. System (3) can be solved, for instance, by Gaussian elimination. The solution of System (3) is then a best approximate solution of Equation (1) in the least-squares sense.

Special methods have been devised for the problem just discussed. Generally, they gain in precision over the simple approach outlined above. One such algorithm for solving System (1),

$$
A x=b
$$

begins by factoring

$$
A=Q R
$$

where matrix \boldsymbol{Q} is $(m+1) \times(n+1)$ satisfying $\boldsymbol{Q}^{T} \boldsymbol{Q}=\boldsymbol{I}$ and matrix \boldsymbol{R} is $(n+1) \times(n+1)$ satisfying $r_{i i}>0$ and $r_{i j}=0$ for $j<i$. Then the least-squares solution is obtained by an algorithm called the modified Gram-Schmidt process.

A more elaborate (and more versatile) algorithm depends on the singular value decomposition of the matrix \boldsymbol{A}. This is a factoring, $\boldsymbol{A}=\mathbf{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}$, in which $\boldsymbol{U}^{T} \boldsymbol{U}=\boldsymbol{I}_{m+1}$, $\boldsymbol{V}^{T} \boldsymbol{V}=\boldsymbol{I}_{n+1}$, and $\boldsymbol{\Sigma}$ is an $(m+1) \times(n+1)$ diagonal matrix that has nonnegative entries. For these more reliable procedures, the reader is referred to material at the end of this section and to Stewart [1973] and Lawson and Hanson [1995].

Use of a Weight Function w(\boldsymbol{x})

Another important example of the principle of least squares occurs in fitting or approximating functions on intervals rather than discrete sets. For example, a given function f defined on an interval $[a, b]$ may have to be approximated by a function such as

$$
g(x)=\sum_{j=0}^{n} c_{j} g_{j}(x)
$$

It is natural, then, to attempt to minimize the expression

$$
\begin{equation*}
\varphi\left(c_{0}, c_{1}, \ldots, c_{n}\right)=\int_{a}^{b}[g(x)-f(x)]^{2} d x \tag{4}
\end{equation*}
$$

by choosing coefficients appropriately. In some applications, it is desirable to force functions g and f into better agreement in certain parts of the interval. For this purpose, we can modify Equation (4) by including a positive weight function $w(x)$, which can, of course, be $w(x) \equiv 1$ if all parts of the interval are to be treated the same. The result is

$$
\varphi\left(c_{0}, c_{1}, \ldots, c_{n}\right)=\int_{a}^{b}[g(x)-f(x)]^{2} w(x) d x
$$

The minimum of φ is again sought by differentiating with respect to each c_{i} and setting the partial derivatives equal to zero. The result is a system of normal equations:

$$
\begin{equation*}
\sum_{j=0}^{n}\left[\int_{a}^{b} g_{i}(x) g_{j}(x) w(x) d x\right] c_{j}=\int_{a}^{b} f(x) g_{i}(x) w(x) d x \quad(0 \leqq i \leqq n) \tag{5}
\end{equation*}
$$

This is a system of $n+1$ linear equations in $n+1$ unknowns $c_{0}, c_{1}, \ldots, c_{n}$ and can be solved by Gaussian elimination. Earlier remarks about choosing a good basis apply here also. The ideal situation is to have functions $g_{0}, g_{1}, \ldots, g_{n}$ that have the orthogonality property:

$$
\begin{equation*}
\int_{a}^{b} g_{i}(x) g_{j}(x) w(x) d x=0 \quad(i \neq j) \tag{6}
\end{equation*}
$$

Many such orthogonal systems have been developed over the years. For example, Chebyshev polynomials form one such system, namely,

$$
\int_{-1}^{1} T_{i}(x) T_{j}(x)\left(1-x^{2}\right)^{-1 / 2} d x= \begin{cases}0 & i \neq j \\ \frac{\pi}{2} & i=j>0 \\ \pi & i=j=0\end{cases}
$$

The weight function $\left(1-x^{2}\right)^{-1 / 2}$ assigns heavy weight to the ends of the interval $[-1,1]$.
If a sequence of nonzero functions $g_{0}, g_{1}, \ldots, g_{n}$ is orthogonal according to Equation (6), then the sequence $\lambda_{0} g_{0}, \lambda_{1} g_{1}, \ldots, \lambda_{n} g_{n}$ is orthonormal for appropriate positive real numbers λ_{j}, namely,

$$
\lambda_{j}=\left\{\int_{a}^{b}\left[g_{j}(x)\right]^{2} w(x) d x\right\}^{-1 / 2}
$$

Nonlinear Example

As another example of the least-squares principle, here is a nonlinear problem. Suppose that a table of points $\left(x_{k}, y_{k}\right)$ is to be fitted by a function of the form

$$
y=e^{c x}
$$

Proceeding as before leads to the problem of minimizing the function

$$
\varphi(c)=\sum_{k=0}^{m}\left(e^{c x_{k}}-y_{k}\right)^{2}
$$

The minimum occurs for a value of c such that

$$
0=\frac{\partial \varphi}{\partial c}=\sum_{k=0}^{m} 2\left(e^{c x_{k}}-y_{k}\right) e^{c x_{k}} x_{k}
$$

This equation is nonlinear in c. One could contemplate solving it by Newton's method or the secant method. On the other hand, the problem of minimizing $\varphi(c)$ could be attacked directly. Since there can be multiple roots in the normal equation and local minima in φ itself, a direct minimization of φ would be safer. This type of difficulty is typical of nonlinear least-squares problems. Consequently, other methods of curve fitting are often preferred if the unknown parameters do not occur linearly in the problem.

Alternatively, this particular example can be linearized by a change of variables $z=\ln y$ and by considering

$$
z=c x
$$

The problem of minimizing the function

$$
\varphi(c)=\sum_{k=0}^{m}\left(c x_{k}-z_{k}\right)^{2} \quad z_{k}=\ln y_{k}
$$

is easy and leads to

$$
c=\sum_{k=0}^{m} z_{k} x_{k} / \sum_{k=0}^{m} x_{k}^{2}
$$

This value of c is not the solution of the original problem but may be satisfactory in some applications.

Linear and Nonlinear Example

The final example contains elements of linear and nonlinear theory. Suppose that an $\left(x_{k}, y_{k}\right)$ table is given with $m+1$ entries and that a functional relationship such as

$$
y=a \sin (b x)
$$

is suspected. Can the least-squares principle be used to obtain the appropriate values of the parameters a and b ?

Notice that parameter b enters this function in a nonlinear way, creating some difficulty, as will be seen. According to the principle of least squares, the parameters should be chosen such that the expression

$$
\sum_{k=0}^{m}\left[a \sin \left(b x_{k}\right)-y_{k}\right]^{2}
$$

has a minimum value. The minimum value is sought by differentiating this expression with respect to a and b and setting these partial derivatives equal to zero. The results are

$$
\left\{\begin{array}{l}
\sum_{k=0}^{m} 2\left[a \sin \left(b x_{k}\right)-y_{k}\right] \sin \left(b x_{k}\right)=0 \\
\sum_{k=0}^{m} 2\left[a \sin \left(b x_{k}\right)-y_{k}\right] a x_{k} \cos \left(b x_{k}\right)=0
\end{array}\right.
$$

If b were known, a could be obtained from either equation. The correct value of b is the one for which these corresponding two a values are identical. So each of the preceding equations should be solved for a, and the results set equal to each other. This process leads to the equation

$$
\frac{\sum_{k=0}^{m} y_{k} \sin b x_{k}}{\sum_{k=0}^{m}\left(\sin b x_{k}\right)^{2}}=\frac{\sum_{k=0}^{m} x_{k} y_{k} \cos b x_{k}}{\sum_{k=0}^{m} x_{k} \sin b x_{k} \cos b x_{k}}
$$

which can now be solved for parameter b, using, for example, the bisection method or the secant method. Then either side of this equation can be evaluated as the value of a.

Additional Details on SVD

The singular value decomposition (SVD) of a matrix is a factorization that can reveal important properties of the matrix that otherwise could escape detection. For example, from the SVD decomposition of a square matrix one could be alerted to the near-singularity of the matrix. Or from the SVD factorization of a nonsquare matrix an unexpected loss of rank could be revealed. Since the SVD factorization of a matrix yields a complete orthogonal decomposition, it provides a technique for computing the least squares solution of a system of equations and at the same time producing the norm of the error vector.

Suppose that a given $m \times n$ matrix has the factorization

$$
\boldsymbol{A}=\boldsymbol{U} \boldsymbol{D} \boldsymbol{V}^{T}
$$

where $\boldsymbol{U}=\left[\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{m}\right]$ is an $m \times m$ orthogonal matrix, $\boldsymbol{V}=\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right]$ is an $n \times n$ orthogonal matrix, and the $m \times n$ diagonal matrix \boldsymbol{D} contains the singular values of \boldsymbol{A} on its diagonal, listed in decreasing order. The singular values of a matrix \boldsymbol{A} are the positive square roots of the eigenvalues of $\boldsymbol{A}^{T} \boldsymbol{A}$. These are denoted by $\sigma_{1} \geqq \sigma_{2} \geqq \cdots \geqq \sigma_{r} \geqq 0$. In detail, we have

$$
\boldsymbol{U}^{T} \boldsymbol{A} \boldsymbol{V}=\boldsymbol{D}=\left[\begin{array}{lllllll}
\sigma_{1} & & & & & & \\
& \sigma_{2} & & & & & \\
& & \ddots & & & & \\
& & & \sigma_{r} & & & \\
& & & & 0 & & \\
& & & & & \ddots & \\
& & & & & & 0 \\
& & & & & &
\end{array}\right]_{m \times n}
$$

where $\boldsymbol{U}^{T} \boldsymbol{U}=\boldsymbol{I}_{m}$ and $\boldsymbol{V}^{T} \boldsymbol{V}=\boldsymbol{I}_{n}$. (In the above matrix, blank space corresponds to zero entries.) Moreover, we have $\boldsymbol{A} \boldsymbol{v}_{i}=\sigma_{i} \boldsymbol{u}_{i}$ and $\sigma_{i}=\left\|\boldsymbol{A} \boldsymbol{v}_{i}\right\|_{2}$ where \boldsymbol{v}_{i} is column i in \boldsymbol{V} and
\boldsymbol{u}_{i} is column i in \boldsymbol{U}. Since \boldsymbol{U} is orthogonal, we obtain

$$
\begin{aligned}
\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|_{2}^{2} & =\left\|\boldsymbol{U}^{T}(\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b})\right\|_{2}^{2}=\left\|\boldsymbol{U}^{T} \boldsymbol{A} \boldsymbol{x}-\boldsymbol{U}^{T} \boldsymbol{b}\right\|_{2}^{2} \\
& =\left\|\boldsymbol{U}^{T} \boldsymbol{A}\left(\boldsymbol{V} \boldsymbol{V}^{T}\right) \boldsymbol{x}-\boldsymbol{U}^{T} \boldsymbol{b}\right\|_{2}^{2} \\
& =\left\|\left(\boldsymbol{U}^{T} \boldsymbol{A} \boldsymbol{V}\right)\left(\boldsymbol{V}^{T} \boldsymbol{x}\right)-\boldsymbol{U}^{T} \boldsymbol{b}\right\|_{2}^{2} \\
& =\left\|\boldsymbol{D} \boldsymbol{V}^{T} \boldsymbol{x}-\boldsymbol{U}^{T} \boldsymbol{b}\right\|_{2}^{2}=\|\boldsymbol{D} \boldsymbol{y}-\boldsymbol{c}\|_{2}^{2} \\
& =\sum_{i=1}^{r}\left(\sigma_{i} y_{i}-c_{i}\right)^{2}+\sum_{i=r+1}^{m} c_{i}^{2}
\end{aligned}
$$

where $\boldsymbol{y}=\boldsymbol{V}^{T} \boldsymbol{x}$ and $\boldsymbol{c}=\boldsymbol{U}^{T} \boldsymbol{b}$. Here, \boldsymbol{y} is defined by $y_{i}=c_{i} / \sigma_{j}$ and \boldsymbol{x} by $\boldsymbol{x}=\boldsymbol{V} \boldsymbol{y}$. Since $c_{i}=\boldsymbol{u}_{i}^{T} \boldsymbol{b}$ and $\boldsymbol{x}=\boldsymbol{V} \boldsymbol{y}$, if $y_{i}=\sigma_{i}^{-1} c_{i}$ for $1 \leqq i \leqq r$ then the least-squares solution is

$$
\boldsymbol{x}_{L S}=\sum_{i=1}^{n} y_{i} \boldsymbol{v}_{i}=\sum_{i=1}^{r} \sigma_{i}^{-1} c_{i} \boldsymbol{v}_{i}=\sum_{i=1}^{r} \sigma_{i}^{-1}\left(\boldsymbol{u}_{i}^{T} \boldsymbol{b}\right) \boldsymbol{v}_{i}
$$

and

$$
\left\|\boldsymbol{A} \boldsymbol{x}_{L S}-\boldsymbol{b}\right\|_{2}^{2}=\sum_{i=r+1}^{m} c_{i}^{2}=\sum_{i=r+1}^{m}\left(\boldsymbol{u}_{i}^{T} \boldsymbol{b}\right)^{2}
$$

which is the smallest of all two-norm minimizers. For additional, details see Golub and Van Loan [1996].

In conclusion, we obtain the following theorem.

THEOREM 1

SVD LEAST SQUARES THEOREM

Let \boldsymbol{A} be an $m \times n$ matrix of rank r. Let the SVD factorization be $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{D} \boldsymbol{V}^{T}$. The least-squares solution of the system $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ is $\boldsymbol{x}_{L S}=\sum_{i=1}^{n}\left(\sigma_{i}^{-1} c_{i}\right) \boldsymbol{v}_{i}$, where $c_{i}=\boldsymbol{u}_{i}^{T} \boldsymbol{b}$. If there exist many least-squares solutions to the given system, then the one of least 2-norm is \boldsymbol{x} as described above.

EXAMPLE 1 Find the least-squares solution of this nonsquare system

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right]
$$

using the singular value decomposition:

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{rrr}
\frac{1}{3} \sqrt{6} & 0 & \frac{1}{3} \sqrt{3} \\
\frac{1}{6} \sqrt{6} & \frac{1}{2} \sqrt{2} & -\frac{1}{3} \sqrt{3} \\
\frac{1}{6} \sqrt{6} & -\frac{1}{2} \sqrt{2} & -\frac{1}{3} \sqrt{3}
\end{array}\right]\left[\begin{array}{rr}
\sqrt{3} & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{rr}
\frac{1}{2} \sqrt{2} & \frac{1}{2} \sqrt{2} \\
\frac{1}{2} \sqrt{2} & -\frac{1}{2} \sqrt{2}
\end{array}\right]
$$

Solution We have $r=\operatorname{rank}(\boldsymbol{A})=2$ and the singular values $\sigma_{1}=\sqrt{3}$ and $\sigma_{2}=1$. This leads to

$$
c_{1}=\boldsymbol{u}_{1}^{T} \boldsymbol{b}=\left[\begin{array}{lll}
\frac{1}{3} \sqrt{6} & \frac{1}{6} \sqrt{6} & \frac{1}{6} \sqrt{6}
\end{array}\right]\left[\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right]=\frac{1}{3} \sqrt{6}
$$

and

$$
c_{2}=\boldsymbol{u}_{2}^{T} \boldsymbol{b}=\left[\begin{array}{lll}
0 & -\frac{1}{2} \sqrt{2} & \frac{1}{2} \sqrt{2}
\end{array}\right]\left[\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right]=\sqrt{2}
$$

and

$$
\begin{aligned}
x_{L S} & =\left(\sigma_{1}^{-1} c_{1}\right) \boldsymbol{v}_{1}+\left(\sigma_{2}^{-1} c_{2}\right) \boldsymbol{v}_{2}=\frac{1}{\sqrt{3}}\left(\frac{1}{3} \sqrt{6}\right)\left[\begin{array}{l}
\frac{1}{2} \sqrt{2} \\
\frac{1}{2} \sqrt{2}
\end{array}\right]+\sqrt{2}\left[\begin{array}{r}
\frac{1}{2} \sqrt{2} \\
-\frac{1}{2} \sqrt{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{1}{3} \\
\frac{1}{3}
\end{array}\right]+\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{r}
\frac{4}{3} \\
-\frac{2}{3}
\end{array}\right]
\end{aligned}
$$

This solution is the same as that from the normal equations.

Using the Singular Value Decomposition

This material requires the theory of the singular value decomposition discussed in Section 8.3.

An important application of the singular value decomposition is in the matrix leastsquares problem, to which we now return. For any system of linear equations $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, we want to define a unique minimal solution. This is described as follows. Let \boldsymbol{A} be $m \times n$, and define

$$
\rho=\inf \left\{\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|_{2}: \boldsymbol{x} \in \mathbb{R}^{n}\right\}
$$

The minimal solution of our system is taken to be the point of smallest norm in the set $\left\{\boldsymbol{x}:\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|_{2}=\rho\right\}$. If the system is consistent, then $\rho=0$, and we are simply asking for the point of least norm among all solutions. If the system is inconsistent, we want $\boldsymbol{A} \boldsymbol{x}$ to be as close as possible to \boldsymbol{b}; that is, $\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|_{2}=\rho$. If there are many such points, we choose the one closest to the origin.

The minimal solution is produced by using the pseudo-inverse of \boldsymbol{A}, and this object, in turn, can be computed from the singular value decomposition of \boldsymbol{A} as discussed in Section 8.3. First, consider a diagonal $m \times n$ matrix of the following form, where the σ_{j} are positive numbers:

$$
\boldsymbol{D}=\left[\begin{array}{lllllll}
\sigma_{1} & & & & & & \\
& \sigma_{2} & & & & & \\
& & \ddots & & & & \\
& & & \sigma_{r} & & & \\
& & & & 0 & & \\
& & & & & \ddots & \\
& & & & & & 0 \\
& & & & & & \\
& & & & & &
\end{array}\right]_{m \times n}
$$

Its pseudo-inverse \boldsymbol{D}^{+}is defined to be of the same form, except that it is to be $n \times m$ and it has $1 / \sigma_{j}$ on its diagonal. For example,

$$
\boldsymbol{D}=\left[\begin{array}{ccc}
5 & 0 & 0 \\
0 & 2 & 0
\end{array}\right] \quad \boldsymbol{D}^{+}=\left[\begin{array}{cc}
\frac{1}{5} & 0 \\
0 & \frac{1}{2} \\
0 & 0
\end{array}\right]
$$

If \boldsymbol{A} is any $m \times n$ matrix and if $\boldsymbol{U} \boldsymbol{D} \boldsymbol{V}^{T}$ is one of its singular value decompositions, we define the pseudo-inverse of \boldsymbol{A} to be

$$
\boldsymbol{A}^{+}=\boldsymbol{V} \boldsymbol{D}^{+} \boldsymbol{U}^{T}
$$

We do not stop to prove that the pseudo-inverse of \boldsymbol{A} is unique if we impose the order $\sigma_{1} \geqq \sigma_{2} \geqq \cdots$.

THEOREM 2

MINIMAL SOLUTION THEOREM

Consider a system of linear equations $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, in which \boldsymbol{A} is an $m \times n$ matrix. The minimal solution of the system is $\boldsymbol{A}^{+} \boldsymbol{b}$.

Proof Use the notation established above, and let \boldsymbol{x} be any point in \mathbb{R}^{n}. Define $\boldsymbol{y}=\boldsymbol{V}^{T} \boldsymbol{x}$ and $\boldsymbol{c}=\boldsymbol{U}^{T} \boldsymbol{b}$. Using the properties of \boldsymbol{V} and \boldsymbol{U}, we obtain

$$
\begin{aligned}
\rho & =\inf _{\boldsymbol{x}}\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|_{2} \\
& =\inf _{\boldsymbol{x}}\left\|\boldsymbol{U} \boldsymbol{D} \boldsymbol{V}^{T} \boldsymbol{x}-\boldsymbol{b}\right\|_{2} \\
& =\inf _{x}\left\|\boldsymbol{U}^{T}\left(\boldsymbol{U} \boldsymbol{D} \boldsymbol{V}^{T} \boldsymbol{x}-\boldsymbol{b}\right)\right\|_{2} \\
& =\inf _{\boldsymbol{x}}\left\|\boldsymbol{D} \boldsymbol{V}^{T} \boldsymbol{x}-\boldsymbol{U}^{T} \boldsymbol{b}\right\|_{2} \\
& =\inf _{\boldsymbol{y}}\|\boldsymbol{D} \boldsymbol{y}-\boldsymbol{c}\|_{2}
\end{aligned}
$$

Exploiting the special nature of \boldsymbol{D}, we have

$$
\|\boldsymbol{D} \boldsymbol{y}-\boldsymbol{c}\|_{2}^{2}=\sum_{i=1}^{r}\left(\sigma_{i} y_{i}-c_{i}\right)^{2}+\sum_{i=r+1}^{m} c_{i}^{2}
$$

To minimize this last expression, we define $y_{i}=c_{i} / \sigma_{i}$ for $1 \leqq i \leqq r$. The other components can remain unspecified. But to get the \boldsymbol{y} of least norm, we must set $y_{i}=0$ for $r+1 \leqq i \leqq m$. This construction is carried out by the pseudo-inverse \boldsymbol{D}^{+}, so $\boldsymbol{y}=\boldsymbol{D}^{+} \boldsymbol{c}$. Hence, we obtain

$$
x=V y=V D^{+} c=V D^{+} \boldsymbol{U}^{T} b=A^{+} b
$$

Let us express the minimal solution in another form, taking advantage of the zero components in the vector \boldsymbol{y}. Since $y_{i}=0$ for $i>r$, we require only the first r components of \boldsymbol{y}. These are given by $y_{i}=c_{i} / \sigma_{i}$. Now it is evident that only the first r components of c are needed. Since $\boldsymbol{c}=\boldsymbol{U}^{T} \boldsymbol{b}, c_{i}$ is the inner product of row i in \boldsymbol{U}^{T} with the vector \boldsymbol{b}. That is the same as the inner product of the i th column of \boldsymbol{U} with \boldsymbol{b}. Thus,

$$
\boldsymbol{y}_{i}=\boldsymbol{u}_{i}^{T} \boldsymbol{b} / \sigma_{i} \quad 1 \leqq i \leqq r
$$

The minimal solution, which we may denote by \boldsymbol{x}^{*}, is then

$$
\boldsymbol{x}^{*}=\boldsymbol{V} \boldsymbol{y}=\sum_{i=1}^{r} y_{i} \boldsymbol{v}_{i}
$$

An example of this procedure can be carried out in mathematical software such as Matlab, Maple or Mathematica. We can generate a system of 20 equations with three unknowns by a random process. This technique is often used in testing software, especially in benchmarking studies, in which a large number of examples is run with careful timing. The software has a provision for entering random matrices. When executed, the computer program first exhibits the random input. The three singular values of matrix \boldsymbol{A} are displayed. Then the diagonal 20×3 matrix \boldsymbol{D} is displayed. A check on the numerical work is made by computing $\boldsymbol{U} \boldsymbol{D} \boldsymbol{V}^{T}$, which should equal \boldsymbol{A}. Then the pseudo-inverse of \boldsymbol{D}^{+}is computed. Next, the pseudo-inverse \boldsymbol{A}^{+}is computed. The minimal solution, $\boldsymbol{x}=\boldsymbol{A}^{+} \boldsymbol{b}$, is computed, as well as the residual vector, $\boldsymbol{r}=\boldsymbol{A}^{+} \boldsymbol{b}=\boldsymbol{b}$. Then the orthogonality condition $\boldsymbol{A}^{T} \boldsymbol{r}=\mathbf{0}$ is checked. This program is therefore carrying out all the steps described above for obtaining the minimal solution of a system of equations. Another example will be given below to show what happens in the case of a loss in rank. (See Computer Problem 12.3.10.)

In problems of this type, the user must examine the singular values and decide whether any are small enough to warrant being set equal to zero. The necessity of this step becomes clear when we look at the definition of \boldsymbol{D}^{+}. The reciprocals of the singular values are the principal constituents of this matrix. Any very small singular value that is not set equal to zero will therefore have a disruptive effect on the subsequent calculations. A rule of thumb that has been recommended is to drop any singular value whose magnitude is less than σ_{1} times the inherent accuracy of the coefficient matrix. Thus, if the data are accurate to three decimal places and if $\sigma_{1}=5$, then any σ_{i} less than 0.005 should be set equal to zero.

An example of a small matrix having a near-deficiency in rank is given next. In the Maple program, certain singular values are set equal to zero if they fail to meet the relative size criterion mentioned in the previous paragraph. Also, we have added, as a check on the calculations, a verification of the following four Penrose properties for a pseudo-matrix.

THEOREM 3

PENROSE PROPERTIES OF THE PSEUDO-INVERSE

The pseudo-inverse \boldsymbol{A}^{+}for the matrix \boldsymbol{A} has these four properties:

$$
\begin{aligned}
\boldsymbol{A} & =\boldsymbol{A} \boldsymbol{A}^{+} \boldsymbol{A} & \boldsymbol{A}^{+} & =\boldsymbol{A}^{+} \boldsymbol{A} \boldsymbol{A}^{+} \\
\boldsymbol{A} \boldsymbol{A}^{+} & =\left(\boldsymbol{A} \boldsymbol{A}^{+}\right)^{T} & \boldsymbol{A}^{+} \boldsymbol{A} & =\left(\boldsymbol{A}^{+} \boldsymbol{A}\right)^{T}
\end{aligned}
$$

We can use mathematical software such as Matlab, Maple, or Mathematica for finding the pseudo-inverse of a matrix that has a deficiency in rank. For example, consider this 5×3 matrix:

$$
\boldsymbol{A}=\left[\begin{array}{rrr}
-85 & -55 & -115 \tag{7}\\
-35 & 97 & -167 \\
79 & 56 & 102 \\
63 & 57 & 69 \\
45 & -8 & 97.5
\end{array}\right]
$$

A tolerance value is set so that in the evaluation of singular values any value whose magnitude is less than the tolerance is treated as zero. We can verify the Penrose properties for this matrix. (See Computer Problem 12.3.11.)

Summary

(1) We attempt to solve an inconsistent system

$$
\sum_{j=0}^{n} a_{k j} x_{j}=b_{k} \quad(0 \leqq k \leqq m)
$$

in which there are $m+1$ equations but only $n+1$ unknowns with $m>n$. We minimize the sum of the squares of the residuals and are led to minimize the expression

$$
\varphi\left(x_{0}, x_{1}, \ldots, x_{n}\right)=\sum_{k=0}^{m}\left(\sum_{j=0}^{n} a_{k j} x_{j}-b_{k}\right)^{2}
$$

We solve the $(n+1) \times(n+1)$ system of normal equations

$$
\sum_{j=0}^{n}\left(\sum_{k=0}^{m} a_{k i} a_{k j}\right) x_{j}=\sum_{k=0}^{m} b_{k} a_{k i} \quad(0 \leqq i \leqq n)
$$

by Gaussian elimination, and the solution is a best approximate solution of the original system in the least-squares sense.

Additional References

See Acton [1959], Björck [1996], Branham [1990], Cheney [1982, 2001], Forsythe [1957], van Huffel and Vandewalle [1991], Lawson and Hanson [1995], Rice [1971], Rice and White [1964], Rivlin [1990], Späth [1992], and Whittaker and Robinson [1944].

Problems 12.3

1. Analyze the least-squares problem of fitting data by a function of the form $y=x^{c}$.
${ }^{a}$ 2. Show that the Hilbert matrix (Computer Problem 7.2.4) arises in the normal equations when we minimize

$$
\int_{0}^{1}\left[\sum_{j=0}^{n} c_{j} x^{j}-f(x)\right]^{2} d x
$$

${ }^{a}$ 3. Find a function of the form $y=e^{c x}$ that best fits this table:

x	0	1
y	$\frac{1}{2}$	1

${ }^{a}$ 4. (Continuation) Repeat the preceding problem for the following table:

x	0	1
y	a	b

5. (Continuation) Repeat the preceding problem under the supposition that b is negative.
${ }^{a} \mathbf{6}$. Show that the normal equation for the problem of fitting $y=e^{c x}$ to points $(1,-12)$ and $(2,7.5)$ has two real roots: $c=\ln 2$ and $c=0$. Which value is correct for the fitting problem?
6. Consider the inconsistent System (1). Suppose that each equation has associated with it a positive number w_{i} indicating its relative importance or reliability. How should Equations (2) and (3) be modified to reflect this?
${ }^{a} \mathbf{8}$. Determine the best approximate solution of the inconsistent system of linear equations

$$
\left\{\begin{aligned}
2 x+3 y & =1 \\
x-4 y & =-9 \\
2 x-y & =-1
\end{aligned}\right.
$$

in the least-squares sense.
9. ${ }^{a}$. Find the constant c for which $c x$ is the best approximation in the sense of least squares to the function $\sin x$ on the interval $[0, \pi / 2]$.
${ }^{a} \mathbf{b}$. Do the same for e^{x} on $[0,1]$.
10. Analyze the problem of fitting a function $y=(c-x)^{-1}$ to a table of $m+1$ points.
11. Show that the normal equations for the least-squares solution of $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ can be written $\left(\boldsymbol{A}^{T} \boldsymbol{A}\right) \boldsymbol{x}=\boldsymbol{A}^{T} \boldsymbol{b}$.
12. Derive the normal equations given by System (5).
13. A table of values $\left(x_{k}, y_{k}\right)$, where $k=0,1, \ldots, m$, is obtained from an experiment. When plotted on semilogarithmic graph paper, the points lie nearly on a straight line, implying that $y \approx e^{a x+b}$. Suggest a simple procedure for obtaining parameters a and b.
${ }^{a} \mathbf{1 4}$. In fitting a table of values to a function of the form $a+b x^{-1}+c x^{-2}$, we try to make each point lie on the curve. This leads to $a+b x_{k}^{-1}+c x_{k}^{-2}=y_{k}$ for $0 \leqq k \leqq m$. An equivalent equation is $a x_{k}^{2}+b x_{k}+c=y_{k} x_{k}^{2}$ for $0 \leqq k \leqq m$. Are the least-squares problems for these systems of equations equivalent?
${ }^{a}$ 15. A table of points $\left(x_{k}, y_{k}\right)$ is plotted and appears to lie on a hyperbola of the form $y=(a+b x)^{-1}$. How can the linear theory of least squares be used to obtain good estimates of a and b ?
${ }^{a}$ 16. Consider $f(x)=e^{2 x}$ over $[0, \pi]$. We wish to approximate the function by a trigonometric polynomial of the form $p(x)=a+b \cos (x)+c \sin (x)$. Determine the linear system to be solved for determining the least squares fit of p to f.
${ }^{a}$ 17. Find the constant c that makes the expression $\int_{0}^{1}\left(e^{x}-c x\right)^{2} d x$ a minimum.
18. Show that in every least-squares matrix problem, the normal equations have a symmetric coefficient matrix.
19. Verify that the following steps produce the least-squares solution of $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$.
a. Factor $\boldsymbol{A}=\boldsymbol{Q} \boldsymbol{R}$, where \boldsymbol{Q} and \boldsymbol{R} have the properties described in the text.
b. Define $\boldsymbol{y}=\boldsymbol{Q}^{T} \boldsymbol{b}$. c. Solve the lower triangular system $\boldsymbol{R} \boldsymbol{x}=\boldsymbol{y}$.
${ }^{a}$ 20. What value of c should be used if a table of experimental data $\left(x_{i}, y_{i}\right)$ for $0 \leqq i \leqq m$ is to be represented by the formula $y=c \sin x$? An explicit usable formula for c is required. Use the principle of least squares.
21. Refer to the formulas leading to the minimal solution of the system $\boldsymbol{A x}=\boldsymbol{b}$. Prove that the \boldsymbol{y}-vector is given by the formula $y_{i}=\sigma_{i}^{-2} \boldsymbol{b}^{T} \boldsymbol{A} \boldsymbol{v}_{i}$ for $1 \leqq i \leqq r$.
22. Prove that the pseudo-inverse satisfies the four Penrose equations.
23. Use the four Penrose properties to find the pseudo-inverse of the matrix $[a, 0]^{T}$, where $a>0$. Prove that the pseudo-inverse is a discontinuous function of a.
24. Use the technique suggested in the preceding problem to find the pseudo-inverse of the $m \times n$ matrix consisting solely of 1's.
25. Use the Penrose equations to find the pseudo-inverse of any $1 \times n$ matrix and any $m \times 1$ matrix.
26. (Multiple choice) Let $\boldsymbol{A}=\boldsymbol{P} \boldsymbol{D} \boldsymbol{Q}$, where \boldsymbol{A} is an $m \times n$ matrix, \boldsymbol{P} is an $m \times m$ unitary matrix, \boldsymbol{D} is an $m \times n$ diagonal matrix, and \boldsymbol{Q} is an $n \times n$ unitary matrix. Which equation can be deduced from those hypotheses?
a. $\boldsymbol{A}^{*}=\boldsymbol{P}^{*} \boldsymbol{D}^{*} \boldsymbol{Q}^{*}$
b. $\boldsymbol{A}^{-1}=\boldsymbol{Q}^{*} \boldsymbol{D}^{-1} \boldsymbol{P}^{*}$
c. $D=P A Q$
d. $A^{*} A=Q^{*} D^{*} D Q$
e. None of these.
27. (Multiple choice, continuation) Assume the hypotheses of the preceding problem. Use the notation ${ }^{+}$to indicate a pseudo-inverse. Which equation is correct?
a. $\boldsymbol{A}^{+}=P D^{+} \boldsymbol{Q}$
b. $\boldsymbol{A}^{*}=\boldsymbol{Q}^{*} \boldsymbol{D}^{-1} \boldsymbol{P}^{*}$
c. $\boldsymbol{A}^{+}=\boldsymbol{Q}^{*} \boldsymbol{D}^{+} \boldsymbol{P}^{*}$
d. $\boldsymbol{A}^{-1}=\boldsymbol{Q}^{*} \boldsymbol{D}^{+} \boldsymbol{P}^{*}$
e. None of these.
28. (Multiple choice) Let \boldsymbol{D} be an $m \times n$ diagonal matrix with diagonal elements p_{1}, p_{2}, $\ldots, p_{r}, 0,0, \ldots, 0$. Here all the numbers p_{i}, for $1 \leqq i \leqq r$, are positive. Which assertion is not valid?
a. \boldsymbol{D}^{+}is the $m \times n$ diagonal matrix with diagonal elements $\left(1 / p_{1}, 1 / p_{2}, \ldots, 1 / p_{r}, 0\right.$, $0, \ldots, 0$)
b. \boldsymbol{D}^{+}is the $n \times m$ diagonal matrix with diagonal elements $\left(1 / p_{1}, 1 / p_{2}, \ldots, 1 / p_{r}, 0\right.$, $0, \ldots, 0)$
c. $\left(\boldsymbol{D}^{+}\right)^{*}=\left(\boldsymbol{D}^{*}\right)^{+}$
d. $D^{++}=D$
e. None of these.
29. (Multiple choice) Consider an inconsistent system of equations $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$. Let \boldsymbol{U} be a unitary matrix and let $\boldsymbol{E}=\boldsymbol{U}^{*} \boldsymbol{A}$. Let $\boldsymbol{v}, \boldsymbol{w}$, and \boldsymbol{z} be vectors such that $\boldsymbol{U} \boldsymbol{v}=\boldsymbol{E} \boldsymbol{b}$, $\boldsymbol{U} \boldsymbol{w}=\boldsymbol{E}^{*} \boldsymbol{b}, \boldsymbol{E} \boldsymbol{y}=\boldsymbol{U}^{*} \boldsymbol{b}$, and $\boldsymbol{E} \boldsymbol{x}=\boldsymbol{U} \boldsymbol{b}$. A vector that solves the least-squares problem for the original system $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ is:
a. v
b. w
c. y
d. z
e. None of these.

Computer Problems 12.3

${ }^{a}$ 1. Using the method suggested in the text, fit the data in the table

x	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8
y	0.6	1.1	1.6	1.8	2.0	1.9	1.7	1.3

by a function $y=a \sin b x$.
2. (Prony's method, $\boldsymbol{n}=\mathbf{1}$) To fit a table of the form

x	1	2	\cdots	m
y	y_{1}	y_{2}	\cdots	y_{m}

by the function $y=a b^{x}$, we can proceed as follows: If y is actually $a b^{x}$, then $y_{k}=a b^{k}$ and $y_{k+1}=b y_{k}$ for $k=1,2, \ldots, m-1$. So we determine b by solving this system of equations using the least-squares method. Having found b, we find a by solving the equations $y_{k}=a b^{k}$ in the least-squares sense. Write a program to carry out this procedure, and test it on an artificial example.
3. (Continuation) Modify the procedure of the preceding computer problem to handle any case of equally spaced points.
4. A quick way of fitting a function of the form

$$
f(x) \approx \frac{a+b x}{1+c x}
$$

is to apply the least-squares method to the problem $(1+c x) f(x) \approx a+b x$. Use this technique to fit the world population data given here:

Year	Population (billions)
1000	0.340
1650	0.545
1800	0.907
1900	1.61
1950	2.51
1960	3.15
1970	3.65
1980	4.20
1990	5.30

Determine when the world population will become infinite!
5. (Student research project) Explore the question of whether the least-squares method should be used to predict. For example, study the variances in the preceding problem to determine whether a polynomial of any degree would be satisfactory.
6. Write a procedure that takes as input an $(m+1) \times(n+1)$ matrix \boldsymbol{A} and an $m+1$ vector \boldsymbol{b} and returns the least-squares solution of the system $\boldsymbol{A x}=\boldsymbol{b}$.
7. Write a Maple program to find the minimal solution of any system of equations, $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$.
8. (Continuation) Write a Matlab program for the task in the preceding problem.
9. Investigate some of the newer methods for solving inconsistent linear equations $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, when the criterion is to make $\boldsymbol{A} \boldsymbol{x}$ close to \boldsymbol{b} in one of the other useful norms, namely, the maximum norm $\|\boldsymbol{x}\|_{\infty}=\max _{1 \leqq i \leqq n}\left|x_{i}\right|$ or the ℓ_{1} norm $\|\boldsymbol{x}\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$. Use some of the available software.
10. Using mathematical software such as Matlab, Maple, or Mathematica, generate a system of twenty equations with three unknowns by a random number generator. Form the pseudo-inverse matrix and verify the properties in Theorem 2.
11. (Continuation.) Repeat using Matrix (7).
12. Write a computer program for carrying out the least squares curve fit using Chebyshev polynomials. Test the code on a suitable data set and plot the results.

Monte Carlo Methods and Simulation

A highway engineer wishes to simulate the flow of traffic for a proposed design of a major freeway intersection. The information that is obtained will then be used to determine the capacity of storage lanes (in which cars must slow down to yield the right of way). The intersection has the form shown in Figure 13.1, and various flows (cars per minute) are postulated at the points where arrows are drawn. By writing and running a simulation program, the engineer can study the effect of different speed limits, determine which flows lead to saturation (bottlenecks), and so on. Some techniques for constructing such programs are developed in this chapter.

FIGURE 13.1
Traffic flow

13.1 Random Numbers

This chapter differs from most of the others in its point of view. Instead of addressing clearcut mathematical problems, it attempts to develop methods for simulating complicated processes or phenomena. If the computer can be made to imitate an experiment or a process, then by repeating the computer simulation with different data, we can draw statistical conclusions. In such an approach, the conclusions may lack a high degree of mathematical precision but still be sufficiently accurate to enable us to understand the process being simulated.

Particular emphasis is given to problems in which the computer simulation involves an element of chance. The whimsical name of Monte Carlo methods was applied some years
ago by Stanislaw M. Ulam (1909-1984) to this way of imitating reality by a computer. Since chance or randomness is part of the method, we begin with the elusive concept of random numbers.

Consider a sequence of real numbers x_{1}, x_{2}, \ldots all lying in the unit interval $(0,1)$. Expressed informally, the sequence is random if the numbers seem to be distributed haphazardly throughout the interval and if there seems to be no pattern in the progression x_{1}, x_{2}, \ldots For example, if all the numbers in decimal form begin with the digit 3 , then the numbers are clustered in the subinterval $0.3 \leqq x<0.4$ and are not randomly distributed in $(0,1)$. If the numbers are monotonically increasing, they are not random. If each x_{i} is obtained from its predecessor by a simple continuous function, say, $x_{i}=f\left(x_{i-1}\right)$, then the sequence is not random (although it might appear to be so). A precise definition of randomness is quite difficult to formulate, and the interested reader may wish to consult an article by Chaitlin [1975], in which randomness is related to the complexity of computer algorithms! Thus, it seems best, at least in introductory material, to accept intuitively the notion of a random sequence of numbers in an interval and to accept certain algorithms for generating sequences that are more or less random.

A recommended reference is the book of Niederreiter [1992].

Random-Number Algorithms and Generators

Most computer systems have random-number generators, which are procedures that produce either a single random number or an entire array of random numbers with each call. In this chapter, we call such a procedure Random. The reader can use a random-number generator available on his or her own computing system, one available within the computer language being used, or one of the generators described below. For example, randomnumber generators are contained in mathematical software systems such as Matlab, Maple, and Mathematica as well as many computer programming languages. These random-number procedures return one or an array of uniformly distributed pseudo-random numbers in the unit interval $(0,1)$ depending on whether the argument is a scalar variable or an array. A random seed procedure restarts or queries the pseudo-random-number generator. The random number generator can produce hundreds of thousands of pseudo-random numbers before repeating itself, at least theoretically.

For the problems in this chapter, one should select a routine to provide random numbers uniformly distributed in the interval $(0,1)$. A sequence of numbers is uniformly distributed in the interval $(0,1)$ if no subset of the interval contains more than its share of the numbers. In particular, the probability that an element x drawn from the sequence falls within the subinterval $[a, a+h]$ should be h and hence independent of the number a. Similarly, if $p_{i}=\left(x_{i}, y_{i}\right)$ are random points in the plane uniformly distributed in some rectangle, then the number of these points that fall inside a small square of area k should depend only on k and not on where the square is located inside the rectangle.

Random numbers produced by a computer code cannot be truly random because the manner in which they are produced is completely deterministic; that is, no element of chance is actually present. But the sequences that are produced by these routines appear to be random, and they do pass certain tests for randomness. Some authors prefer to emphasize this point by calling such computer-generated sequences pseudo-random numbers.

If the reader wishes to program a random-number generator, the following one should be satisfactory on a machine that has 32-bit word length. This algorithm generates n random
numbers $x_{1}, x_{2}, \ldots, x_{n}$ uniformly distributed in the open interval $(0,1)$ by means of the following recursive algorithm:

```
integer array \(\left(\ell_{i}\right)_{0: n} ; \quad\) real array \(\left(x_{i}\right)_{1: n}\)
\(\ell_{0} \leftarrow\) any integer such that \(1<\ell_{0}<2^{31}-1\)
for \(i=1\) to \(n\) do
    \(\ell_{i} \leftarrow\) remainder when \(7^{5} \ell_{i-1}\) is divided by \(2^{31}-1\)
    \(x_{i} \leftarrow \ell_{i} /\left(2^{31}-1\right)\)
end for
```

Here, all ℓ_{i} 's are integers in the range $1<\ell_{i}<2^{31}-1$. The initial integer ℓ_{0} is called the seed for the sequence and is selected as any integer between 1 and the Mersenne prime number $2^{31}-1=2147483647$.

For information on portable random-number generators, the reader should consult the article by Schrage [1979]. A fast normal random-number generator can be written in only a few lines of code as presented in Leva [1992]. It is based on the ratio of uniform deviates method of Kinderman and Monahan [1977].

An external function procedure to generate a new array of pseudo-random numbers per call could be based on the following pseudocode:

```
real procedure Random(( }\mp@subsup{x}{i}{})
integer seed, i, n; real array ( }\mp@subsup{x}{i}{}\mp@subsup{)}{1:n}{
integer }k\leftarrow16807,j\leftarrow214748364
seed }\leftarrow\mathrm{ select initial value for seed
n}\leftarrow\operatorname{size}((\mp@subsup{x}{i}{})
for }i=1\mathrm{ to }n\mathrm{ do
    seed }\leftarrow\operatorname{mod}(k\cdot\mathrm{ seed, }j
    x}\leftarrow\leftarrow\operatorname{real(seed)/real(j)
end for
end procedure Random
```

To allow adequate representation of the numbers involved in procedure Random, it must be written by using double or extended precision for use on a 32 -bit computer; otherwise, it will produce nonrandom numbers.

Recall that here and elsewhere, $\bmod (n, m)$ is the remainder when n is divided by m; that is, it results in $n-[\operatorname{integer}(n / m)] m$, where integer (n / m) is the integer resulting from the truncation of n / m. Thus, $\bmod (44,7)$ is $2, \bmod (3,11)$ is 3 , and $\bmod (n, m)$ is 0 whenever m divides n evenly. We also note that $x \equiv y$ modulo (z) means that $x-y$ is divisible by z. Outlines of two other random-number generator algorithms follow:

ALGORITHM 1 Mother of All Pseudo-Random-Number Generators

Initialize the four values of $x_{0}, x_{1}, x_{2}, x_{3}$ and c to random values based on a value of the seed. Letting $s=2111111111 x_{n-4}+1492 x_{n-3}+1776 x_{n-2}+5115 x_{n-1}+$ c, compute $x_{n}=s \bmod \left(2^{32}\right)$ and $c=\left\lfloor s / 2^{32}\right\rfloor$ for $n \geqq 4$. Invented by George Marsaglia. (See www. agner.org/random/.)

ALGORITHM2 rand() in Unix

Initialize the x_{0} to a random value based on a value of the seed. Compute $x_{n+1}=$ $\left(1103515245 x_{n}+12345\right) \bmod \left(2^{31}\right)$ for $n \geqq 1$.

These algorithms are suitable for some applications, but they may not produce high-quality randomness and may not be suitable for applications requiring accurate statistics or in cryptographics. On the Internet, one can find new and improved pseudo-random-number generators, which are designed for the fast generations of high-quality random numbers with colossal periods and with special distributions. (See, for example, www.gnu.org/software /gsl/.)

A few words of caution about random-number generators in computing systems are needed. The fact that the sequences produced by these programs are not truly random has already been noted. In some simulations, the failure of randomness can lead to erroneous conclusions. Here are three specific points and examples to remember:

PROPERTIES

1. The algorithms of the type illustrated here by Random and those above produce periodic sequences; that is, the sequences eventually repeat themselves. The period is of the order 2^{30} for Random, which is quite large.
2. If a random-number generator is used to produce random points in n-dimensional space, these points lie on a relatively small number of planes or hyperplanes. As Marsaglia [1968] reports, points obtained in this way in 3-space lie on a set of only 119086 planes for computers with integer storage of 48 bits. In 10 -space they lie on a set of 126 planes, which is quite small.
3. The individual digits that make up random numbers generated by routines such as Random are not, in general, independent random digits. For example, it might happen that the digit 3 follows the digit 5 more (or less) often than would be expected.

Examples

An example of a pseudocode to compute and print ten random numbers using procedure Random follows:

```
program Test_Random
real array ( }\mp@subsup{x}{i}{}\mp@subsup{)}{1:n}{\prime;};\quad\mathrm{ integer }n\leftarrow1
call Random(( }\mp@subsup{x}{i}{})\mathrm{ )
output ( }\mp@subsup{x}{i}{}\mathrm{ )
end program Test_Random
```

The computer results from a typical run are as follows:

$$
\begin{aligned}
& 0.3185229,0.5326059,0.5067622,0.1527148,0.6768793 \text {, } \\
& 0.3106789,0.5796366,0.9533168,0.3958457,0.9787935
\end{aligned}
$$

Mathematical software systems such as Matlab, Maple, and Mathematica have collections of random-number generators with various distributions. For example, one can
generate uniformly distributed pseudo-random numbers in the interval $(0,1)$. Moreover, they are particularly useful for plotting and displaying random points generated within regions in one, two, and three dimensions.

As a coarse check on the random-number generator, let us compute a long sequence of random numbers and determine what proportion of them lie in the interval $\left(0, \frac{1}{2}\right]$. The computed answer should be approximately 50%. The results with different sequence lengths are tabulated. Here is the pseudocode to carry out this experiment:

```
program Coarse_Check
integer i,m; real per; real array (ri}\mp@subsup{)}{1:n}{
integer }n\leftarrow1000
m}\leftarrow
call Random((ri))
for i=1 to }n\mathrm{ do
    if }\mp@subsup{r}{i}{}\leqq1/2\mathrm{ then }m\leftarrowm+
    if mod}(i,1000)=0 the
        per }\leftarrow100\operatorname{real}(m)/\operatorname{real}(n
        output i,per
    end if
end for
end program Coarse_Check
```

In this pseudocode, a sequence of 10000 random numbers is generated. Along the way, the current proportion of numbers less than $\frac{1}{2}$ is computed at the 1000th step and then at multiples of 1000 . Some of the computer results of the experiment are $49.5,50.2,51.0$, and 50.625 .

The experiment described can also be interpreted as a computer simulation of the tossing of a coin. A single toss corresponds to the selection of a random number x in the interval $(0,1)$. We arbitrarily associate heads with event $0<x \leqq \frac{1}{2}$ and tails with event $\frac{1}{2}<x<1$. One thousand tosses of the coin corresponds to 1000 choices of random numbers. The results show the proportion of heads that result from repeated tossing of the coin. Random integers can be used to simulate coin tossing as well.

Observe that (at least in this experiment) reasonable precision is attained with only a moderate number of random numbers (4000). Repeating the experiment 10000 times has only a marginal influence on the precision. Of course, theoretically, if the random numbers were truly random, the limiting value as the number of random numbers used increases without bound would be exactly 50%.

In this pseudocode and others in the chapter, all of the random numbers are generated initially, stored in an array, and used later in the program as needed. This is an efficient way to obtain these numbers because it minimizes the number of procedure calls but at the cost of storage space. If memory space is at a premium, the call to the random-number generator can be moved closer to its use (inside the loop(s)) so that it returns a single random number with each call.

Now we consider some basic questions about generating random points in various geometric configurations. Assume that procedure Random is used to obtain a random number r in the interval $[0,1]$. First, if uniformly distributed random points are needed on some
interval (a, b), the statement

$$
x \leftarrow(b-a) r+a
$$

accomplishes this. Second, the pseudocode

$$
i \leftarrow \operatorname{integer}((n+1) r)
$$

produces random integers in the set $\{0,1, \ldots, n\}$. Third, for random integers from j to k ($j \leqq k$), use the assignment statement

$$
i \leftarrow \operatorname{integer}((k-j+1) r+j)
$$

Finally, the following statements can be used to obtain the first four digits in a random number:

```
integer array (m}\mp@subsup{)}{1:n}{\prime;}\mathrm{ integer }i;\quad\mathrm{ real }r,
integer }n\leftarrow
call Random(r)
for }i=1\mathrm{ to }n\mathrm{ do
    x\leftarrow10r
    mi}\leftarrow\mp@code{integer (x)
    x\leftarrowx-\operatorname{real}(\mp@subsup{m}{i}{})
end for
output (m
```


Uses of Pseudocode Random

We now illustrate both correct and incorrect uses of procedure Random for producing uniformly distributed points.

Consider the problem of generating 1000 random points uniformly distributed inside the ellipse $x^{2}+4 y^{2}=4$.

One way to do so is to generate random points in the rectangle $-2 \leqq x \leqq 2,-1 \leqq y \leqq 1$, and discard those that do not lie in the ellipse (see Figure 13.2).

FIGURE 13.2
Uniformly distributed random points in ellipse $x^{2}+4 y^{2}=4$

FIGURE 13.3 Nonuniformly distributed random points in the ellipse $x^{2}+4 y^{2}=4$

```
program Ellipse
integer \(i, j ; \quad\) real \(u, v ; \quad\) real array \(\left(x_{i}\right)_{1: n},\left(y_{i}\right)_{1: n},\left(r_{i j}\right)_{1: n p t s \times 1: 2}\)
integer \(n \leftarrow 1000\), npts \(\leftarrow 2000\)
call Random \(\left(\left(r_{i j}\right)\right)\)
\(j \leftarrow 1\)
for \(i=1\) to npts do
    \(u \leftarrow 4 r_{i, 1}-2\)
    \(v \leftarrow 2 r_{i, 2}-1\)
    if \(u^{2}+4 v^{2} \leqq 4\) then
        \(x_{j} \leftarrow u\)
        \(y_{j} \leftarrow v\)
        \(j \leftarrow j+1\)
    if \(j=n\) then exit loop \(i\)
    end if
end for
end program Ellipse
```

To be less wasteful, we can force the $|y|$ value to be less than $\frac{1}{2} \sqrt{4-x^{2}}$, as in the following pseudocode, which produces erroneous results (see Figure 13.3):


```
program Ellipse Erroneous
integer \(i\); real array \(\left(x_{i}\right)_{1: n},\left(y_{i}\right)_{1: n},\left(r_{i j}\right)_{1: n \times 1: 2}\)
integer \(n \leftarrow 1000\)
call Random (( \(\left.r_{i j}\right)\) )
for \(i=1\) to \(n\) do
    \(x_{i} \leftarrow 4 r_{i, 1}-2\)
    \(y_{i} \leftarrow\left[\left(2 r_{i, 2}-1\right) / 2\right] \sqrt{4-x_{i}^{2}}\)
end for
end program Ellipse_Erroneous
```

FIGURE 13.4
Vertical strips containing nonuniformly distributed points

This pseudocode does not produce uniformly distributed points inside the ellipse. To be convinced of this, consider two vertical strips taken inside the ellipse (see Figure 13.4). If each strip is of width h, then approximately $1000(h / 4)$ of the random points lie in each strip because the random variable x is uniformly distributed in $(-2,2)$, and with each x, a corresponding y is generated by the program so that (x, y) is inside the ellipse. But the two strips shown should not contain approximately the same number of points because they do not have the same area. The points generated by the second program tend to be clustered at the left and right extremities of the ellipse in Figure 13.3.

For the same reasons, the following pseudocode does not produce uniformly distributed random points in the circle $x^{2}+y^{2}=1$ (see Figure 13.5):

program Circle Erroneous
integer i; real array $\left(x_{i}\right)_{1: n},\left(y_{i}\right)_{1: n},\left(r_{i j}\right)_{1: n \times 1: 2}$
integer $n \leftarrow 1000$

```
call Random( \(\left.\left(r_{i j}\right)\right)\)
for \(i=1\) to \(n\) do
    \(x_{i} \leftarrow r_{i, 1} \cos \left(2 \pi r_{i, 2}\right)\)
    \(y_{i} \leftarrow r_{i, 1} \sin \left(2 \pi r_{i, 2}\right)\)
end for
end program Circle Erroneous
```

In this pseudocode, $2 \pi r_{i, 2}$ is uniformly distributed in $(0,2 \pi)$, and $r_{i, 1}$ is uniformly distributed in $(0,1)$. However, in the transfer from polar to rectangular coordinates by the equations $x=r_{i, 1} \cos \left(2 \pi r_{i, 2}\right)$ and $y=r_{i, 1} \sin \left(2 \pi r_{i, 2}\right)$, the uniformity is lost. The random points are strongly clustered near the origin in Figure 13.5.

A random-number generator produces a sequence of numbers that are random in the sense that they are uniformly distributed over a certain interval such as $[0,1)$ and it is not possible to predict the next number in the sequence from knowing the previous ones. One can increase the randomness of such a sequence by a suitable shuffle of them. The idea is to fill an array with the consecutive numbers from the random-number generator and then to use the generator again to choose at random which of the numbers in the array is to be selected as the next number in a new sequence. The hope is that the new sequence is more random than the original one. For example, a shuffle can remove any correlation between near successors of a number in a sequence. See Flowers [1995] for a shuffling procedure that can be used with a random-number generator based on a linear congruence. It is particularly useful on computers with a small word length.

There are statistical tests that can be performed on a sequence of random numbers. While such tests do not certify the randomness of a sequence, they are particularly important in applications. For example, they are useful in choosing between different random-number generators, and it is comforting to know that the random-number generator being used has passed such tests. Situations exist when random-number generators are useful even though they do not pass rigid tests for true randomness. Thus, if one is producing random matrices for testing a linear algebra code, then strict randomness may not be important. On the other hand, strict randomness is essential in Monte Carlo integration and other applications. In these cases in which strict randomness is important, it is recommended that one use a machine with a large word size and a random-number generator with known statistical characteristics. (See Volume 2 of Knuth [1997] or Flowers [1995] for some tests of randomness.)

Quasi-random or low-discrepancy sequences are constructed to give a uniform coverage of an area or volume while maintaining a reasonably random appearance even though they are not in fact random.

A prime number is an integer greater than 1 whose only factors (divisors) are itself and 1. Prime numbers are some of the fundamental building blocks in mathematics. The search for large primes has a long and interesting history. In 1644, Mersenne (a French friar) conjectured that $2^{n}-1$ was a prime number for $n=17,19,31,67,127,257$ and for no other n in the range $1 \leqq n \leqq 257$. In 1876 , Lucas proved that $2^{127}-1$ was prime. In 1937, however, Lehmer showed that $2^{257}-1$ was not prime. Until 1952, $2^{127}-1$ was the largest known prime. Then it was shown that $2^{521}-1$ was prime. As a means of testing new computer systems, the search for ever-larger Mersenne primes continues. In fact, the search for ever larger primes has grown in importance for use in cryptology. In 1992, a Cray 2 supercomputer using the Lucas-Lehmer test determined after a 19-hour
computation that the number $2^{756839}-1$ was a prime. This number has 227,832 digits! The previous largest known Mersenne prime was identified in 1985 as $2^{216091}-1$. In 2006, the largest known prime $2^{32582657}-1$, with 9.8 million digits, was discovered using the Internet facility GIMPS (Great Internet Mersenne Prime Search). Thousands of individuals have used the GIMPS database to facilitate their search for large primes, and interaction with the database can be done automatically without human intervention. For more information on large primes and to find out the current record for the largest known prime, consult http://www.mersenne.org/prime.html and www.utm.edu/research/primes.

Summary

(1) An algorithm to generate an array $\left(r_{i}\right)$ of pseudo-random numbers is
integer $\ell ; \quad$ real array $\left(x_{i}\right)_{1: n}$
$\ell \leftarrow$ an integer between 1 and $2^{31}-1$
for $i=1$ to n do
$\ell \leftarrow \bmod \left(7^{5} \ell, 2^{31}-1\right)$
$x_{i} \leftarrow \ell /\left(2^{31}-1\right)$
end for
(2) If $\left(r_{i}\right)$ is an array of random numbers, then use the following to generate random points in an interval (a, b)

$$
x \leftarrow(b-a) r_{i}+a
$$

to produce random integers in the set $\{0,1, \ldots, n\}$

$$
i \leftarrow \operatorname{integer}\left((n+1) r_{i}\right)
$$

and to obtain random integers from j to $k(j \leqq k)$

$$
i \leftarrow \text { integer }\left((k-j+1) r_{i}+j\right)
$$

Problems 13.1

${ }^{a}$ 1. Taking the seed to be 123456 , compute by hand the first three random numbers produced by procedure Random.
2. Show that if the seed ℓ is less than or equal to 12777 , then the first random number produced by procedure Random is less than $\frac{1}{10}$.
3. Show that the numbers produced by procedure Random are not random because their products with $2^{31}-1$ are integers.
4. Describe in what ways this algorithm for random numbers differs from procedure Random:

$$
\left\{\begin{array}{l}
x_{0} \text { arbitrary in }(0,1) \\
x_{i}=\text { fractional part of } 7^{5} x_{i-1}
\end{array} \quad i \geqq 1\right.
$$

Computer Problems 13.1

1. Write a program to generate 1000 random points uniformly distributed in the cardioid $r=2-\cos \theta$.
2. Using procedure Random, write code for procedure Random_Trapezoid (x, y), which generates a pseudo-random point (x, y) inside or on the trapezoid formed by the points $(1,3),(2,5),(4,3)$, and $(3,5)$.
3. Without using any procedures, write a program to generate and print 100 random numbers uniformly distributed in $(0,1)$. Eight statements suffice.
4. Test some random-number generators found in mathematical software on the World Wide Web.
5. Test the random-number generator on your computer system in the following way: Generate 1000 random numbers $x_{1}, x_{2}, \ldots, x_{1000}$.
a. In any small interval of width h, approximately $1000 h$ of the x_{i} 's should lie in that interval. Count the number of random numbers in each of ten intervals [$n-$ 1)/ $10, n / 10$], where $n=1,2, \ldots, 10$.
b. The inequality $x_{i}<x_{i+1}$ should occur approximately 500 times. Count them in your sample.
6. Write a procedure to generate with each call a random vector of the form $\boldsymbol{x}=$ $\left[x_{1}, x_{2}, \ldots, x_{20}\right]^{T}$, where each x_{i} is an integer from 1 to 100 and no two components of \boldsymbol{x} are the same.
7. Write a program to generate $n=1000$ random points uniformly distributed in the
a. equilateral triangle in the following figure:

b. diamond in the following figure:

Store the random points $\left(x_{i}, y_{i}\right)$ in arrays $\left(x_{i}\right)_{1: n}$ and $\left(y_{i}\right)_{1: n}$.
${ }^{a}$ 8. If x_{1}, x_{2}, \ldots is a random sequence of numbers uniformly distributed in the interval $(0,1)$, what proportion would you expect to satisfy the inequality $40 x^{2}+7>43 x$? Write a program to test this on 1000 random numbers.
9. Write a program to generate and print 1000 points uniformly and randomly distributed in the circle $(x-3)^{2}+(y+1)^{2} \leqq 9$.
10. Generate 1000 random numbers x_{i} according to a uniform distribution in the interval $(0,1)$. Define a function f on $(0,1)$ as follows: $f(t)$ is the number of random numbers $x_{1}, x_{2}, \ldots, x_{1000}$ less than t. Compute $f(t) / 1000$ for 200 points t uniformly distributed in $(0,1)$. What do you expect $f(t) / 1000$ to be? Is this expectation borne out by the experiment? If a plotter is available, plot $f(t) / 1000$.
${ }^{a} \mathbf{1 1}$. Let $n_{i}(1 \leqq i \leqq 1000)$ be a sequence of integers that satisfies $0 \leqq n_{i} \leqq 9$. Write a program to test the given sequence for periodicity. (The sequence is periodic if there is an integer k such that $n_{i}=n_{i+k}$ for all i.)
12. Generate in the computer 1000 random numbers in the interval (0,1). Print and examine them for evidence of nonrandom behavior.
${ }^{a}$ 13. Generate 1000 random numbers $x_{i}(1 \leqq i \leqq 1000)$ on your computer. Let n_{i} denote the eighth decimal digit in x_{i}. Count how many 0 's, 1 's, $\ldots, 9$'s there are among the 1000 numbers n_{i}. How many of each would you expect? This code can be written with nine statements.
14. (Continuation) Using a random-number generator, generate 1000 random numbers, and count how many times the digit i occurs in the j th decimal place. Print a table of these values-that is, frequency of digit versus decimal place. By examining the table, determine which decimal place seems to produce the best uniform distribution of random digits. Hint: Use the routine from Computer Problem 1.1.7 to compute the arithmetic mean, variance, and standard deviations of the table entries.
${ }^{a} \mathbf{1 5}$. Using random integers, write a short program to simulate five people matching coin flips. Print the percentage of match-ups (five of a kind) after 125 flips.
${ }^{a}$ 16. Write a program to generate 1600 random points uniformly distributed in the sphere defined by $x^{2}+y^{2}+z^{2} \leqq 1$. Count the number of random points in the first octant.
17. Write a program to simulate 1000 simultaneous flips of three coins. Print the number of times that two of the three coins come up heads.
18. Compute 1000 triples of random numbers drawn from a uniform distribution. For each triple (x, y, z), compute the leading significant digit of the product $x y z$. (The leading significant digit is one of $1,2, \ldots, 9$.) Determine the frequencies with which the digits 1 through 9 occur among the 1000 cases. Try to account for the fact that these digits do not occur with the same frequency. (For example, 1 occurs approximately 7 times more often than 9.) If you are intrigued by this, you may wish to consult the articles by Flehinger [1966], Raimi [1969], and Turner [1982].
19. Run the example programs in this section and see whether similar results are obtained on your computer system.
20. Write a program to generate and plot 1000 pseudo-random points with the following exponential distribution inside the figure below: $x=-\ln (1-r) / \lambda$ for $r \in[0,1)$ and $\lambda=1 / 30$.

21. Improve the program Coarse_Check by using ten or a hundred buckets instead of two.
22. (Student research project) Investigate some of the latest developments on randomnumber generators and explore parallel random number generators. Random numbers are often needed for distributions other than the uniform distribution, so this has a statistical aspect.

13.2 Estimation of Areas and Volumes by Monte Carlo Techniques
 Numerical Integration

Now we turn to applications, the first being the approximation of a definite integral by the Monte Carlo method. If we select the first n elements $x_{1}, x_{2}, \ldots, x_{n}$ from a random sequence in the interval $(0,1)$, then

$$
\int_{0}^{1} f(x) d x \approx \frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)
$$

Here, the integral is approximated by the average of n numbers $f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{n}\right)$. When this is actually carried out, the error is of order $1 / \sqrt{n}$, which is not at all competitive with good algorithms, such as the Romberg method. However, in higher dimensions, the Monte Carlo method can be quite attractive. For example,

$$
\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} f(x, y, z) d x d y d z \approx \frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}, y_{i}, z_{i}\right)
$$

where $\left(x_{i}, y_{i}, z_{i}\right)$ is a random sequence of n points in the unit cube $0 \leqq x \leqq 1,0 \leqq y \leqq 1$, and $0 \leqq z \leqq 1$. To obtain random points in the cube, we assume that we have a random sequence
in $(0,1)$ denoted by $\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}, \xi_{5}, \xi_{6}, \ldots$ To get our first random point p_{1} in the cube, just let $p_{1}=\left(\xi_{1}, \xi_{2}, \xi_{3}\right)$. The second is, of course, $p_{2}=\left(\xi_{4}, \xi_{5}, \xi_{6}\right)$, and so on.

If the interval (in a one-dimensional integral) is not of length 1 but, say, is the general case (a, b), then the average of f over n random points in (a, b) is not simply an approximation for the integral but rather for

$$
\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

which agrees with our intention that the function $f(x)=1$ have an average of 1 . Similarly, in higher dimensions, the average of f over a region is obtained by integrating and dividing by the area, volume, or measure of that region. For instance,

$$
\frac{1}{8} \int_{1}^{3} \int_{-1}^{1} \int_{0}^{2} f(x, y, z) d x d y d z
$$

is the average of f over the parallelepiped described by the following three inequalities: $0 \leqq x \leqq 2,-1 \leqq y \leqq 1,1 \leqq z \leqq 3$.

To keep the limits of integration straight, recall that

$$
\int_{a}^{b} \int_{c}^{d} f(x, y) d x d y=\int_{a}^{b}\left[\int_{c}^{d} f(x, y) d x\right] d y
$$

and

$$
\int_{a_{1}}^{a_{2}} \int_{b_{1}}^{b_{2}} \int_{c_{1}}^{c_{2}} f(x, y, z) d x d y d z=\int_{a_{1}}^{a_{2}}\left\{\int_{b_{1}}^{b_{2}}\left[\int_{c_{1}}^{c_{2}} f(x, y, z) d x\right] d y\right\} d z
$$

So if $\left(x_{i}, y_{i}\right)$ denote random points with appropriate uniform distribution, the following examples illustrate Monte Carlo techniques:

$$
\begin{aligned}
\int_{0}^{5} f(x) d x & \approx \frac{5}{n} \sum_{i=1}^{n} f\left(x_{i}\right) \\
\int_{2}^{5} \int_{1}^{6} f(x, y) d x d y & \approx \frac{15}{n} \sum_{i=1}^{n} f\left(x_{i}, y_{i}\right)
\end{aligned}
$$

In each case, the random points should be uniformly distributed in the regions involved.
In general, we have

$$
\int_{A} f \approx(\text { measure of } A) \times(\text { average of } f \text { over } n \text { random points in } A)
$$

Here, we are using the fact that the average of a function on a set is equal to the integral of the function over the set divided by the measure of the set.

Example and Pseudocode

Let us consider the problem of obtaining the numerical value of the integral

$$
\iint_{\Omega} \sin \sqrt{\ln (x+y+1)} d x d y=\iint_{\Omega} f(x, y) d x d y
$$

FIGURE 13.6
Sketch of surface $f(x, y)$ above disk Ω

over the disk in $x y$-space, defined by the inequality

$$
\Omega=\left\{(x, y):\left(x-\frac{1}{2}\right)^{2}+\left(y-\frac{1}{2}\right)^{2} \leqq \frac{1}{4}\right\}
$$

A sketch of this domain, with a surface above it, is shown in Figure 13.6. We proceed by generating random points in the square and discarding those that do not lie in the disk. We take $n=5000$ points in the disk. If the points are $p_{i}=\left(x_{i}, y_{i}\right)$, then the integral is estimated to be

$$
\begin{aligned}
\iint_{\Omega} f(x, y) d x d y & \approx(\text { area of disk } \Omega) \times\binom{\text { average height of } f}{\text { over } n \text { random points }} \\
& =\left(\pi r^{2}\right)\left[\frac{1}{n} \sum_{i=1}^{n} f\left(p_{i}\right)\right] \\
& =\frac{\pi}{4 n} \sum_{i=1}^{n} f\left(p_{i}\right)
\end{aligned}
$$

The pseudocode for this example follows. Intermediate estimates of the integral are printed when n is a multiple of 1000 . This gives us some idea of how the correct value is being approached by our averaging process.

```
program Double_Integral
integer i,j: real sum, vol, x, y; real array ( }\mp@subsup{r}{ij}{}\mp@subsup{)}{1:n\times1:2}{
integer }n\leftarrow5000\mathrm{ , iprt }\leftarrow1000; external function 
call Random((rij))
j}\leftarrow0; sum \leftarrow
for i=1 to }n\mathrm{ do
    x= ri,1;y= ri,2
    if (x-1/2)}\mp@subsup{)}{}{2}+(y-1/2\mp@subsup{)}{}{2}\leqq1/4 then
        j}\leftarrowj+
        sum}\leftarrow\operatorname{sum}+f(x,y
        if mod}(j,iprt)=0 then
            vol \leftarrow(\pi/4)sum/real( }j
            output j, vol
```

```
        end if
    end if
end for
vol }\leftarrow(\pi/4)sum/real( (j
output j, vol
end program Double Integral
real function f(x,y)
real }x,
f\leftarrow\operatorname{sin}(\sqrt{}{\operatorname{ln}(x+y+1)})
end function
```

We obtain an approximate value of 0.57 for the integral.

Computing Volumes

The volume of a complicated region in 3-space can be computed by a Monte Carlo technique. Taking a simple case, let us determine the volume of the region whose points satisfy the inequalities

$$
\left\{\begin{array}{l}
0 \leqq x \leqq 1 \quad 0 \leqq y \leqq 1 \quad 0 \leqq z \leqq 1 \\
x^{2}+\sin y \leqq z \\
x-z+e^{y} \leqq 1
\end{array}\right.
$$

The first line defines a cube whose volume is 1 . The region defined by all the given inequalities is therefore a subset of this cube. If we generate n random points in the cube and determine that m of them satisfy the last two inequalities, then the volume of the desired region is approximately m / n. Here is a pseudocode that carries out this procedure:

```
program Volume_Region
integer \(i, m ; \quad\) real array \(\left(r_{i j}\right)_{1: n \times 1: 3} ; \quad\) real \(v o l, x, y, z\)
integer \(n \leftarrow 5000\), iprt \(\leftarrow 1000\)
call Random (( \(\left.r_{i j}\right)\) )
for \(i=1\) to \(n\) do
    \(x \leftarrow r_{i, 1}\)
    \(y \leftarrow r_{i, 2}\)
    \(z \leftarrow r_{i, 3}\)
    if \(x^{2}+\sin y \leqq z, x-z+e^{y} \leqq 1\) then \(m \leftarrow m+1\)
    if \(\bmod (i\), iprt \()=0\) then
            vol \(\leftarrow \operatorname{real}(m) / \operatorname{real}(i)\)
            output \(i\), vol
    end if
end for
end program Volume_Region
```

Observe that intermediate estimates are printed out when we reach $1000,2000, \ldots, 5000$ points. An approximate value of 0.14 is determined for the volume of the region.

Ice Cream Cone Example

Consider the problem of finding the volume above the cone $z^{2}=x^{2}+y^{2}$ and inside the sphere $x^{2}+y^{2}+(z-1)^{2}=1$ as shown in Figure 13.7. The volume is contained in the box bounded by $-1 \leqq x \leqq 1,-1 \leqq y \leqq 1$, and $0 \leqq z \leqq 2$, which has volume 8 . Thus, we want to generate random points inside this box and multiply by 8 the ratio of those inside the desired volume to the total number generated. A pseudocode for doing this follows:

```
program Cone
integer i,m; real vol, x, y,z; real array ( }\mp@subsup{r}{ij}{}\mp@subsup{)}{1:n\times1:3}{
integer }n\leftarrow5000,\mathrm{ iprt }\leftarrow1000; m\leftarrow
call Random(( }\mp@subsup{r}{ij}{})
for i=1 to }n\mathrm{ do
    x\leftarrow2ri,1 - 1;y\leftarrow2ri,2 - 1;z\leftarrow2r i,3
    if }\mp@subsup{x}{}{2}+\mp@subsup{y}{}{2}\leqq\mp@subsup{z}{}{2},\mp@subsup{x}{}{2}+\mp@subsup{y}{}{2}\leqqz(2-z) then m\leftarrowm+
    if mod}(i,iprt)=0 then
        vol }\leftarrow8\textrm{real}(m)/\operatorname{real}(i
        output i, vol
    end if
end for
end program Cone
```

The volume of the cone is approximately 3.3.

FIGURE 13.7
Ice cream cone region

Summary

(1) We discuss the approximating of integrals by the Monte Carlo method to estimate areas and volumes. We use

$$
\begin{aligned}
\int_{0}^{1} f(x) d x & \approx \frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right) \\
\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} f(x, y, z) d x d y d z & \approx \frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}, y_{i}, z_{i}\right)
\end{aligned}
$$

where $\left\{x_{i}\right\}$ is a sequence of random numbers in the unit interval and $\left(x_{i}, y_{i}, z_{i}\right)$ is a random sequence of n points in the unit cube.
(2) In general, we have

$$
\int_{A} f \approx(\text { measure of } A) \times(\text { average of } f \text { over } n \text { random points in } A)
$$

Problems 13.2

${ }^{a} \mathbf{1}$. It is proposed to calculate π by using the Monte Carlo method. A circle of radius 1 is inside a square of side 2 . We count how many of m random points in the square happen to lie in the circle. Assume that the error is $1 / \sqrt{m}$. How many points must be taken to obtain π with three accurate figures (i.e., 3.142)?

Computer Problems 13.2

1. Run the codes given in this section on your computer system and verify that they produce reasonable answers.
${ }^{a}$ 2. Write and test a program to evaluate the integral $\int_{0}^{1} e^{x} d x$ by the Monte Carlo method, using $n=25,50,100,200,400,800,16000$, and 32000 . Observe that 32,000 random numbers are needed and that the work in each case can be used in the next case. Print the exact answer. Plot the results using a logarithmic scale to show the rate of growth.
2. Write a program to verify numerically that $\pi=\int_{0}^{2}\left(4-x^{2}\right)^{1 / 2} d x$. Use the Monte Carlo method and 2500 random numbers.
${ }^{a}$ 4. Use the Monte Carlo method to approximate the integral

$$
\int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1}\left(x^{2}+y^{2}+z^{2}\right) d x d y d z
$$

Compare with the correct answer.
${ }^{a}$ 5. Write a program to estimate

$$
\int_{0}^{2} \int_{3}^{6} \int_{-1}^{1}\left(y x^{2}+z \log y+e^{x}\right) d x d y d z
$$

6. Using the Monte Carlo technique, write a pseudocode to approximate the integral

$$
\iiint_{\Omega}\left(e^{x} \sin y \log z\right) d x d y d z
$$

where Ω is the circular cylinder that has height 3 and circular base $x^{2}+y^{2} \leqq 4$.
${ }^{a}$ 7. Estimate the area under the curve $y=e^{-(x+1)^{2}}$ and inside the triangle that has vertices $(1,0),(0,1)$, and $(-1,0)$ by writing and testing a short program.
8. Using the Monte Carlo approach, find the area of the irregular figure defined by

$$
\left\{\begin{array}{l}
1 \leqq x \leqq 3 \quad-1 \leqq y \leqq 4 \\
x^{3}+y^{3} \leqq 29 \\
y \leqq e^{x}-2
\end{array}\right.
$$

${ }^{a}$ 9. Use the Monte Carlo method to estimate the volume of the solid whose points (x, y, z) satisfy

$$
\left\{\begin{array}{l}
0 \leqq x \leqq y \quad 1 \leqq y \leqq 2 \quad-1 \leqq z \leqq 3 \\
e^{x} \leqq y \\
(\sin z) y \leqq 0
\end{array}\right.
$$

${ }^{a}$ 10. Using a Monte Carlo technique, estimate the area of the region determined by the inequalities $0 \leqq x \leqq 1,10 \leqq y \leqq 13, y \geqq 12 \cos x$, and $y \geqq 10+x^{3}$. Print intermediate answers.
11. Use the Monte Carlo method to approximate the following integrals.
a. $\int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1}\left(x^{2}-y^{2}-z^{2}\right) d x d y d z$
b. $\int_{1}^{4} \int_{2}^{5}\left(x^{2}-y^{2}+x y-3\right) d x d y$
c. $\int_{2}^{3} \int_{1+y}^{\sqrt{y}}\left(x^{2} y+x y^{2}\right) d x d y \quad$ d. $\int_{0}^{1} \int_{y^{2}}^{\sqrt{y}} \int_{0}^{y+z} x y d x d y d z$
12. The value of the integral

$$
\int_{0}^{\pi / 4} \int_{0}^{2 \cos \phi} \int_{0}^{2 \pi} \rho^{2} \sin \phi d \theta d \rho d \phi
$$

using spherical coordinates is the volume above the cone $z^{2}=x^{2}+y^{2}$ and inside the sphere $x^{2}+y^{2}+(z-1)^{2}=1$. Use the Monte Carlo method to approximate this integral and compare the results with that from the example in the text.
13. Let R denote the region in the $x y$-plane defined by the inequalities

$$
\left\{\begin{array}{l}
\frac{1}{3} \leqq 3 x \leqq 9-y \\
\sqrt{x} \leqq y \leqq 3
\end{array}\right.
$$

Estimate the integral

$$
\iint_{R}\left(e^{x}+\cos x y\right) d x d y
$$

${ }^{a}$ 14. Using a Monte Carlo technique, estimate the area of the region defined by the inequalities $4 x^{2}+9 y^{2} \leqq 36$ and $y \leqq \arctan (x+1)$.
15. Write a program to estimate the area of the region defined by the inequalities

$$
\left\{\begin{array}{l}
x^{2}+y^{2} \leqq 4 \\
|y| \leqq e^{x}
\end{array}\right.
$$

16. An integral can be estimated by the formula

$$
\int_{0}^{1} f(x) d x \approx \frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)
$$

even if the x_{i} 's are not random numbers; in fact, some nonrandom sequences may be better. Use the sequence $x_{i}=($ fractional part of $i \sqrt{2})$ and test the corresponding numerical integration scheme. Test whether the estimates converge at the rate $1 / n$ or $1 / \sqrt{n}$ by using some simple examples, such as $\int_{0}^{1} e^{x} d x$ and $\int_{0}^{1}\left(1+x^{2}\right)^{-1} d x$.
17. Consider the ellipsoid

$$
\frac{x^{2}}{4}+\frac{y^{2}}{16}+\frac{z^{2}}{4}=1
$$

a. Write a program to generate and store 5000 random points uniformly distributed in the first octant of this ellipsoid.
${ }^{a}$ b. Write a program to estimate the volume of this ellipsoid in the first octant.
18. A Monte Carlo method for estimating $\int_{a}^{b} f(x) d x$ if $f(x) \geqq 0$ is as follows: Let $c \geqq \max _{a \leqq x \leqq b} f(x)$. Then generate n random points (x, y) in the rectangle $a \leqq x \leqq b$, $0 \leqq y \leqq c$. Count the number k of these random points (x, y) that satisfy $y \leqq f(x)$. Then $\int_{a}^{\bar{b}} f(x) d x \approx k c(b-a) / n$. Verify this and test the method on $\int_{1}^{2} x^{2} d x, \int_{0}^{1}\left(2 x^{2}-\right.$ $x+1) d x$, and $\int_{0}^{1}\left(x^{2}+\sin 2 x\right) d x$.
19. (Continuation) Use the method of Computer Problem 13.2.18 to estimate the value of $\pi=4 \int_{0}^{1} \sqrt{1-x^{2}} d x$. Generate random points in $0 \leqq x \leqq 1,0 \leqq y \leqq 1$. Use $n=$ $1000,2000, \ldots, 10000$ and try to determine whether the error is behaving like $1 / \sqrt{n}$.
20. (Continuation) Modify the method outlined in Computer Problem 13.2.19 to handle the case when f takes positive and negative values on $[a, b]$. Test the method on $\int_{-1}^{1} x^{3} d x$.
21. Another Monte Carlo method for evaluating $\int_{a}^{b} f(x) d x$ is as follows: Generate an odd number of random numbers in (a, b). Reorder these points so that $a<x_{1}<x_{2}<\cdots<$ $x_{n}<b$. Now compute

$$
f\left(x_{1}\right)\left(x_{2}-a\right)+f\left(x_{3}\right)\left(x_{4}-x_{2}\right)+f\left(x_{5}\right)\left(x_{6}-x_{4}\right)+\cdots+f\left(x_{n}\right)\left(b-x_{n-1}\right)
$$

Test this method on

$$
\int_{0}^{1}\left(1+x^{2}\right)^{-1} d x \quad \int_{0}^{1}\left(1-x^{2}\right)^{-1 / 2} d x \quad \int_{0}^{1} x^{-1} \sin x d x
$$

22. What is the expected value of the volume of a tetrahedron formed by four points chosen randomly inside the tetrahedron whose vertices are $(0,0,0),(0,1,0),(0,0,1)$, and $(1,0,0)$? (The precise answer is unknown!)
23. Write a program to compute the area under the curve $y=\sin x$ and above the curve $y=\ln (x+2)$. Use the Monte Carlo method, and print intermediate results.
24. Estimate the integral

$$
\int_{3.2}^{5.9}\left(\frac{e^{\sin x+x^{2}}}{\ln x}\right) d x
$$

by the Monte Carlo method.
25. Test the random-number generator that is available to you in the following manner: Begin by creating a list of N random numbers r_{k}, uniformly distributed in the interval $[0,1]$. Create a list of random integers n_{k} by extracting the integer part of $10 r_{k}$ for $1 \leqq k \leqq N$. Compute the elements in a 10×10 matrix $\left(m_{i j}\right)$, where $m_{i j}$ is the number of times i is followed by j in the list $\left(n_{k}\right)$. Compare these numbers to the values predicted by elementary probability theory. If possible, display the values of $m_{i j}$ graphically.
26. (Student research project) Investigate some of the latest developments on Monte Carlo methods for multivariable integration.

13.3 Simulation

We next illustrate the idea of simulation. We consider a physical situation in which an element of chance is present and try to imitate the situation on the computer. Statistical conclusions can be drawn if the experiment is performed many times. Applications include the simulation of servers, clients, and queues as might occur in businesses such as banks or grocery stores.

Loaded Die Problem

In simulation problems, we must often produce random variables with a prescribed distribution. Suppose, for example, that we want to simulate the throw of a loaded die and that the probabilities of various outcomes have been determined as shown:

Outcome	1	2	3	4	5	6
Probability	0.2	0.14	0.22	0.16	0.17	0.11

If the random variable x is uniformly distributed in the interval $(0,1)$, then by breaking this interval into six subintervals of lengths given by the table, we can simulate the throw of this loaded die. For example, we agree that if x is in $(0,0.2)$, the die shows 1 ; if x is in $[0.2$, 0.34), the die shows 2 , and so on. A pseudocode to count the outcome of 5000 throws of
this die and compute the probability might be written as follows:

```
program Loaded_Die
integer }i,j;\quad\mathrm{ real array }(\mp@subsup{y}{i}{}\mp@subsup{)}{1:6}{},(\mp@subsup{m}{i}{}\mp@subsup{)}{1:6}{},(\mp@subsup{r}{i}{}\mp@subsup{)}{1:n}{
real }n\leftarrow500
(yi)}\mp@subsup{)}{6}{}\leftarrow(0.2,0.34,0.56,0.72,0.89,1.0
(m}\mp@subsup{)}{6}{}\leftarrow(0.0,0.0,0.0,0.0,0.0,0.0
call Random((ri))
for }i=1\mathrm{ to }n\mathrm{ do
    for j=1 to 6 do
        if }\mp@subsup{r}{i}{}<\mp@subsup{y}{j}{}\mathrm{ then
            m
            exit loop j
        end if
    end for
end for
output real( }\mp@subsup{m}{i}{})/\operatorname{real}(n
end program Loaded_Die
```

The results are $0.2024,0.1344,0.2252,0.1600,0.1734$, and 0.1046 , which are reasonable approximations to the probabilities in the table.

Birthday Problem

An interesting problem that can be solved by using simulation is the famous birthday problem. Suppose that in a room of n people, each of the 365 days of the year is equally likely to be someone's birthday. From probability theory, it can be shown that, contrary to intuition, only 23 people need be present for the chances to be better than fifty-fifty that at least two of them will have the same birthday! (It is always fun to try this experiment at a large party or in class to see it work in practice.)

Many people are curious about the theoretical reasoning behind this result, so we discuss it briefly before solving the simulation problem. After someone is asked his or her birthday, the chances that the next person asked will not have the same birthday are 364/365. The chances that the third person's birthday will not match those of the first two people are $363 / 365$. The chances of two successive independent events occurring is the product of the probability of the separate events. (The sequential nature of the explanation does not imply that the events are dependent.) In general, the probability that the nth person asked will have a birthday different from that of anyone who has already been asked is

$$
\left(\frac{365}{365}\right)\left(\frac{364}{365}\right)\left(\frac{363}{365}\right) \cdots\left(\frac{365-(n-1)}{365}\right)
$$

The probability that the nth person asked will provide a match is 1 minus this value. A table of the quantity $1-(365)(364) \cdots[365-(n-1)] / 365^{n}$ shows that with 23 people, the chances are 50.7%; with 55 or more people, the chances are 98.6% or almost theoretically certain that at least two out of 55 people will have the same birthday. (See Table 13.1.)

Without using probability theory, we can write a routine that uses the random-number generator to compute the approximate chances for groups of n people. Clearly, all that is

TABLE		
$\mathbf{1 3 . 1}$	Birthday Problem	
n	Theoretical	Simulation
5	0.027	0.028
10	0.117	0.110
15	0.253	0.255
20	0.411	0.412
22	0.476	0.462
23	0.507	0.520
25	0.569	0.553
30	0.706	0.692
35	0.814	0.819
40	0.891	0.885
45	0.941	0.936
50	0.970	0.977
55	0.986	0.987

needed is to select n random integers from the set $\{1,2,3, \ldots, 365\}$ and to examine them in some way to determine whether there is a match. By repeating this experiment a large number of times, we can compute the probability of at least one match in any gathering of n people.

One way of writing a routine for simulating the birthday problem follows. In it we use the approach of checking off days on a calendar to find out whether there is a match. Of course, there are many other ways of approaching this problem.

Function procedure Probably calculates the probability of repeated birthdays:

```
real function Probably(n, npts)
integer i,npts; logical Birthday; real sum }\leftarrow
for }i=1\mathrm{ to npts do
    if Birthday ( }n\mathrm{ ) then sum }\leftarrow\mathrm{ sum +1
end for
Probably }\leftarrow\mathrm{ sum/real(npts)
end function Probably
```

Logical function Birthday generates n random numbers and compares them. It returns a value of true if these numbers contain at least one repetition and false if all n numbers are different.

```
logical function Birthday(n)
integer }i,n,number; logical array (days i ) 1:365
real array (r}\mp@subsup{r}{1:n}{1:n
call Random((ri))
for i=1 to 365 do
    days(i)}\leftarrow\textrm{false
end for
```

```
Birthday \(\leftarrow\) false
for \(i=1\) to \(n\) do
    number \(\leftarrow\) integer \(\left(365 r_{i}+1\right)\)
    if days (number) then
        Birthday \(\leftarrow\) true
        exit loop \(i\)
    end if
    days(number) \(\leftarrow\) true
end for
end function Birthday
```

The results of the theoretical calculations and the simulation are given in Table 13.1.

Buffon's Needle Problem

The next example of a simulation is a very old problem known as Buffon's needle problem. Imagine that a needle of unit length is dropped onto a sheet of paper ruled by parallel lines 1 unit apart. What is the probability that the needle intersects one of the lines?

To make the problem precise, assume that the center of the needle lands between the lines at a random point. Assume further that the angular orientation of the needle is another random variable. Finally, assume that our random variables are drawn from a uniform distribution. Figure 13.8 shows the geometry of the situation.

FIGURE 13.8

Let the distance of the center of the needle from the nearer of the two lines be u, and let the angle from the horizontal be v. Here, u and v are the two random variables. The needle intersects one of the lines if and only if $u \leqq \frac{1}{2} \sin v$. We perform the experiment many times, say, 5000. Because of the problem's symmetry, we select u from a uniform random distribution on the interval $\left(0, \frac{1}{2}\right)$ and v from a uniform random distribution on the interval $(0, \pi / 2)$, and we determine the number of times that $2 u \leqq \sin v$. We let $w=2 u$ and test $w \leqq \sin v$, where w is a random variable in $(0,1)$. In this program, intermediate answers are printed out so that their progression can be observed. Also, the theoretical answer, $t=2 / \pi \approx 0.63662$, is printed for comparison.

```
program Needle
integer }i,m;\quad\mathrm{ real prob, v,w; real array }(\mp@subsup{r}{ij}{}\mp@subsup{)}{1:n\times1:2}{
integer }n\leftarrow5000,\mathrm{ iprt }\leftarrow100
```

```
\(m \leftarrow 0\)
call \(\operatorname{Random}\left(\left(r_{i j}\right)\right)\)
for \(i=1\) to \(n\) do
    \(w \leftarrow r_{i 1}\)
    \(v \leftarrow(\pi / 2) r_{i, 2}\)
    if \(w \leqq \sin v\) then \(m \leftarrow m+1\)
    if \(\bmod (i, i p r t)=0\) then
        \(\operatorname{prob} \leftarrow \operatorname{real}(m) / \operatorname{real}(i)\)
        output \(i, \operatorname{prob},(2 / \pi)\)
    end if
end for
end program Needle
```


Two Dice Problem

Our next example again has an analytic solution. This is advantageous for us because we wish to compare the results of Monte Carlo simulations with theoretical solutions. Consider the experiment of tossing two dice. For an (unloaded) die, the numbers 1, 2, 3, 4, 5, and 6 are equally likely to occur. We ask: What is the probability of throwing a 12 (i.e., 6 appearing on each die) in 24 throws of the dice?

There are six possible outcomes from each die for a total of 36 possible combinations. Only one of these combinations is a double 6 , so 35 out of the 36 combinations are not correct. With 24 throws, we have $(35 / 36)^{24}$ as the probability of a wrong outcome. Hence, $1-(35 / 36)^{24}=0.49140$ is the answer. Not all problems of this type can be analyzed like this, so we model the situation using a random-number generator.

If we simulate this process, a single experiment consists of throwing the dice 24 times, and this experiment must be repeated a large number of times, say, 1000. For the outcome of the throw of a single die, we need random integers that are uniformly distributed in the set $\{1,2,3,4,5,6\}$. If x is a random variable in $(0,1)$, then $6 x+1$ is a random variable in $(1,7)$, and the integer part is a random integer in $\{1,2,3,4,5,6\}$. Here is a pseudocode:

```
program Two_Dice
integer }i,j,\mp@subsup{i}{1}{},\mp@subsup{i}{2}{},m;\quad\mathrm{ real prob; real array }(\mp@subsup{r}{ijk}{}\mp@subsup{)}{1:n\times1:24\times1:2}{
integer }n\leftarrow5000\mathrm{ , iprt }\leftarrow100
call Random((rijk})
m}\leftarrow
for i=1 to }n\mathrm{ do
    for }j=1\mathrm{ to 24 do
        i
        i2}\leftarrow\operatorname{integer}(6\mp@subsup{r}{ij2}{}+1
        if }\mp@subsup{i}{1}{}+\mp@subsup{i}{2}{}=12\mathrm{ then
            m}\leftarrowm+
            exit loop j
        end if
    end for
```

```
    if mod}(i,1000)=0 then
        prob }\leftarrow\operatorname{real}(m)/\operatorname{real}(i
        output i, prob
    end if
end for
end program Two_Dice
```

This program computes the probability of throwing a 12 in 24 throws of the dice at approximately even money-that is, 0.487 .

Neutron Shielding

Our final example concerns neutron shielding. We take a simple model of neutrons penetrating a lead wall. It is assumed that each neutron enters the lead wall at a right angle to the wall and travels a unit distance. Then it collides with a lead atom and rebounds in a random direction. Again, it travels a unit distance before colliding with another lead atom. It rebounds in a random direction and so on. Assume that after eight collisions, all the neutron's energy is spent. Assume also that the lead wall is 5 units thick in the x direction and for all practical purposes infinitely thick in the y direction. The question is: What percentage of neutrons can be expected to emerge from the other side of the lead wall? (See Figure 13.9.)

FIGURE 13.9
Neutronshielding experiment

Let x be the distance measured from the initial surface where the neutron enters. From trigonometry, we recall that in a right triangle with hypotenuse 1 , one side is $\cos \theta$. Also note that $\cos \theta \leqq 0$ when $\pi / 2 \leqq \theta \leqq \pi$ (see Figure 13.10). The first collision occurs at a point

FIGURE 13.10
Right triangles with hypotenuse 1

$\cos \theta$
where $x=1$. The second occurs at a point where $x=1+\cos \theta_{1}$. The third collision occurs at a point where $x=1+\cos \theta_{1}+\cos \theta_{2}$, and so on. If $x \geqq 5$, the neutron has exited. If $x<5$ for all eight collisions, the wall has shielded the area from that particular neutron. For a Monte Carlo simulation, we can use random angles θ_{i} in the interval $(0, \pi)$ because of symmetry. The simulation program then follows:

```
program Shielding
integer \(i, j, m ; \quad\) real \(x\), per; real array \(\left(r_{i j}\right)_{1: n \times 1: 7}\)
integer \(n \leftarrow 5000\), iprt \(\leftarrow 1000\)
\(m \leftarrow 0\)
call \(\operatorname{Random}\left(\left(r_{i j}\right)\right)\) for \(i=1\) to \(n\) do
    \(x \leftarrow 1\)
    for \(j=1\) to 7 do
        \(x \leftarrow x+\cos \left(\pi r_{i j}\right)\)
        if \(x \leqq 0\) then exit loop \(j\)
        if \(x \geqq 5\) then
            \(m \leftarrow m+1\)
            exit loop \(j\)
        end if
    end for
    if \(\bmod (i, i p r t)=0\) then
        \(\operatorname{per} \leftarrow 100 \operatorname{real}(m) / \operatorname{real}(i)\)
        output \(i\), per
    end if
end for
end program Shielding
```

After running this program, we can say that approximately 1.85% of the neutrons can be expected to emerge from the lead wall.

Summary

Random number generators are used in the simulation of a physical situation in which an element of chance is present. Statistical conclusions can be drawn if the numerical experiment is performed many times.

Additional References

See Bayer and Diaconis [1992], Chaitlin [1975], Evans et al. [1967], Flehinger [1966], Gentle [2003], Greenbaum [2002], Hammersley and Handscomb [1964], Hansen et al. [1993], Hull and Dobell [1962], Kinderman and Monahan [1977], Leva [1992], Marsaglia [1968], Marsaglia and Tsang [2000], Niederreiter [1978, 1992], Peterson [1997], Raimi [1969], Schrage [1979], Sobol [1994], Steele [1997].

Computer Problems 13.3

${ }^{a}$ 1. A point (a, b) is chosen at random in a rectangle defined by inequalities $|a| \leqq 1$ and $|b| \leqq 2$. What is the probability that the resulting quadratic equation $a x^{2}+b x+1=0$ has real roots? Find the answer both analytically and by the Monte Carlo method.
${ }^{a}$ 2. Compute the average distance between two points in the circle $x^{2}+y^{2}=1$. To solve this, generate N random pairs of points $\left(x_{i}, y_{i}\right)$ and $\left(v_{i}, w_{i}\right)$ in the circle, and compute

$$
N^{-1} \sum_{i=1}^{N}\left[\left(x_{i}-v_{i}\right)^{2}+\left(y_{i}-w_{i}\right)^{2}\right]^{1 / 2}
$$

3. (French railroad system) Define the distance between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in the plane to be $\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$ if the points are on a straight line through the origin but $\sqrt{x_{1}^{2}+y_{1}^{2}}+\sqrt{x_{2}^{2}+y_{2}^{2}}$ in all other cases. Draw a picture to illustrate. Compute the average distance between two points randomly selected in a unit circle centered at the origin.
${ }^{a}$ 4. Consider a circle of radius 1 . A point is chosen at random inside the circle, and a chord that has the chosen point as midpoint is drawn. What is the probability that the chord will have length greater than $\frac{3}{2}$? Solve the problem analytically and by the Monte Carlo method.
4. Two points are selected at random on the circumference of a circle. What is the average distance from the center of the circle to the center of gravity of the two points?
${ }^{a} \mathbf{6}$. Consider the cardioid given by $\left(x^{2}+y^{2}+x\right)^{2}=\left(x^{2}+y^{2}\right)$. Write a program to find the average distance, staying within the cardioid, between two points randomly selected within the figure. Use 1000 points, and print intermediate estimates.
${ }^{a} 7$. Find the length of the lemniscate whose equation in polar coordinates is given by $r^{2}=\cos 2 \theta$. Hint: In polar coordinates, $d s^{2}=d r^{2}+r^{2} d \theta^{2}$.
5. Suppose that a die is loaded so that the six faces are not equally likely to turn up when the die is rolled. The probabilities associated with the six faces are as follows:

Outcome	1	2	3	4	5	6
Probability	0.15	0.2	0.25	0.15	0.1	0.15

Write and run a program to simulate 1500 throws of such a die.
${ }^{a}$ 9. Consider a pair of loaded dice as described in the text. By a Monte Carlo simulation, determine the probability of throwing a 12 in 25 throws of the dice.
10. Consider a neutron-shielding problem similar to the one in the text but modified as follows: Imagine the neutron beam impinging on the wall 1 unit above its base. The wall can be very high. Neutrons cannot escape from the top, but they can escape from the bottom as well as from the exit side. Find the percentage of escaping neutrons.
11. Rewrite the routine(s) for the birthday problem using some other scheme for determining whether or not there is a match.
${ }^{a}$ 12. Write a program to estimate the probability that three random points on the edges of a square form an obtuse triangle (see the figure). Hint: Use the Law of Cosines: $\cos \theta=\left(b^{2}+c^{2}-a^{2}\right) / 2 b c$.

13. A histogram is a graphical device for displaying frequencies by means of rectangles whose heights are proportional to frequencies. For example, in throwing two dice 3600 times, the resulting sums $2,3, \ldots, 12$ should occur with frequencies close to those shown in the histogram below. By means of a Monte Carlo simulation, obtain a histogram for the frequency of digits $0,1, \ldots, 9$ that appear in 1000 random numbers.

${ }^{a}$ 14. Consider a circular city of diameter 20 kilometers (see the following figure). Radiating from the center are 36 straight roads, spaced 10° apart in angle. There are also 20 circular roads spaced 1 kilometer apart. What is the average distance, measured along the roads, between road intersection points in the city?

${ }^{a}$ 15. A particle breaks off from a random point on a rotating flywheel. Referring to the following figure, determine the probability of the particle hitting the window. Perform a Monte Carlo simulation to compute the probability in an experimental way.

16. Write a program to simulate the following phenomenon: A particle is moving in the $x y$-plane under the effect of a random force. It starts at $(0,0)$. At the end of each second, it moves 1 unit in a random direction. We want to record in a table its position at the end of each second, taking altogether 1000 seconds.
${ }^{a}$ 17. (A random walk) On a windy night, a drunkard begins walking at the origin of a two-dimensional coordinate system. His steps are 1 unit in length and are random in the following way: With probability $\frac{1}{6}$, he takes a step east; with probability $\frac{1}{4}$, he takes a step north; with probability $\frac{1}{4}$, he takes a step south; and with probability $\frac{1}{3}$, he takes a step west. What is the probability that after 50 steps, he will be more than 20 units distant from the origin? Write a program to simulate this problem.
18. (Another random walk) Consider the lattice points (points with integer coordinates) in the square $0 \leqq x \leqq 6,0 \leqq y \leqq 6$. A particle starts at the point $(4,4)$ and moves in the following way: At each step, it moves with equal probability to one of the four adjacent lattice points. What is the probability that when the particle first crosses the boundary of the square, it crosses the bottom side? Use Monte Carlo simulation.
19. What is the probability that within 20 generations, the Kzovck family name will die out? Use the following data: In the first generation, there is only one male Kzovck. In each succeeding generation, the probability that a male Kzovck will have exactly one male offspring is $\frac{4}{11}$, the probability that he will have exactly two is $\frac{1}{11}$, and the probability that he will have more than two is 0 .
20. Write a program that simulates the random shuffle of a deck of 52 cards.
${ }^{a}$ 21. A merry-go-round with a total of 24 horses allows children to jump on at three gates and jump off at only one gate while it continues to turn slowly. If the children get on and off randomly (at most one per gate), how many revolutions go by before someone must wait longer than one revolution to ride? Assume a probability of $\frac{1}{2}$ that a child gets on or off.
22. Run the programs given in this section, and determine whether the results are reasonable.
${ }^{a}$ 23. In the unit cube $\{(x, y, z): 0 \leqq x \leqq 1,0 \leqq y \leqq 1,0 \leqq z \leqq 1\}$, if two points are randomly chosen, then what is the expected distance between them?
24. The lattice points in the plane are defined as those points whose coordinates are integers. A circle of diameter 1.5 is dropped on the plane in such a way that its center is a uniformly distributed random point in the square $0 \leqq x \leqq 1,0 \leqq y \leqq 1$. What is the
probability that two or more lattice points lie inside the circle? Use the Monte Carlo simulation to compute an approximate answer.
25. Write a program to simulate a traffic flow problem similar to the one in the example that begins this chapter.
26. Can you modify and rerun the programs in this section so that large arrays are not used?
27. (Student research project) In their paper Trailing the Dovetail Shuffle to its Lair, Bayer and Diaconis [1992] show that it takes seven riffle shuffles to randomize a deck of cards. Greenbaum [2002] uses this as an example of the application of polynomial numerical hulls of various degrees associated with the probability transition matrix. This is the cutoff phenomenon that is often observed in Markov processes.* Using rising sequences and mathematical modeling, card shuffling is illustrated at

```
www.math.washington.edu/~chartier/Shuffle
```

Investigate some of the following questions from this website: How many times do we need to shuffle a deck of cards before the order of the cards is sufficiently random? Is there some minimum number of shuffles required to ensure the deck is not ordered or not predictable? Is there a point where continued shuffling no longer helps make the deck less predictable?

[^10]
14
 Boundary-Value Problems for Ordinary Differential Equations

In the design of pivots and bearings, the mechanical engineer encounters the following problem: The cross section of a pivot is determined by a curve $y=y(x)$ that must pass through two fixed points, $(0,1)$ and $(1, a)$, as in Figure 14.1. Moreover, for optimal performance (principally low friction), the unknown function must minimize the value of a certain integral

$$
\int_{0}^{1}\left[y\left(y^{\prime}\right)^{2}+b(x) y^{2}\right] d x
$$

in which $b(x)$ is a known function. From this, it is possible to obtain a second-order differential equation (the so-called Euler equation) for y. The differential equation with its initial and terminal values is

$$
\left\{\begin{array}{l}
-\left(y^{\prime}\right)^{2}-2 b(x) y+2 y y^{\prime \prime}=0 \\
y(0)=1 \quad y(1)=a
\end{array}\right.
$$

FIGURE 14.1
Pivot cross section

This is a nonlinear two-point boundary-value problem, and methods for solving it numerically are discussed in this chapter.

14.1 Shooting Method

In previous chapters, we dealt with the initial-value problem for ordinary differential equations, but now we consider another type of numerical problem involving ordinary differential equations. A boundary-value problem is exemplified by a second-order
ordinary differential equation whose solution function is prescribed at the endpoints of the interval of interest. An instance of such a problem is

$$
\left\{\begin{array}{l}
x^{\prime \prime}=-x \\
x(0)=1 \quad x\left(\frac{\pi}{2}\right)=-3
\end{array}\right.
$$

Here, we have a differential equation whose general solution involves two arbitrary parameters. To specify a particular solution, two conditions must be given. If this were an initial-value problem, x and x^{\prime} would be specified at some initial point. In this problem, however, we are given two points of the form $(t, x(t))$ through which the solution curve passes-namely, $(0,1)$ and $(\pi / 2,-3)$. The general solution of the differential equation is $x(t)=c_{1} \sin (t)+c_{2} \cos (t)$, and the two conditions (known as boundary values) enable us to determine that $c_{1}=-3$ and $c_{2}=1$.

Now suppose that we have a similar problem in which we are unable to determine the general solution as above. We take as our model the problem

$$
\left\{\begin{array}{l}
x^{\prime \prime}(t)=f\left(t, x(t), x^{\prime}(t)\right) \tag{1}\\
x(a)=\alpha \quad x(b)=\beta
\end{array}\right.
$$

A step-by-step numerical solution of Problem (1) by the methods of Chapter 11 requires two initial conditions, but in Problem (1) only one condition is present at $t=a$. This fact makes a problem like (1) considerably more difficult than an initial-value problem. Several ways to attack it are considered in this chapter. Existence and uniqueness theorems for solutions of two-point boundary-value problems can be found in Keller [1976].

One way to proceed in solving Problem (1) is to guess $x^{\prime}(a)$, then carry out the solution of the resulting initial-value problem as far as b, and hope that the computed solution agrees with β; that is, $x(b)=\beta$. If it does not (which is quite likely), we can go back and change our guess for $x^{\prime}(a)$. Repeating this procedure until we hit the target β may be a good method if we can learn something from the various trials. There are systematic ways of utilizing this information, and the resulting method is known by the nickname shooting.

We observe that the final value $x(b)$ of the solution of our initial-value problem depends on the guess that was made for $x^{\prime}(a)$. Everything else remains fixed in this problem. Thus, the differential equation $x^{\prime \prime}=f\left(t, x, x^{\prime}\right)$ and the first initial value, $x(a)=\alpha$, do not change. If we assign a real value z to the missing initial condition,

$$
x^{\prime}(a)=z
$$

then the initial-value problem can be solved numerically. The value of x at b is now a function of z, which we denote by $\varphi(z)$. In other words, for each choice of z, we obtain a new value for $x(b)$, and φ is the name of the function with this behavior. We know very little about $\varphi(z)$, but we can compute or evaluate it. It is, however, an expensive function to evaluate because each value of $\varphi(z)$ is obtained only after solving an initial-value problem.

It should be emphasized that the shooting method combines any algorithm for the initial-value problem with any algorithm for finding a zero of a function. The choice of these two algorithms should reflect the nature of the problem being solved.

The basic idea of the shooting method is illustrated in Figure 14.2. The solution curves are shown as well as two paths using different initial slopes. The goal is to keep adjusting the initial aim with each attempt.

FIGURE 14.2
Shooting method illustrated

Shooting Method Algorithm

To summarize, a function $\varphi(z)$ is computed as follows: Solve the initial-value problem

$$
\left\{\begin{array}{l}
x^{\prime \prime}=f\left(t, x(t), x^{\prime}(t)\right) \\
x(a)=\alpha \quad x^{\prime}(a)=z
\end{array}\right.
$$

on the interval $[a, b]$. Let

$$
\varphi(z)=x(b)
$$

Our objective is to adjust z until we find a value for which

$$
\varphi(z)=\beta
$$

One way to do so is to use linear interpolation between $\varphi\left(z_{1}\right)$ and $\varphi\left(z_{2}\right)$, where z_{1} and z_{2} are two guesses for the initial condition $x^{\prime}(a)$. That is, given two values of φ, we pretend that φ is a linear function and determine an appropriate value of z based on this hypothesis. A sketch of the values of z versus $\varphi(z)$ might look like Figure 14.3. The strategy just outlined is the secant method for finding a zero of $\varphi(z)-\beta$.

To obtain an estimating formula for the next value z_{3}, we compute $\varphi\left(z_{1}\right)$ and $\varphi\left(z_{2}\right)$ on the basis of values z_{1} and z_{2}, respectively.

FIGURE 14.3 φ linear function

By considering similar triangles, we have

$$
\frac{z_{3}-z_{2}}{\beta-\varphi\left(z_{2}\right)}=\frac{z_{2}-z_{1}}{\varphi\left(z_{2}\right)-\varphi\left(z_{1}\right)}
$$

from which

$$
z_{3}=z_{2}+\left[\beta-\varphi\left(z_{2}\right)\right]\left[\frac{z_{2}-z_{1}}{\varphi\left(z_{2}\right)-\varphi\left(z_{1}\right)}\right]
$$

We can repeat this process and generate the sequence

$$
\begin{equation*}
z_{n+1}=z_{n}+\left[\beta-\varphi\left(z_{n}\right)\right]\left[\frac{z_{n}-z_{n-1}}{\varphi\left(z_{n}\right)-\varphi\left(z_{n-1}\right)}\right] \quad(n \geqq 2) \tag{2}
\end{equation*}
$$

all based on two starting values z_{1} and z_{2}.
This procedure for solving the two-point boundary-value problem

$$
\left\{\begin{array}{l}
x^{\prime \prime}=f\left(t, x, x^{\prime}\right) \tag{3}\\
x(a)=\alpha \quad x(b)=\beta
\end{array}\right.
$$

is then as follows: Solve the initial-value problem

$$
\left\{\begin{array}{l}
x^{\prime \prime}=f\left(t, x, x^{\prime}\right) \tag{4}\\
x(a)=\alpha \quad x^{\prime}(a)=z
\end{array}\right.
$$

from $t=a$ to $t=b$, letting the value of the solution at b be denoted by $\varphi(z)$. Do this twice with two different values of z, say, z_{1} and z_{2}, and compute $\varphi\left(z_{1}\right)$ and $\varphi\left(z_{2}\right)$. Now calculate a new z, called z_{3}, by Formula (2). Then compute $\varphi\left(z_{3}\right)$ by again solving (4). Obtain z_{4} from z_{2} and z_{3} in the same way, and so on. Monitor

$$
\varphi\left(z_{n+1}\right)-\beta
$$

to see whether progress is being made. When it is satisfactorily small, stop. This process is called a shooting method. Note that the numerically obtained values $x\left(t_{i}\right)$ for $a \leqq t_{i} \leqq b$ must be saved until better ones are obtained (that is, one whose terminal value $x(b)$ is closer to β than the present one) because the objective in solving Problem (3) is to obtain values $x(t)$ for values of t between a and b.

The shooting method may be very time-consuming if each solution of the associated initial-value problem involves a small value for the step size h. Consequently, we use a relatively large value of h until $\left|\varphi\left(z_{n+1}\right)-\beta\right|$ is sufficiently small and then reduce h to obtain the required accuracy.

EXAMPLE 1 What is the function φ for this two-point boundary-value problem?

$$
\left\{\begin{array}{l}
x^{\prime \prime}=x \\
x(0)=1 \quad x(1)=7
\end{array}\right.
$$

Solution The general solution of the differential equation is $x(t)=c_{1} e^{t}+c_{2} e^{-t}$. The solution of the initial-value problem

$$
\left\{\begin{array}{l}
x^{\prime \prime}=x \\
x(0)=1 \quad x^{\prime}(0)=z
\end{array}\right.
$$

is $x(t)=\frac{1}{2}(1+z) e^{t}+\frac{1}{2}(1-z) e^{-t}$. Therefore, we have

$$
\varphi(z)=x(1)=\frac{1}{2}(1+z) e+\frac{1}{2}(1-z) e^{-1}
$$

Modifications and Refinements

Many modifications and refinements are possible. For instance, when $\varphi\left(z_{n+1}\right)$ is near β, one can use higher-order interpolation formulas to estimate successive values of z_{i}. Suppose, for example, that instead of utilizing two values $\varphi\left(z_{1}\right)$ and $\varphi\left(z_{2}\right)$ to obtain z_{3}, we utilize the four values

$$
\varphi\left(z_{1}\right) \quad \varphi\left(z_{2}\right) \quad \varphi\left(z_{3}\right) \quad \varphi\left(z_{4}\right)
$$

to estimate z_{5}. We could set up a cubic interpolating polynomial p_{3} for the data

z_{1}	z_{2}	z_{3}	z_{4}
$\varphi\left(z_{1}\right)$	$\varphi\left(z_{2}\right)$	$\varphi\left(z_{3}\right)$	$\varphi\left(z_{4}\right)$

and solve

$$
p_{3}\left(z_{5}\right)=\beta
$$

for z_{5}. Since p_{3} is a cubic, this would entail some additional work. A better way may be to set up a polynomial \hat{p}_{3} to interpolate the data

$\varphi\left(z_{1}\right)$	$\varphi\left(z_{2}\right)$	$\varphi\left(z_{3}\right)$	$\varphi\left(z_{4}\right)$
z_{1}	z_{2}	z_{3}	z_{4}

and then use $\hat{p}_{3}(\beta)$ as the estimate for z_{5}. This procedure is known as inverse interpolation. (See Section 4.1.)

Further remarks on the shooting method will be made in the next section after the discussion of an alternative procedure.

Summary

(1) A generic two-point boundary-value problem on the interval $[a, b]$ is

$$
\left\{\begin{array}{l}
x^{\prime \prime}=f\left(t, x, x^{\prime}\right) \\
x(a)=\alpha \quad x(b)=\beta
\end{array}\right.
$$

There is a related initial-value problem

$$
\left\{\begin{array}{l}
x^{\prime \prime}=f\left(t, x, x^{\prime}\right) \\
x(a)=\alpha \quad x^{\prime}(a)=z
\end{array}\right.
$$

We hope to find a value of z so that the computed solution to the initial-value problem will be the solution of the two-point boundary-value problem. We define a function $\varphi(z)$ whose value is the computed solution of the initial-value problem at $t=b$, namely, $\varphi(z)=x(b)$, where x solves the initial-value problem. We repeatedly adjust z until we find a value for which $\varphi(z)=\beta$. If z_{1} and z_{2} are two guesses for the initial condition $x^{\prime}(a)$, we can use linear interpolation between $\varphi\left(z_{1}\right)$ and $\varphi\left(z_{2}\right)$ to find an improved value for z. This is done
by solving the initial-value problem twice with z_{1} and z_{2} and thereby compute $\varphi\left(z_{1}\right)$ and $\varphi\left(z_{2}\right)$. We calculate a new z_{3} using

$$
z_{n+1}=z_{n}+\left[\beta-\varphi\left(z_{n}\right)\right]\left[\frac{z_{n}-z_{n-1}}{\varphi\left(z_{n}\right)-\varphi\left(z_{n-1}\right)}\right] \quad(n \geqq 2)
$$

and compute $\varphi\left(z_{n+1}\right)$ by again solving the initial-value problem. We monitor $\varphi\left(z_{n+1}\right)-\beta$ until it is satisfactorily small and then stop. This is called the shooting method.
(2) Improvements and refinements to the shooting method involve using cubic polynomial interpolation or inverse interpolation.

Problems 14.1

1. Verify that $x=(2 t+1) e^{t}$ is the solution to each of the following problems:

$$
\left\{\begin{array}{l}
x^{\prime \prime}=x+4 e^{t} \\
x(0)=1
\end{array} \quad x\left(\frac{1}{2}\right)=2 e^{1 / 2} \quad\left\{\begin{array}{l}
x^{\prime \prime}=x^{\prime}+x-(2 t-1) e^{t} \\
x(1)=3 e \quad x(2)=5 e^{2}
\end{array}\right.\right.
$$

${ }^{a}$ 2. Verify that $x=c_{1} e^{t}+c_{2} e^{-t}$ solves the boundary-value problem

$$
\left\{\begin{array}{l}
x^{\prime \prime}=x \\
x(0)=1 \quad x(1)=2
\end{array}\right.
$$

if appropriate values of c_{1} and c_{2} are chosen.
3. Solve these boundary value problems by adjusting the general solution of the differential equation.
${ }^{a}$ a. $x^{\prime \prime}=x$
$x(0)=0$
$x(\pi)=1$
${ }^{a}$ b. $x^{\prime \prime}=t^{2}$
$x(0)=1$
$x(1)=-1$
4. ${ }^{a}$ a. Determine all pairs (α, β) for which the problem

$$
\left\{\begin{array}{l}
x^{\prime \prime}=-x \\
x(0)=\alpha \quad x\left(\frac{\pi}{2}\right)=\beta
\end{array}\right.
$$

has a solution.
${ }^{a}$ b. Repeat part a for $x(0)=\alpha$ and $x(\pi)=\beta$.
5. a. Verify the following algorithm for the inverse interpolation technique suggested in the text. Here we have set $\varphi_{i}=\varphi\left(z_{i}\right)$.

$$
\begin{array}{rlrl}
u & =\frac{z_{2}-z_{1}}{\varphi_{2}-\varphi_{1}} & v=\frac{s-u}{\varphi_{3}-\varphi_{1}} & s=\frac{z_{3}-z_{2}}{\varphi_{3}-\varphi_{2}} \\
r & =\frac{e-s}{\varphi_{4}-\varphi_{2}} & e=\frac{z_{4}-z_{3}}{\varphi_{4}-\varphi_{3}} & w=\frac{r-v}{\varphi_{4}-\varphi_{1}} \\
z_{5} & =z_{1}+\left(\beta-\varphi_{1}\right)\left\{u+\left(\beta-\varphi_{2}\right)\left[v+w\left(\beta-\varphi_{3}\right)\right]\right\}
\end{array}
$$

b. Find similar formulas for three points.
${ }^{a}$ 6. Let $\varphi(z)$ denote $x(\pi / 2)$, where x is the solution of the initial-value problem

$$
\left\{\begin{array}{l}
x^{\prime \prime}=-x \\
x(0)=0 \quad x^{\prime}(0)=z
\end{array}\right.
$$

What is $\varphi(z)$?
${ }^{a}$ 7. Determine the function φ explicitly in the case of this two-point boundary-value problem.

$$
\left\{\begin{array}{l}
x^{\prime \prime}=-x \\
x(0)=1 \quad x\left(\frac{\pi}{2}\right)=3
\end{array}\right.
$$

${ }^{a}$ 8. (Continuation) Repeat the preceding problem for $x^{\prime \prime}=-\left(x^{\prime}\right)^{2} / x$ with $x(1)=3$ and $x(2)=5$. Using your result, solve the boundary-value problem. Hint: The general solution of the differential equation is $x(t)=c_{1} \sqrt{c_{2}+t}$.
${ }^{a} 9$. Determine the function φ explicitly in the case of this two-point boundary-value problem:

$$
\left\{\begin{array}{l}
x^{\prime \prime}=x \\
x(-1)=e \quad x^{\prime}(1)=\frac{1}{2} e
\end{array}\right.
$$

${ }^{a}$ 10. Boundary-value problems may involve differential equations of order higher than 2 . For example,

$$
\left\{\begin{array}{l}
x^{\prime \prime \prime}=f\left(t, x, x^{\prime}, x^{\prime \prime}\right) \\
x(a)=\alpha \quad x^{\prime}(a)=\gamma \quad x(b)=\beta
\end{array}\right.
$$

Discuss the ways in which this problem can be solved using the shooting method.
${ }^{a}$ 11. Solve analytically this three-point boundary-value problem:

$$
\left\{\begin{array}{l}
x^{\prime \prime \prime}=-e^{t}+4(t+1)^{-3} \\
x(0)=-1 \quad x(1)=3-e+2 \ln 2 \quad x(2)=6-e^{2}+2 \ln 3
\end{array}\right.
$$

12. Solve

$$
\left\{\begin{array}{l}
x^{\prime \prime}=-x \\
x(0)=2 \quad x(\pi)=3
\end{array}\right.
$$

analytically and analyze any difficulties.
13. Show that the following two problems are equivalent in the sense that a solution of one is easily obtained from a solution of the other:

$$
\left\{\begin{array} { l }
{ y ^ { \prime \prime } = f (t , y) } \\
{ y (0) = \alpha \quad y (1) = \beta }
\end{array} \quad \left\{\begin{array}{l}
z^{\prime \prime}=f(t, z+\alpha-\alpha t+\beta t) \\
z(0)=0 \quad z(1)=0
\end{array}\right.\right.
$$

14. Discuss in general terms the numerical solution of the following two-point boundaryvalue problems. Recommend specific methods for each, being sure to take advantage of any special structure.
a. a. $\left\{\begin{array}{l}x^{\prime \prime}=\sin t+\left(e^{t} \sqrt{t^{2}+1}\right) x+(\cos t) x^{\prime} \\ x(0)=0 \quad x(1)=5\end{array} \quad\right.$ b. $\left\{\begin{array}{l}x_{1}^{\prime}=x_{1}^{2}+(t-3) x_{1}+\sin t \\ x_{2}^{\prime}=x_{2}^{3}+\sqrt{t^{2}+1}+(\cos t) x_{1} \\ x_{1}(0)=1 \quad x_{2}(2)=3\end{array}\right.$
${ }^{a} 15$. What is $\varphi(z)$ in the case of this boundary-value problem?

$$
\left\{\begin{array}{l}
x^{\prime \prime}=-x \\
x(0)=1 \quad x(\pi)=3
\end{array}\right.
$$

Explain the implications.
16. Find the function φ explicitly for this two-point boundary-value problem:

$$
\left\{\begin{array}{l}
x^{\prime \prime}=e^{-2 t}-4 x-4 x^{\prime} \\
x(0)=1 \quad x(2)=0
\end{array}\right.
$$

What is the initial-value problem whose solution solves the boundary-value problem?
Hint: Find a solution of the form $x(t)=q(t) e^{-2 t}$, where q is a quadratic polynomial.

Computer Problems 14.1

1. The nonlinear two-point boundary-value problem

$$
\left\{\begin{array}{l}
x^{\prime \prime}=e^{x} \\
x(0)=\alpha \quad x(1)=\beta
\end{array}\right.
$$

has the closed-form solution

$$
x=\ln c_{1}-2 \ln \left\{\cos \left[\left(\frac{1}{2} c_{1}\right)^{1 / 2} t+c_{2}\right]\right\}
$$

where c_{1} and c_{2} are the solutions of

$$
\left\{\begin{array}{l}
\alpha=\ln c_{1}-2 \ln \cos c_{2} \\
\beta=\ln c_{1}-2 \ln \left\{\cos \left[\left(\frac{1}{2} c_{1}\right)^{1 / 2}+c_{2}\right]\right\}
\end{array}\right.
$$

Use the shooting method to solve this problem with $\alpha=\beta=\ln 8 \pi^{2}$. Start with $z_{1}=-\frac{25}{2}$ and $z_{2}=-\frac{23}{2}$. Determine c_{1} and c_{2} so that a comparison with the true solution can be made. Remark: The corresponding discretization method, as discussed in the next section, involves a system of nonlinear equations with no closed-form solution.
2. Write a program to solve the example that begins this chapter for specific a and $b(x)$, such as $a=\frac{1}{4}$ and $b(x)=x^{2}$.

14.2 A Discretization Method

Finite-Difference Approximations

We turn now to a completely different approach to solving the two-point boundary-value problem-one based on a direct discretization of the differential equation. The problem
that we want to solve is

$$
\left\{\begin{array}{l}
x^{\prime \prime}=f\left(t, x, x^{\prime}\right) \tag{1}\\
x(a)=\alpha \quad x(b)=\beta
\end{array}\right.
$$

Select a set of equally spaced points $t_{0}, t_{1}, \ldots, t_{n}$ on the interval $[a, b]$ by letting

$$
t_{i}=a+i h \quad \text { with } \quad h=\frac{b-a}{n} \quad(0 \leqq i \leqq n)
$$

Next, approximate the derivatives, using the standard central difference formulas (5) and (20) from Section 4.3:

$$
\begin{align*}
& x^{\prime}(t) \approx \frac{1}{2 h}[x(t+h)-x(t-h)] \\
& x^{\prime \prime}(t) \approx \frac{1}{h^{2}}[x(t+h)-2 x(t)+x(t-h)] \tag{2}
\end{align*}
$$

The approximate value of $x\left(t_{i}\right)$ is denoted by x_{i}. Hence, the problem becomes

$$
\left\{\begin{array}{l}
x_{0}=\alpha \tag{3}\\
\frac{1}{h^{2}}\left(x_{i-1}-2 x_{i}+x_{i+1}\right)=f\left(t_{i}, x_{i}, \frac{1}{2 h}\left(x_{i+1}-x_{i-1}\right)\right) \quad(1 \leqq i \leqq n-1) \\
x_{n}=\beta
\end{array}\right.
$$

This is usually a nonlinear system of equations in the $n-1$ unknowns $x_{1}, x_{2}, \ldots, x_{n-1}$ because f generally involves the x_{i} 's in a nonlinear way. The solution of such a system is seldom easy but could be approached by using the methods of Chapter 3.

The Linear Case

In some cases, System (3) is linear. This situation occurs exactly when f in Equation (1) has the form

$$
\begin{equation*}
f\left(t, x, x^{\prime}\right)=u(t)+v(t) x+w(t) x^{\prime} \tag{4}
\end{equation*}
$$

In this special case, the principal equation in System (3) looks like this:

$$
\frac{1}{h^{2}}\left(x_{i-1}-2 x_{i}+x_{i+1}\right)=u\left(t_{i}\right)+v\left(t_{i}\right) x_{i}+w\left(t_{i}\right)\left[\frac{1}{2 h}\left(x_{i+1}-x_{i-1}\right)\right]
$$

or, equivalently,

$$
\begin{equation*}
-\left(1+\frac{h}{2} w_{i}\right) x_{i-1}+\left(2+h^{2} v_{i}\right) x_{i}-\left(1-\frac{h}{2} w_{i}\right) x_{i+1}=-h^{2} u_{i} \tag{5}
\end{equation*}
$$

where $u_{i}=u\left(t_{i}\right), v_{i}=v\left(t_{i}\right)$, and $w_{i}=w\left(t_{i}\right)$. Now let

$$
\left\{\begin{array}{l}
a_{i}=-\left(1+\frac{h}{2} w_{i}\right) \\
d_{i}=2+h^{2} v_{i} \\
c_{i}=-\left(1-\frac{h}{2} w_{i}\right) \\
b_{i}=-h^{2} u_{i}
\end{array} \quad(0 \leqq i \leqq n)\right.
$$

Then the principal Equation (5) becomes

$$
a_{i} x_{i-1}+d_{i} x_{i}+c_{i} x_{i+1}=b_{i}
$$

The equations corresponding to $i=1$ and $i=n-1$ are different because we know x_{0} and x_{n}. The system can therefore be written as

$$
\left\{\begin{array}{rll}
d_{1} x_{1}+c_{1} x_{2} & =b_{1}-a_{1} \alpha & \tag{6}\\
a_{i} x_{i-1}+d_{i} x_{i} & +c_{i} x_{i+1} & =b_{i} \\
a_{n-1} x_{n-2}+d_{n-1} x_{n-1} & & =b_{n-1}-c_{n-1} \beta
\end{array} \quad(2 \leqq i \leqq n-2)\right.
$$

In matrix form, System (6) looks like this:

$$
\left[\begin{array}{llllll}
d_{1} & c_{1} & & & & \\
a_{2} & d_{2} & c_{2} & & & \\
& a_{3} & d_{3} & c_{3} & & \\
& & \ddots & \ddots & \ddots & \\
& & & a_{n-2} & d_{n-2} & c_{n-2} \\
& & & & a_{n-1} & d_{n-1}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n-2} \\
x_{n-1}
\end{array}\right]=\left[\begin{array}{l}
b_{1}-a_{1} \alpha \\
b_{2} \\
b_{3} \\
\vdots \\
b_{n-2} \\
b_{n-1}-c_{n-1} \beta
\end{array}\right]
$$

Since this system is tridiagonal, we can attempt to solve it with the special procedure Tri for tridiagonal systems developed in Section 7.3. That procedure does not include pivoting, however, and may fail in cases in which procedure Gauss would succeed. (See Problem 14.2.5.)

Pseudocode and Numerical Example

The ideas just explained are now used to write a program for a specific test case. The problem is of the form (1) with f a linear function as in Equation (4):

$$
\left\{\begin{array}{l}
x^{\prime \prime}=e^{t}-3 \sin (t)+x^{\prime}-x \tag{7}\\
x(1)=1.09737491 \quad x(2)=8.63749661
\end{array}\right.
$$

The solution, known in advance to be $x(t)=e^{t}-3 \cos (t)$, can be used to check the computer solution. We use the discretization technique described earlier and procedure Tri for solving the resulting linear system.

First, we decide to use 100 points, including endpoints $a=1$ and $b=2$. Thus, $n=99$, $h=\frac{1}{99}$, and $t_{i}=1+i h$ for $0 \leqq i \leqq 99$. Then we have $t_{0}=1, x_{0}=x_{0}\left(t_{0}\right)=1.09737491$, $t_{99}=2$, and $x_{99}=x\left(t_{99}\right)=8.63749661$. The unknowns in our problem are the remaining values of x_{i}, namely, $x_{1}, x_{2}, \ldots, x_{98}$. By the discretization of the derivatives using the central difference Formulas (2), we obtain a linear system of type (3). Our principal equation is of the form (5) and is

$$
-\left(1+\frac{h}{2}\right) x_{i-1}+\left(2-h^{2}\right) x_{i}-\left(1-\frac{h}{2}\right) x_{i+1}=-h^{2}\left[e^{t_{i}}-3 \sin \left(t_{i}\right)\right]
$$

since $u(t)=e^{t}-3 \sin t, v(t)=-1$, and $w(t)=1$.
We generalize the pseudocode so that with only a few changes, it can accommodate any two-point boundary value problem of type (1) with the right-hand side of form (4). Here, $u(x), v(x)$, and $w(x)$ are statement functions.

```
program BVP1
integer \(i\); real error, \(h, t, u, v, w, x\)
real array \(\left(a_{i}\right)_{1: n},\left(b_{i}\right)_{1: n},\left(c_{i}\right)_{1: n},\left(d_{i}\right)_{1: n},\left(y_{i}\right)_{1: n}\)
integer \(n \leftarrow 99\)
real \(t_{a} \leftarrow 1, t_{b} \leftarrow 2, \alpha \leftarrow 1.09737491, \beta \leftarrow 8.63749661\)
\(u(x)=e^{x}-3 \sin (x)\)
\(v(x)=-1\)
\(w(x)=1\)
\(h \leftarrow\left(t_{b}-t_{a}\right) / n\)
for \(i=1\) to \(n-1\) do
    \(t \leftarrow t_{a}+i h\)
    \(a_{i} \leftarrow-[1+(h / 2) w(t)]\)
    \(d_{i} \leftarrow 2+h^{2} v(t)\)
    \(c_{i} \leftarrow-[1-(h / 2) w(t)]\)
    \(b_{i} \leftarrow-h^{2} u(t)\)
end for
\(b_{1} \leftarrow b_{1}-a_{1} \alpha\)
\(b_{n-1} \leftarrow b_{n-1}-c_{n-1} \beta\)
for \(i=1\) to \(n-1\) do
    \(a_{i} \leftarrow a_{i+1}\)
end
call \(\operatorname{Tri}\left(n-1,\left(a_{i}\right),\left(d_{i}\right),\left(c_{i}\right),\left(b_{i}\right),\left(y_{i}\right)\right)\)
error \(\leftarrow e^{t_{a}}-3 \cos \left(t_{a}\right)-\alpha\)
output \(t_{a}, \alpha\), error
for \(i=1\) to \(n-1\) step 9 do
    \(t \leftarrow t_{a}+i h\)
    error \(\leftarrow e^{t}-3 \cos (t)-y_{i}\)
    output \(t, y_{i}\), error
end for
error \(\leftarrow e^{t_{b}}-3 \cos \left(t_{b}\right)-\beta\)
output \(b, \beta\), error
end program \(B V P 1\)
```

The computer results are as follows:

\boldsymbol{t}-Value	Solution	Error
1.0000000	1.0973749	0.00
1.0909091	1.5920302	-8.83×10^{-5}
1.1818182	2.1227417	-1.74×10^{-4}
1.2727273	2.6898086	-2.56×10^{-4}
1.3636364	3.2936704	-3.28×10^{-4}
1.4545455	3.9349453	-3.76×10^{-4}
1.5454545	4.6144910	-4.06×10^{-4}
1.6363636	5.3334317	-4.13×10^{-4}
1.7272727	6.0931959	-3.89×10^{-4}
1.8181818	6.8955722	-3.16×10^{-4}
1.9090910	7.7427778	-1.88×10^{-4}
2.0000000	8.6374969	0.00

Shooting Method in the Linear Case

We have just seen that this discretization method (also called a finite-difference method) is rather simple in the case of the linear two-point boundary-value problem:

$$
\left\{\begin{array}{l}
x^{\prime \prime}=u(t)+v(t) x+w(t) x^{\prime} \tag{8}\\
x(a)=\alpha \quad x(b)=\beta
\end{array}\right.
$$

The shooting method is also especially simple in this case. Recall that the shooting method requires us to solve an initial-value problem:

$$
\left\{\begin{array}{l}
x^{\prime \prime}=u(t)+v(t) x+w(t) x^{\prime} \tag{9}\\
x(a)=\alpha \quad x^{\prime}(a)=z
\end{array}\right.
$$

and interpret the terminal value $x(b)$ as a function of z. We call that function φ and seek a value of z for which $\varphi(z)=\beta$. For the linear Problem (9), φ is a linear function of z, and so Figure 14.3 in Section 14.1 is actually realistic. Consequently, we need only solve Problem (9) with two values of z to determine the function precisely. To establish these facts, let us do a little more analysis.

Suppose that we have solved Problem (9) twice with particular values z_{1} and z_{2}. Let the solutions that are so obtained be denoted by $x_{1}(t)$ and $x_{2}(t)$. Then we claim that the function

$$
\begin{equation*}
g(t)=\lambda x_{1}(t)+(1-\lambda) x_{2}(t) \tag{10}
\end{equation*}
$$

has properties

$$
\left\{\begin{array}{l}
g^{\prime \prime}=u+v g+w g^{\prime} \\
g(a)=\alpha
\end{array}\right.
$$

which are left to the reader to verify in Problem 14.2.6. (The value of λ in this analysis is a constant but is completely arbitrary.)

The function g nearly solves the two-point boundary-value Problem (8), and g contains a parameter λ at our disposal. Imposing the condition $g(b)=\beta$, we obtain

$$
\lambda x_{1}(b)+(1-\lambda) x_{2}(b)=\beta
$$

from which

$$
\lambda=\frac{\beta-x_{2}(b)}{x_{1}(b)-x_{2}(b)}
$$

Perhaps the simplest way to implement these ideas is to solve two initial-value problems

$$
\left\{\begin{array}{l}
x^{\prime \prime}=u(t)+v(t) x+w(t) x^{\prime} \\
x(a)=\alpha \quad x^{\prime}(a)=0
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
y^{\prime \prime}=u(t)+v(t) y+w(t) y^{\prime} \\
y(a)=\alpha \quad y^{\prime}(a)=1
\end{array}\right.
$$

Then the solution to the original two-point boundary-value Problem (8) is

$$
\begin{equation*}
\lambda x(t)+(1-\lambda) y(t) \quad \text { with } \quad \lambda=\frac{\beta-y(b)}{x(b)-y(b)} \tag{11}
\end{equation*}
$$

In the computer realization of this procedure, we must save the entire solution curves x and y. They are stored in arrays $\left(x_{i}\right)$ and $\left(y_{i}\right)$.

Pseudocode and Numerical Example

As an example of the shooting method, consider the problem of Equation (7). We solve the two initial-value problems

$$
\left\{\begin{array} { l }
{ x ^ { \prime \prime } = e ^ { t } - 3 \operatorname { s i n } (t) + x ^ { \prime } - x } \tag{12}\\
{ x (1) = 1 . 0 9 7 3 7 4 9 1 } \\
{ x ^ { \prime } (1) = 0 }
\end{array} \quad \left\{\begin{array}{l}
y^{\prime \prime}=e^{t}-3 \sin (t)+y^{\prime}-y \\
y(1)=1.09737491 \\
y^{\prime}(1)=1
\end{array}\right.\right.
$$

by using the fourth-order Runge-Kutta method. To do so, we introduce variables

$$
x_{0}=t \quad x_{1}=x \quad x_{2}=x^{\prime}
$$

Then the first initial-value problem is

$$
\left[\begin{array}{l}
x_{0}^{\prime} \\
x_{1}^{\prime} \\
x_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{c}
1 \\
x_{2} \\
e^{x_{0}}-3 \sin \left(x_{0}\right)+x_{2}-x_{1}
\end{array}\right] \quad\left[\begin{array}{l}
x_{0}(1) \\
x_{1}(1) \\
x_{2}(1)
\end{array}\right]=\left[\begin{array}{l}
1 \\
1.09737491 \\
0
\end{array}\right]
$$

Now let

$$
y_{0}=t \quad y_{1}=y \quad y_{2}=y^{\prime}
$$

The second initial-value problem that we must solve is similar except that we modify the initial vector

$$
\left[\begin{array}{l}
y_{0}^{\prime} \\
y_{1}^{\prime} \\
y_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{c}
1 \\
y_{2} \\
e^{y_{0}}-3 \sin \left(y_{0}\right)+y_{2}-y_{1}
\end{array}\right] \quad\left[\begin{array}{l}
y_{0}(1) \\
y_{1}(1) \\
y_{2}(1)
\end{array}\right]=\left[\begin{array}{l}
1 \\
1.09737491 \\
1
\end{array}\right]
$$

It is more efficient to solve these two problems together as a single system. Introducing

$$
x_{3}=y \quad x_{4}=y^{\prime}
$$

into the first system, we have

$$
\left[\begin{array}{c}
x_{0}^{\prime} \\
x_{1}^{\prime} \\
x_{2}^{\prime} \\
x_{3}^{\prime} \\
x_{4}^{\prime}
\end{array}\right]=\left[\begin{array}{c}
1 \\
x_{2} \\
e^{x_{0}}-3 \sin \left(x_{0}\right)+x_{2}-x_{1} \\
x_{4} \\
e^{x_{0}}-3 \sin \left(x_{0}\right)+x_{4}-x_{3}
\end{array}\right] \quad\left[\begin{array}{l}
x_{0}(1) \\
x_{1}(1) \\
x_{2}(1) \\
x_{3}(1) \\
x_{4}(1)
\end{array}\right]=\left[\begin{array}{l}
1 \\
1.09737491 \\
0 \\
1.09737491 \\
1
\end{array}\right]
$$

Clearly, the $x_{1}(t)$ and $x_{3}(t)$ components of the solution vector at each t satisfy the first and second problems, respectively. Consequently, the solution is

$$
\lambda x_{1}\left(t_{i}\right)+(1-\lambda) x_{3}\left(t_{i}\right) \quad(1 \leqq i \leqq n-1)
$$

where

$$
\lambda=\frac{8.63749661-x_{3}(2)}{x_{1}(2)-x_{3}(2)}
$$

We use 100 points as before, so $n=99$.

```
program \(B V P 2\)
integer \(i ; \quad\) real array \(\left(x_{i}\right)_{0: m},\left(x 1_{i}\right)_{0: n},\left(x 3_{i}\right)_{0: n} ; \quad\) real error, \(h, p, q, t\)
integer \(n \leftarrow 99\), \(m \leftarrow 4\)
real \(a \leftarrow 1, b \leftarrow 2, \alpha \leftarrow 1.09737491, \beta \leftarrow 8.63749661\)
\(x \leftarrow(1, \alpha, 0, \alpha, 1)\)
\(h \leftarrow(b-a) / n\)
for \(i=1\) to \(n\) do
    call \(R K 4\) _System \(2\left(m, h,\left(x_{i}\right), 1\right)\)
    \((x 1)_{i} \leftarrow x_{1}\)
    \((x 3)_{i} \leftarrow x_{3}\)
end for
\(p \leftarrow\left[\beta-(x 3)_{n}\right] /\left[(x 1)_{n}-(x 3)_{n}\right]\)
\(q \leftarrow 1-p\)
for \(i=1\) to \(n\) do
    \((x 1)_{i} \leftarrow p(x 1)_{i}+q(x 3)_{i}\)
end for
error \(\leftarrow e^{a}-3 \cos (a)-\alpha\)
output \(a, \alpha\), error
for \(i=9\) to \(n\) step 9 do
    \(t \leftarrow a+i h\)
    error \(\leftarrow e^{t}-3 \cos (t)-(x 1)_{i}\)
    output \(t,(x 1)_{i}\), error
end for
end program \(B V P 2\)
procedure \(X P\) System \(\left(m,\left(x_{i}\right),\left(f_{i}\right)\right)\)
real array \(\left(x_{i}\right)_{0: m},\left(f_{i}\right)_{0: m}\)
\(f_{0} \leftarrow 1\)
\(f_{1} \leftarrow x_{2}\)
\(f_{2} \leftarrow e^{x_{0}}-3 \sin \left(x_{0}\right)+x_{2}-x_{1}\)
\(f_{3} \leftarrow x_{4}\)
\(f_{4} \leftarrow e^{x_{0}}-3 \sin \left(x_{0}\right)+x_{4}-x_{3}\)
end procedure XP_System
```

The final computer results are as shown:

\boldsymbol{t}-Value	Solution	Error
1.0000000	1.0973749	0.00
1.0909091	1.5919409	9.54×10^{-7}
1.1818182	2.1225657	1.91×10^{-6}
1.2727273	2.6895509	1.43×10^{-6}
1.3636364	3.2933426	2.38×10^{-7}
1.4545455	3.9345679	9.54×10^{-7}
1.5454545	4.6140857	-4.77×10^{-7}
1.6363636	5.3330178	4.77×10^{-7}
1.7272727	6.0928054	1.91×10^{-6}
1.8181818	6.8952556	9.54×10^{-7}
1.9090910	7.7425890	9.54×10^{-7}
2.0000000	8.6374969	0.00

Notice that the errors are smaller than those obtained in the discretization method for the same problem. (Why?)

By using mathematical software such as found in Matlab, Maple, or Mathematica, this problem can be solved in various ways. In Matlab and Mathematica, built-in routines can be used to obtain the numerical solution to this boundary-value problem and plot the solution curve. On the other hand, Maple can solve the two differential equations in (12) and combine the solutions as described earlier with an appropriate value for λ. Also, the code can evaluate the solution at $1,1.5$, and 2, for example. Note that this is an analytic solution. These mathematical software systems do not produce the solution instantaneously; there is a lot of calculation going on behind the scenes.

In our brief discussion of two-point boundary-value problems, we have not touched upon the difficult question of the existence of solutions. Sometimes a boundary-value problem has no solution despite having smooth coefficients. An example is given in Problem 14.1.4b. This behavior contrasts sharply with that of initial-value problems. These matters are beyond the scope of this book but are treated, for example, in Keller [1976] and Stoer and Bulirsch [1993].

Summary

(1) For the two-point boundary-value problem

$$
\left\{\begin{array}{l}
x^{\prime \prime}(t)=f\left(t, x(t), x^{\prime}(t)\right) \\
x(a)=\alpha \quad x(b)=\beta
\end{array}\right.
$$

we use finite differences over the interval $[a, b]$ with $n+1$ points, namely, $t_{i}=a+i h$ with $0 \leqq i \leqq n$ and $h=(b-a) / n$. We obtain $x_{0}=\alpha, x_{n}=\beta$, and

$$
\frac{1}{h^{2}}\left(x_{i-1}-2 x_{i}+x_{i+1}\right)=f\left(t_{i}, x_{i}, \frac{1}{2 h}\left(x_{i+1}-x_{i-1}\right)\right) \quad(1 \leqq i \leqq n-1)
$$

The linear case of this problem occurs when the right-hand side is

$$
f\left(t, x, x^{\prime}\right)=u(t)+v(t) x+w(t) x^{\prime}
$$

In this case, the main equation becomes

$$
\frac{1}{h^{2}}\left(x_{i-1}-2 x_{i}+x_{i+1}\right)=u\left(t_{i}\right)+v\left(t_{i}\right) x_{i}+w\left(t_{i}\right)\left[\frac{1}{2 h}\left(x_{i+1}-x_{i-1}\right)\right]
$$

Then the computational form is

$$
-\left(1+\frac{h}{2} w_{i}\right) x_{i-1}+\left(2+h^{2} v_{i}\right) x_{i}-\left(1-\frac{h}{2} w_{i}\right) x_{i+1}=-h^{2} u_{i}
$$

where $u_{i}=u\left(t_{i}\right), v_{i}=v\left(t_{i}\right)$, and $w_{i}=w\left(t_{i}\right)$. This leads to a tridiagonal linear system to be solved.
(2) Consider the linear two-point boundary-value problem

$$
\left\{\begin{array}{l}
x^{\prime \prime}=u(t)+v(t) x+w(t) x^{\prime} \\
x(a)=\alpha \quad x(b)=\beta
\end{array}\right.
$$

and the corresponding initial-value problem

$$
\left\{\begin{array}{l}
x^{\prime \prime}=u(t)+v(t) x+w(t) x^{\prime} \\
x(a)=\alpha \quad x^{\prime}(a)=z
\end{array}\right.
$$

Suppose that x_{1} and x_{2} are two solution curves to the initial-value problem with z_{1} and z_{2}, respectively. The solution of the two-point boundary-value problem is

$$
g(t)=\lambda x_{1}(t)+(1-\lambda) x_{2}(t)
$$

with

$$
\lambda=\frac{\beta-x_{2}(b)}{x_{1}(b)-x_{2}(b)}
$$

Then we find

$$
\left\{\begin{array}{l}
g^{\prime \prime}=u+v g+w g^{\prime} \\
g(a)=\alpha \quad g(b)=\lambda x_{1}(b)+(1-\lambda) x_{2}(b)=\beta
\end{array}\right.
$$

A simple way to implement this is to solve two initial-value problems:

$$
\left\{\begin{array} { l }
{ x ^ { \prime \prime } = u (t) + v (t) x + w (t) x ^ { \prime } } \\
{ x (a) = \alpha \quad x ^ { \prime } (a) = 0 }
\end{array} \quad \left\{\begin{array}{l}
y^{\prime \prime}=u(t)+v(t) y+w(t) y^{\prime} \\
y(a)=\alpha \quad y^{\prime}(a)=1
\end{array}\right.\right.
$$

Then the solution to the original two-point boundary-value problem is

$$
\lambda x(t)+(1-\lambda) y(t) \quad \text { with } \quad \lambda=\frac{\beta-y(b)}{x(b)-y(b)}
$$

Additional References

See Ascher, Mattheij, and Russell [1995], Axelsson and Barker [2001], Keller [1968, 1976], and Stakgold [2000].

Problems 14.2

${ }^{a}$ 1. If standard finite-difference approximations to derivatives are used to solve a two-point boundary-value problem with $x^{\prime \prime}=t+2 x-x^{\prime}$, what is the typical equation in the resulting linear system of equations?
${ }^{a}$ 2. Consider the two-point boundary-value problem

$$
\left\{\begin{array}{l}
x^{\prime \prime}=-x \\
x(0)=0 \quad x(1)=1
\end{array}\right.
$$

Set up and solve the tridiagonal system that arises from the finite-difference method when $h=\frac{1}{4}$. Explain any differences from the analytic solution at $x\left(\frac{1}{4}\right) \approx 0.29401$, $x\left(\frac{1}{2}\right) \approx 0.56975$, and $x\left(\frac{3}{4}\right) \approx 0.81006$.
3. Verify that Equation (11) gives the solution of boundary-value Problem (8).
${ }^{a}$ 4. Consider the two-point boundary-value problem

$$
\left\{\begin{array}{l}
x^{\prime \prime}=x^{2}-t+t x \\
x(0)=1 \quad x(1)=3
\end{array}\right.
$$

Suppose that we have solved two initial-value problems

$$
\left\{\begin{array} { l }
{ u ^ { \prime \prime } = u ^ { 2 } - t + t u } \\
{ u (0) = 1 \quad u ^ { \prime } (0) = 1 }
\end{array} \quad \left\{\begin{array}{l}
v^{\prime \prime}=v^{2}-t+t v \\
v(0)=1 \quad v^{\prime}(0)=2
\end{array}\right.\right.
$$

numerically and have found as terminal values $u(1)=2$ and $v(1)=3.5$. What is a reasonable initial-value problem to try next in attempting to solve the original two-point value problem?
5. Consider the tridiagonal System (6). Show that if $v_{i}>0$, then some choice of h exists for which the matrix is diagonally dominant.
6. Establish the properties claimed for the function g in Equation (10).
7. Show that for the simple problem

$$
\left\{\begin{array}{l}
x^{\prime \prime}=-x \\
x(a)=\alpha \quad x(b)=\beta
\end{array}\right.
$$

the tridiagonal system to be solved can be written as

$$
\left\{\begin{aligned}
\left(2-h^{2}\right) x_{1}-x_{2} & =\alpha \\
-x_{i-1}+\left(2-h^{2}\right) x_{i}-x_{i+1} & =0 \\
-x_{n-2}+\left(2-h^{2}\right) x_{n-1} & =\beta
\end{aligned} \quad(2 \leqq i \leqq n-2)\right.
$$

${ }^{a}$ 8. Write down the system of equations $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ that results from using the usual secondorder central difference approximation to solve

$$
\left\{\begin{array}{l}
x^{\prime \prime}=(1+t) x \\
x(0)=0 \quad x(1)=1
\end{array}\right.
$$

${ }^{a} 9$. Let u be a solution of the initial-value problem

$$
\left\{\begin{array}{l}
u^{\prime \prime}=e^{t} u+t^{2} u^{\prime} \\
u(1)=0 \quad u^{\prime}(1)=1
\end{array}\right.
$$

How do we solve the following two-point boundary-value problem by utilizing u ?

$$
\left\{\begin{array}{l}
x^{\prime \prime}=e^{t} x+t^{2} x^{\prime} \\
x(1)=0 \quad x(2)=7
\end{array}\right.
$$

10. How would you solve the problem

$$
\left\{\begin{array}{l}
x^{\prime}=f(t, x) \\
A x(a)+B x(b)=C
\end{array}\right.
$$

where a, b, A, B, and C are given real numbers? (Assume that A and B are not both zero.)
${ }^{a} \mathbf{1 1}$. Use the shooting method on this two-point boundary-value problem, and explain what happens:

$$
\left\{\begin{array}{l}
x^{\prime \prime}=-x \\
x(0)=3 \quad x(\pi)=7
\end{array}\right.
$$

This problem is to be solved analytically, not by computer or calculator.

Computer Problems 14.2

1. Explain the main steps in setting up a program to solve this two-point boundary value problem by the finite-difference method.

$$
\left\{\begin{array}{l}
x^{\prime \prime}=x \sin t+x^{\prime} \cos t-e^{t} \\
x(0)=0 \quad x(1)=1
\end{array}\right.
$$

Show any preliminary work that must be done before programming. Exploit the linearity of the differential equation. Program and compare the results when different values of n are used, say, $n=10,100$, and 1000 .
2. Solve the following two-point boundary value problem numerically. For comparisons, the exact solutions are given.
a. $\mathbf{a} .\left\{\begin{array}{l}x^{\prime \prime}=\frac{(1-t) x+1}{(1+t)^{2}} \\ x(0)=1 \quad x(1)=0.5\end{array}\right.$
ab. $\left\{\begin{array}{l}x^{\prime \prime}=\frac{1}{3}\left[(2-t) e^{2 x}+(1+t)^{-1}\right] \\ x(0)=0 \quad x(1)=-\log 2\end{array}\right.$
3. Solve the boundary-value problem

$$
\left\{\begin{array}{l}
x^{\prime \prime}=-x+t x^{\prime}-2 t \cos t+t \\
x(0)=0 \quad x(\pi)=\pi
\end{array}\right.
$$

by discretization. Compare with the exact solution, which is $x(t)=t+2 \sin t$.
4. Repeat Computer Problem 14.1.2, using a discretization method.
5. Write a computer program to implement
a. program BVP1.
b. program BVP2.
6. (Continuation) Using built-in routines in mathematical software systems such as Matlab, Maple, or Mathematical, solve and plot the solution curve for the boundary-value problem associated with
a. program BVP1.
b. program $B V P 2$.
7. Investigate the computation of numerical solutions to the following challenging test problems, which are nonlinear:
a. $\left\{\begin{array}{l}x^{\prime \prime}=e^{x} \\ x(0)=0, x(1)=0\end{array}\right.$
b. $\left\{\begin{array}{l}\varepsilon x^{\prime \prime}+\left(x^{\prime}\right)^{2}=1 \\ x(0)=0, x(1)=1\end{array}\right.$

Vary $\varepsilon=10^{-1}, 10^{-2}, 10^{-3}, \ldots$ Compare to the true solution

$$
x(t)=1+\varepsilon \ln \cosh ((x-0.745) / \varepsilon)
$$

which has a corner at $t=0.745$.
c. Troesch's problem: $\left\{\begin{array}{l}x^{\prime \prime}=\mu \sinh (\mu x) \\ x(0)=0, x(1)=1\end{array} \quad\right.$ using $\mu=50$.
d. Bratu's problem: $\left\{\begin{array}{l}x^{\prime \prime}+\lambda e^{x}=0 \\ x(0)=0, x(1)=0\end{array} \quad\right.$ using $\lambda=3.55$.

If we let $\lambda=3.51383 \ldots$, there are two solutions when $\lambda<\lambda^{*}$, one solution when $\lambda=\lambda^{*}$, and no solutions when $\lambda>\lambda^{*}$.
e. $\left\{\begin{array}{l}\varepsilon x^{\prime \prime}+t x^{\prime}=0 \\ x(-1)=0, x(1)=2\end{array} \quad\right.$ using $\varepsilon=10^{-8}$.

Compare to the true solution $x(t)=1+\operatorname{erf}(t / \sqrt{2 \varepsilon}) / \operatorname{erf}(1 / \sqrt{2 \varepsilon})$.
Cash [2003] uses these and other test problems in his research. For more information on them, see www.ma.ic.ac.uk/~jcash/
8. (Bucking of a circular ring project) A model for a circular ring with compressibility c under hydrostatic pressure p from all directions is given by the following boundaryvalue problem involving a system of seven differential equations:

$$
\begin{array}{lll}
y_{1}^{\prime}=-1-c y_{5}+(c+1) y_{7}, & y_{1}(0)=\frac{\pi}{2}, & y_{1}\left(\frac{\pi}{2}\right)=0 \\
y_{2}^{\prime}=\left[1+c\left(y_{5}-y_{7}\right)\right] \cos y_{1}, & & y_{2}\left(\frac{\pi}{2}\right)=0 \\
y_{3}^{\prime}=\left[1+c\left(y_{5}-y_{7}\right)\right] \sin y_{1}, & y_{3}(0)=0 & \\
y_{4}^{\prime}=1+c\left(y_{5}-y_{7}\right), & y_{4}(0)=0 & \\
y_{5}^{\prime}=y_{6}\left[-1-c y_{5}+(c+1) y_{7}\right], & & \\
y_{6}^{\prime}=y_{5} y_{7}-\left[1+c\left(y_{5}-y_{7}\right)\right]\left(y_{5}+p\right), & y_{6}(0)=0, & y_{6}\left(\frac{\pi}{2}\right)=0 \\
y_{7}^{\prime}=\left[1+c\left(y_{5}-y_{7}\right)\right] y_{6} & &
\end{array}
$$

Various simplifications are useful in the study of the buckling or collapse of the circular ring such as by considering only a quarter-circle by symmetry (sketch (a) below). As the pressure increases, the radius of the circle decreases, and a bifurcation or a change of state can occur (sketch (b) below). The shooting method together with more advanced numerical methods can be used to solve this problem. Explore some of them. See Huddleston [2000] and Sauer [2006] for additional details.

(a)

(b)

15
 Partial Differential Equations

In the theory of elasticity, it is shown that the stress in a cylindrical beam under torsion can be derived from a function $u(x, y)$ that satisfies the Poisson equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+2=0
$$

In the case of a beam whose cross section is the square defined by $|x| \leqq 1$, $|y| \leqq 1$, the function u must satisfy Poisson's equation inside the square and must be zero at each point on the perimeter of the square. By using the methods of this chapter, we can construct a table of approximate values of $u(x, y)$.

15.1 Parabolic Problems

Many physical phenomena can be modeled mathematically by differential equations. When the function that is being studied involves two or more independent variables, the differential equation is usually a partial differential equation. Since functions of several variables are intrinsically more complicated than those of one variable, partial differential equations can lead to some of the most challenging of numerical problems. In fact, their numerical solution is one type of scientific calculation in which the resources of the fastest and most expensive computing systems easily become taxed. We shall see later why this is so.

Some Partial Differential Equations from Applied Problems

Some important partial differential equations and the physical phenomena that they govern are listed here:

- The wave equation in three spatial variables (x, y, z) and time t is

$$
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}
$$

The function u represents the displacement at time t of a particle whose position at rest is (x, y, z). With appropriate boundary conditions, this equation governs vibrations of a three-dimensional elastic body.

- The heat equation is

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}
$$

The function u represents the temperature at time t in a physical body at the point that has coordinates (x, y, z).

- Laplace's equation is

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=0
$$

It governs the steady-state distribution of heat in a body or the steady-state distribution of electrical charge in a body. Laplace's equation also governs gravitational, electric, and magnetic potentials and velocity potentials in irrotational flows of incompressible fluids. The form of Laplace's equation given above applies to rectangular coordinates. In cylindrical and spherical coordinates, it takes these respective forms:

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \phi^{2}}+\frac{\partial^{2} u}{\partial z^{2}} & =0 \\
\frac{1}{r} \frac{\partial^{2}}{\partial r^{2}}(r u)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial u}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} u}{\partial \phi^{2}} & =0
\end{aligned}
$$

- The biharmonic equation is

$$
\frac{\partial^{4} u}{\partial x^{4}}+2 \frac{\partial^{4} u}{\partial x^{2} \partial y^{2}}+\frac{\partial^{4} u}{\partial y^{4}}=0
$$

It occurs in the study of elastic stress, and from its solution the shearing and normal stresses can be derived for an elastic body.

- The Navier-Stokes equations are

$$
\begin{aligned}
& \frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+\frac{\partial p}{\partial x}=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}} \\
& \frac{\partial v}{\partial t}+u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+\frac{\partial p}{\partial y}=\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}
\end{aligned}
$$

Here, u and v are components of the velocity vector in a fluid flow. The function p is the pressure, and the fluid is assumed to be incompressible but viscous.

In three dimensions, the following operators are useful in writing many standard partial differential equations

$$
\begin{aligned}
\nabla & =\frac{\partial}{\partial x}+\frac{\partial}{\partial y}+\frac{\partial}{\partial z} \\
\nabla^{2} & =\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}} \quad \text { (Laplacian operator) }
\end{aligned}
$$

For example, we have

Heat equation	$\frac{1}{k} \frac{\partial u}{\partial t}=\nabla^{2} u$			
	Diffusion equation	$\frac{\frac{\partial u}{\partial t}=\nabla(d \nabla u)+\rho}{}$	Wave equation	$\frac{1}{v^{2}} \frac{\partial^{2} u}{\partial t^{2}}=\nabla^{2} u$
:---	:---			
	Laplace equation	$\nabla^{2} u=0$.		

The diffusion equation with diffusion constant d has the same structure as the heat equation because heat transfer is a diffusion process. Some authors use alternate notation such as $\Delta u=\operatorname{curl}(\operatorname{grad}(u))=\nabla^{2} u$.

Additional examples from quantum mechanics, electromagnetism, hydrodynamics, elasticity, and so on could also be given, but the five partial differential equations shown already exhibit a great diversity. The Navier-Stokes equation, in particular, illustrates a very complicated problem: a pair of nonlinear, simultaneous partial differential equations.

To specify a unique solution to a partial differential equation, additional conditions must be imposed on the solution function. Typically, these conditions occur in the form of boundary values that are prescribed on all or part of the perimeter of the region in which the solution is sought. The nature of the boundary and the boundary values are usually the determining factors in setting up an appropriate numerical scheme for obtaining the approximate solution.

Matlab includes a PDE Toolbox for partial differential equations. It contains many commands for such tasks as describing the domain of an equation, generating meshes, computing numerical solutions, and plotting. Within Matlab, the command pdetool invokes a graphical user interface (GUI) that is a self-contained graphical environment for solving partial differential equations. One draws the domain and indicates the boundary, fills in menus with the problem and boundary specifications, and selects buttons to solve the problem and plot the results. Although this interface may provide a convenient working environment, there are situations in which command-line functions are needed for additional flexibility. A suite of demonstrations and help files is useful in finding one's way. For example, this software can handle PDEs of the following types

$$
\begin{array}{lrl}
\text { Parabolic PDE } & b \frac{\partial u}{\partial t}-\nabla \cdot(c \nabla u)+a u & =f \\
\text { Hyperbolic PDE } & b \frac{\partial^{2} u}{\partial t^{2}}-\nabla \cdot(c \nabla u)+a u & =f \\
\text { Elliptic PDE } & -\nabla \cdot(c \nabla u)+a u & =f
\end{array}
$$

for x and y on the two-dimensional domain Ω for the problem. On the boundaries of the domain, the following boundary conditions can be handled:

Dirichlet	$h u=r$
Generalized Neumann	$\vec{n} \cdot(c \nabla u)+q u=g$
Mixed	combination of Dirichlet/Neumann

Here, $\vec{n}=d u / d \nu$ is the outward unit length normal derivative. While the PDE can be entered via a dialog box, both the boundary conditions and the PDE coefficients a, c, d can be entered in a variety of ways. One can construct the geometry of the domain by drawing solid objects (circle, polygon, rectangle, and ellipse) that may be overlapped, moved, and rotated.

Heat Equation Model Problem

In this section, we consider a model problem of modest scope to introduce some of the essential ideas. For technical reasons, the problem is said to be of the parabolic type. In it we have the heat equation in one spatial variable accompanied by boundary conditions appropriate to a certain physical phenomenon:

$$
\left\{\begin{align*}
\frac{\partial^{2}}{\partial x^{2}} u(x, t) & =\frac{\partial}{\partial t} u(x, t) \tag{1}\\
u(0, t) & =u(1, t)=0 \\
u(x, 0) & =\sin \pi x
\end{align*}\right.
$$

These equations govern the temperature $u(x, t)$ in a thin rod of length 1 when the ends are held at temperature 0 , under the assumption that the initial temperature in the rod is given by the function $\sin \pi x$ (see Figure 15.1). In the $x t$-plane, the region in which the solution is sought is described by inequalities $0 \leqq x \leqq 1$ and $t \geqq 0$. On the boundary of this region (shaded in Figure 15.2), the values of u have been prescribed.

FIGURE 15.1

FIGURE 15.2
Heat equation:
$x t$-plane

Finite-Difference Method

A principal approach to the numerical solution of such a problem is the finite-difference method. It proceeds by replacing the derivatives in the equation by finite differences. Two
formulas from Section 4.3 are useful in this context:

$$
\begin{aligned}
& f^{\prime}(x) \approx \frac{1}{h}[f(x+h)-f(x)] \\
& f^{\prime \prime}(x) \approx \frac{1}{h^{2}}[f(x+h)-2 f(x)+f(x-h)]
\end{aligned}
$$

If the formulas are used in the differential Equation (1), with possibly different step lengths h and k, the result is

$$
\begin{equation*}
\frac{1}{h^{2}}[u(x+h, t)-2 u(x, t)+u(x-h, t)]=\frac{1}{k}[u(x, t+k)-u(x, t)] \tag{2}
\end{equation*}
$$

This equation is now interpreted as a means of advancing the solution step by step in the t variable. That is, if $u(x, t)$ is known for $0 \leqq x \leqq 1$ and $0 \leqq t \leqq t_{0}$, then Equation (2) allows us to evaluate the solution for $t=t_{0}+k$.

Equation (2) can be rewritten in the form

$$
\begin{equation*}
u(x, t+k)=\sigma u(x+h, t)+(1-2 \sigma) u(x, t)+\sigma u(x-h, t) \tag{3}
\end{equation*}
$$

where

$$
\sigma=\frac{k}{h^{2}}
$$

A sketch showing the location of the four points involved in this equation is given in Figure 15.3. Since the solution is known on the boundary of the region, it is possible to compute an approximate solution inside the region by systematically using Equation (3). It is, of course, an approximate solution because Equation (2) is only a finite-difference analog of Equation (1).

FIGURE 15.3
Heat equation: Explicit stencil

To obtain an approximate solution on a computer, we select values for h and k and use Equation (3). An analysis of this procedure, which is outside the scope of this text, shows that for stability of the computation, the coefficient $1-2 \sigma$ in Equation (3) should be nonnegative. (If this condition is not met, errors made at one step will probably be magnified at subsequent steps, ultimately spoiling the solution.) The reader is referred to Kincaid and Cheney [2002] or Forsythe and Wasow [1960] for a discussion of stability. Using this algorithm, we can continue the solution indefinitely in the t-variable by computations involving only prior values of t. This is an example of a marching problem or marching method.

Pseudocode for Explicit Method

For utmost simplicity, we select $h=0.1$ and $k=0.005$. Coefficient σ is now 0.5 . This choice makes the coefficient $1-2 \sigma$ equal to zero. Our pseudocode first prints $u(i h, 0)$ for $0 \leqq i \leqq 10$ because they are known boundary values. Then it computes and prints $u(i h, k)$ for $0 \leqq i \leqq 10$ using Equation (3) and boundary values $u(0, t)=u(1, t)=0$. This procedure is continued until t reaches the value 0.1 . The single subscripted arrays $\left(u_{i}\right)$ and $\left(v_{i}\right)$ are used to store the values of the approximate solution at t and $t+k$, respectively. Since the analytic solution of the problem is $u(x, t)=e^{-\pi^{2} t} \sin \pi x$ (see Problem 15.1.3), the error can be printed out at each step.

The procedure described is an example of an explicit method. The approximate values of $u(x, t+k)$ are calculated explicitly in terms of $u(x, t)$. Not only is this situation atypical, but even in this problem the procedure is rather slow because considerations of stability force us to select

$$
k \leqq \frac{1}{2} h^{2}
$$

Since h must be rather small to represent the derivative accurately by the finite difference formula, the corresponding k must be extremely small. Values such as $h=0.1$ and $k=$ 0.005 are representative, as are $h=0.01$ and $k=0.00005$. With such small values of k, an inordinate amount of computation is necessary to make much progress in the t variable.

```
program Parabolic1
integer }i,j;\quad\mathrm{ real array }(\mp@subsup{u}{i}{}\mp@subsup{)}{0:n}{},(\mp@subsup{v}{i}{}\mp@subsup{)}{0:n}{
integer }n\leftarrow10,m\leftarrow2
real }h\leftarrow0.1,k\leftarrow0.00
real }\mp@subsup{u}{0}{}\leftarrow0,\mp@subsup{v}{0}{}\leftarrow0,\mp@subsup{u}{n}{}\leftarrow0,\mp@subsup{v}{n}{}\leftarrow
for }i=1\mathrm{ to }n-1\mathrm{ do
    u
end for
output ( }\mp@subsup{u}{i}{}\mathrm{ )
for }j=1\mathrm{ to }m\mathrm{ do
    for }i=1\mathrm{ to }n-1\mathrm{ do
        vi}\leftarrow(\mp@subsup{u}{i-1}{}+\mp@subsup{u}{i+1}{})/
    end for
    output ( }\mp@subsup{v}{i}{}\mathrm{ )
    t}\leftarrowj
    for }i=1\mathrm{ to }n-1\mathrm{ do
        u
    end for
    output ( }\mp@subsup{u}{i}{}\mathrm{ )
    for i=1 to n-1 do
        u
    end for
end for
end program Parabolic1
```


Crank-Nicolson Method

An alternative procedure of the implicit type goes by the name of its inventors, John Crank and Phyllis Nicolson, and is based on a simple variant of Equation (2):

$$
\begin{equation*}
\frac{1}{h^{2}}[u(x+h, t)-2 u(x, t)+u(x-h, t)]=\frac{1}{k}[u(x, t)-u(x, t-k)] \tag{4}
\end{equation*}
$$

If a numerical solution at grid points $x=i h, t=j k$ has been obtained up to a certain level in the t variable, Equation (4) governs the values of u on the next t level. Therefore, Equation (4) should be rewritten as

$$
\begin{equation*}
-u(x-h, t)+r u(x, t)-u(x+h, t)=s u(x, t-k) \tag{5}
\end{equation*}
$$

in which

$$
r=2+s \quad \text { and } \quad s=\frac{h^{2}}{k}
$$

The locations of the four points in this equation are shown in Figure 15.4.

FIGURE 15.4
Crank-Nicolson method: Implicit stencil

On the t level, u is unknown, but on the $(t-k)$ level, u is known. So we can introduce unknowns $u_{i}=u(i h, t)$ and known quantities $b_{i}=s u(i h, t-k)$ and write Equation (5) in matrix form:

$$
\left[\begin{array}{rrrrrr}
r & -1 & & & & \tag{6}\\
-1 & r & -1 & & & \\
& -1 & r & -1 & & \\
& & \ddots & \ddots & \ddots & \\
& & & -1 & r & -1 \\
& & & & -1 & r
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
\vdots \\
u_{n-2} \\
u_{n-1}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
\vdots \\
b_{n-2} \\
b_{n-1}
\end{array}\right]
$$

The simplifying assumption that $u(0, t)=u(1, t)=0$ has been used here. Also, $h=$ $1 / n$. The system of equations is tridiagonal and diagonally dominant because $|r|=2+$ $h^{2} / k>2$. Hence, it can be solved by the efficient method of Section 7.3.

An elementary argument shows that this method is stable. We shall see that if the initial values $u(x, 0)$ lie in an interval $[\alpha, \beta]$, then values subsequently calculated by using Equation (5) will also lie in $[\alpha, \beta]$, thereby ruling out any unstable growth. Since the solution is built up line by line in a uniform way, we need only verify that the values on the first computed line, $u(x, k)$, lie in $[\alpha, \beta]$. Let j be the index of the largest u_{i} that occurs on this line $t=k$. Then

$$
-u_{j-1}+r u_{j}-u_{j+1}=b_{j}
$$

Since u_{j} is the largest of the u^{\prime} s, $u_{j-1} \leqq u_{j}$ and $u_{j+1} \leqq u_{j}$. Thus,

$$
r u_{j}=b_{j}+u_{j-1}+u_{j+1} \leqq b_{j}+2 u_{j}
$$

Since $r=2+s$ and $b_{j}=s u(j h, 0)$, the previous inequality leads at once to

$$
u_{j} \leqq u(j h, 0) \leqq \beta
$$

Since u_{j} is the largest of the u_{i}, we have

$$
u_{i} \leqq \beta \quad \text { for all } i
$$

Similarly,

$$
u_{i} \geqq \alpha \quad \text { for all } i
$$

thus establishing our assertion.

Pseudocode for the Crank-Nicolson Method

A pseudocode to carry out the Crank-Nicolson method on the model program is given next. In it, $h=0.1, k=h^{2} / 2$, and the solution is continued until $t=0.1$. The value of r is 4 and $s=2$. It is easier to compute and print only the values of u at interior points on each horizontal line. At boundary points, we have $u(0, t)=u(1, t)=0$. The program calls procedure Tri from Section 7.3.

```
program Parabolic2
integer }i,j;\quad\mathrm{ real array }(\mp@subsup{c}{i}{}\mp@subsup{)}{1:n-1}{},(\mp@subsup{d}{i}{}\mp@subsup{)}{1:n-1}{},(\mp@subsup{u}{i}{}\mp@subsup{)}{1:n-1}{},(\mp@subsup{v}{i}{}\mp@subsup{)}{1:n-1}{
integer }n\leftarrow10,m\leftarrow2
real }h\leftarrow0.1,k\leftarrow0.00
real }r,s,
s\leftarrowh2/k
r}\leftarrow2+
for }i=1\mathrm{ to }n-1\mathrm{ do
    di}\leftarrow
    c}\mp@subsup{c}{}{\leftarrow}\leftarrow-
    u
end for
output ( }\mp@subsup{u}{i}{}\mathrm{ )
for }j=1\mathrm{ to }m\mathrm{ do
    for }i=1\mathrm{ to }n-1\mathrm{ do
        di}\leftarrow
        vi}\leftarrows\mp@subsup{u}{i}{
    end for
```

```
    call Tri(n-1,(ci),(di),(c}\mp@subsup{c}{i}{}),(\mp@subsup{v}{i}{}),(\mp@subsup{v}{i}{})
    output ( }\mp@subsup{v}{i}{}\mathrm{ )
    t\leftarrowjk
    for }i=1\mathrm{ to }n-1\mathrm{ do
        ui}\leftarrow\mp@subsup{e}{}{-\mp@subsup{\pi}{}{2}t}\operatorname{sin}(\piih)-\mp@subsup{v}{i}{
    end for
    output ( }\mp@subsup{u}{i}{}\mathrm{ )
    for }i=1\mathrm{ to }n-1\mathrm{ do
        u
    end for
end for
end program Parabolic2
```

We used the same values for h and k in the pseudocode for two methods (explicit and CrankNicolson), so a fair comparison can be made of the outputs. Because the Crank-Nicolson method is stable, a much larger k could have been used.

Alternative Version of the Crank-Nicolson Method

Another version of the Crank-Nicolson method is obtained as follows: The central differences at $\left(x, t-\frac{1}{2} k\right)$ in Equation (4) produce

$$
\begin{gathered}
\frac{1}{h^{2}}\left[u\left(x+h, t-\frac{1}{2} k\right)-2 u\left(x, t-\frac{1}{2} k\right)+u\left(x-h, t-\frac{1}{2} k\right)\right] \\
\quad=\frac{1}{k}[u(x, t)-u(x, t-k)]
\end{gathered}
$$

Since the u values are known only at integer multiples of k, terms such as $u\left(x, t-\frac{1}{2} k\right)$ are replaced by the average of u values at adjacent grid points; that is,

$$
u\left(x, t-\frac{1}{2} k\right) \approx \frac{1}{2}[u(x, t)+u(x, t-k)]
$$

So we have

$$
\begin{aligned}
\frac{1}{2 h^{2}}[u(x+h, t)-2 u(x, t) & +u(x-h, t)+u(x+h, t-k) \\
& -2 u(x, t-k)+u(x-h, t-k)]=\frac{1}{k}[u(x, t)-u(x, t-k)]
\end{aligned}
$$

The computational form of this equation is

$$
\begin{align*}
& -u(x-h, t)+2(1+s) u(x, t)-u(x+h, t) \\
& \quad=u(x-h, t-k)+2(s-1) u(x, t-k)+u(x+h, t-k) \tag{7}
\end{align*}
$$

where

$$
s=\frac{h^{2}}{k} \equiv \frac{1}{\sigma}
$$

The six points in this equation are shown in Figure 15.5. This leads to a tridiagonal system of form (6) with $r=2(1+s)$ and

$$
b_{i}=u((i-1) h, t-k)+2(s-1) u(i h, t-k)+u((i+1) h, t-k)
$$

FIGURE 15.5
Crank-Nicolson method: Alternative stencil

Stability

At the heart of the explicit method is Equation (3), which shows how the values of u for $t+k$ depend on the values of u at the previous time step, t. If we introduce the values of u on the mesh by writing $u_{i j}=u(i h, j k)$, then we can assemble all the values for one t-level into a vector $\boldsymbol{v}^{(j)}$ as follows:

$$
\boldsymbol{v}^{(j)}=\left[u_{0 j}, u_{1 j}, u_{2 j}, \ldots, u_{n j}\right]^{T}
$$

Equation (3) can now be written in the form

$$
u_{i, j+1}=\sigma u_{i+1, j}+(1-2 \sigma) u_{i j}+\sigma u_{i-1, j}
$$

This equation shows how $\boldsymbol{v}^{(j+1)}$ is obtained from $\boldsymbol{v}^{(j)}$. It is simply

$$
\boldsymbol{v}^{(j+1)}=\boldsymbol{A} \boldsymbol{v}^{(j)}
$$

where \boldsymbol{A} is the matrix whose elements are

$$
\left[\begin{array}{cccccc}
1-2 \sigma & \sigma & & & & \\
\sigma & 1-2 \sigma & \sigma & & & \\
& \sigma & 1-2 \sigma & \sigma & & \\
& & \ddots & \ddots & \ddots & \\
& & & \sigma & 1-2 \sigma & \sigma \\
& & & & \sigma & 1-2 \sigma
\end{array}\right]
$$

Our equations tell us that

$$
\boldsymbol{v}^{(j)}=\boldsymbol{A} \boldsymbol{v}^{(j-1)}=\boldsymbol{A}^{2} \boldsymbol{v}^{(j-2)}=\boldsymbol{A}^{3} \boldsymbol{v}^{(j-3)}=\cdots=\boldsymbol{A}^{j} \boldsymbol{v}^{(0)}
$$

From physical considerations, the temperature in the bar should approach zero. After all, the heat is being lost through the ends of the rod, which are being kept at temperature 0 . Hence, $\boldsymbol{A}^{j} \boldsymbol{v}^{(0)}$ should converge to 0 as $j \rightarrow \infty$.

At this juncture, we need a theorem in linear algebra that asserts (for any matrix \boldsymbol{A}) that $\boldsymbol{A}^{j} v \rightarrow \mathbf{0}$ for all vectors \boldsymbol{v} if and only if all eigenvalues of \boldsymbol{A} satisfy $\left|\lambda_{i}\right|<1$. The eigenvalues of the matrix \boldsymbol{A} in the present analysis are known to be

$$
\lambda_{i}=1-2 \sigma\left(1-\cos \theta_{i}\right) \quad \theta_{i}=\frac{i \pi}{n+1}
$$

In our problem, we therefore must have

$$
-1<1-2 \sigma\left(1-\cos \theta_{i}\right)<1
$$

This leads to $0<\sigma \leqq \frac{1}{2}$, because θ_{i} can be arbitrarily close to π. This in turn leads to the step-size condition $k \leqq \frac{1}{2} h^{2}$.

Mathematical software systems such as Matlab, Maple, or Mathematica contain routines that solve partial differential equations. For example in Maple and Mathematica, we can invoke commands to verify the general analytical solution. (See Problem 15.1.3.) In Matlab, there is a sample program to numerically solve our model heat equation. In Figure 15.6, we solve the heat equation, generate a three-dimensional plot of its solution surface, and produce a two-dimensional contour plot, which is displayed in color for indicating the various contours.

FIGURE 15.6
Heat equation:
(a) Solution surface;
(b) Contour plot

The PDE Toolbox within Matlab produces solutions to partial differential equations using the finite-element formulation of the scalar PDE problem. (See Section 15.3 for additional discussion of the finite-element method.) This software library contains a graphical user interface with graphical tools for describing domains, generating triangular meshes on them, discretizing the PDEs on the mesh, building systems of equations, obtaining numerical approximations for their solution, and visualizing the results. In particular, Matlab has the function parabolic for solving parabolic PDEs. As is found in the Matlab documentation, one can solve the two-dimensional heat equation

$$
\frac{\partial u}{\partial t}=\nabla^{2} u
$$

on the square $-1 \leqq x, y \leqq 1$. There are Dirichlet boundary conditions $u=0$ and discontinuous initial conditions $u(0)=1$ in the circle $x^{2}+y^{2}<\frac{2}{5}$ and $u(0)=0$ otherwise. A Matlab demonstration continues with a movie of the solution curves.

Summary

(1) We consider a model problem involving the following parabolic partial differential equation

$$
\frac{\partial^{2}}{\partial x^{2}} u(x, t)=\frac{\partial}{\partial t} u(x, t)
$$

Using finite differences with step size h in the x-direction and k in the t-direction, we obtain

$$
\frac{1}{h^{2}}[u(x+h, t)-2 u(x, t)+u(x-h, t)]=\frac{1}{k}[u(x, t+k)-u(x, t)]
$$

The computational form is

$$
u(x, t+k)=\sigma u(x+h, t)+(1-2 \sigma) u(x, t)+\sigma u(x-h, t)
$$

where $\sigma=k / h^{2}$. An alternative approach is the Crank-Nicolson method based on other finite differences for the right-hand side:

$$
\frac{1}{h^{2}}[u(x+h, t)-2 u(x, t)+u(x-h, t)]=\frac{1}{k}[u(x, t)-u(x, t-k)]
$$

Its computational form is

$$
-u(x-h, t)+r u(x, t)-u(x+h, t)=s u(x, t-k)
$$

where $r=2+s$ and $s=h^{2} / k$. Yet another variant of the Crank-Nicolson method is based on these finite differences:

$$
\begin{aligned}
& \frac{1}{h^{2}}\left[u\left(x+h, t-\frac{1}{2} k\right)-2 u\left(x, t-\frac{1}{2} k\right)+u\left(x-h, t-\frac{1}{2} k\right)\right] \\
& \quad=\frac{1}{k}[u(x, t)-u(x, t-k)]
\end{aligned}
$$

Then by using

$$
u\left(x, t-\frac{1}{2} k\right) \approx \frac{1}{2}[u(x, t)+u(x, t-k)]
$$

the computational form is

$$
\begin{aligned}
-u(x-h, t) & +2(1+s) u(x, t)-u(x+h, t) \\
& =u(x-h, t-k)+2(s-1) u(x, t-k)+u(x+h, t-k)
\end{aligned}
$$

where $s=h^{2} / k$. This results in a tridiagonal system of equations to be solved.

Problems 15.1

1. A second-order linear differential equation with two variables has the form

$$
A \frac{\partial^{2} u}{\partial x^{2}}+B \frac{\partial^{2} u}{\partial x \partial y}+C \frac{\partial^{2} u}{\partial y^{2}}+\cdots=0
$$

Here, A, B, and C are functions of x and y, and the terms not written are of lower order. The equation is said to be elliptic, parabolic, or hyperbolic at a point (x, y), depending on whether $B^{2}-4 A C$ is negative, zero, or positive, respectively. Classify each of these equations in this manner:
${ }^{a}$ a. $u_{x x}+u_{y y}+u_{x}+\sin x u_{y}-u=x^{2}+y^{2}$
b. $u_{x x}-u_{y y}+2 u_{x}+2 u_{y}+e^{x} u=x-y$
${ }^{a}$ c. $u_{x x}=u_{y}+u-u_{x}+y$
d. $u_{x y}=u-u_{x}-u_{y}$
e. $3 u_{x x}+u_{x y}+u_{y y}=e^{x y}$
${ }^{a}$ f. $e^{x} u_{x x}+\cos y u_{x y}-u_{y y}=0$
g. $u_{x x}+2 u_{x y}+u_{y y}=0$
h. $x u_{x x}+y u_{x y}+u_{y y}=0$
${ }^{a}$ 2. Derive the two-dimensional form of Laplace's equation in polar coordinates.
3. Show that the function

$$
u(x, t)=\sum_{n=1}^{N} c_{n} e^{-(n \pi)^{2} t} \sin n \pi x
$$

is a solution of the heat conduction problem $u_{x x}=u_{t}$ and satisfies the boundary condition

$$
u(0, t)=u(1, t)=0 \quad u(x, 0)=\sum_{n=1}^{N} c_{n} \sin n \pi x \quad \text { for all } N \geqq 1
$$

${ }^{a}$ 4. Refer to the model problem solved numerically in this section and show that if there is no roundoff, the approximate solution values obtained by using Equation (3) lie in the interval $[0,1]$. (Assume $1 \geqq 2 k / h^{2}$.)
${ }^{a}$ 5. Find a solution of Equation (3) that has the form $u(x, t)=a^{t} \sin \pi x$, where a is a constant.
${ }^{a}$ 6. In using Equation (5), how must the linear System (6) be modified for $u(0, t)=c_{0}$ and $u(1, t)=c_{n}$ with $c_{0} \neq 0, c_{n} \neq 0$? When using Equation (7)?
${ }^{a}$ 7. Describe in detail how Equation (1) with boundary conditions $u(0, t)=q(t), u(1, t)=$ $g(t)$, and $u(x, 0)=f(x)$ can be solved numerically by using System (6). Here q, g, and f are known functions.
${ }^{a}$ 8. What finite difference equation should be a suitable replacement for the equation $\partial^{2} u / \partial x^{2}=\partial u / \partial t+\partial u / \partial x$ in numerical work?
${ }^{a} 9$. Consider the partial differential equation $\partial u / \partial x+\partial u / \partial t=0$ with $u=u(x, t)$ in the region $[0,1] \times[0, \infty]$, subject to the boundary conditions $u(0, t)=0$ and $u(x, 0)$ specified. For fixed t, we discretize only the first term using $\left(u_{i+1}-u_{i-1}\right) /(2 h)$ for $i=1,2, \ldots, n-1$ and $\left(u_{n}-u_{n-1}\right) / h$, where $h=1 / n$. Here, $u_{i}=u\left(x_{i}, t\right)$ and $x_{i}=i h$ with fixed t. In this way, the original problem can be considered a first-order initial-value problem

$$
\frac{d \boldsymbol{y}}{d x}+\frac{1}{2 h} \boldsymbol{A} \boldsymbol{y}=0
$$

where

$$
\boldsymbol{y}=\left[u_{1}, u_{2}, \ldots, u_{n}\right]^{T} \quad \frac{d \boldsymbol{y}}{d x}=\left[u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{n}^{\prime}\right]^{T} \quad u_{i}^{\prime}=\frac{\partial u_{i}}{\partial t}
$$

Determine the $n \times n$ matrix \boldsymbol{A}.
10. Refer to the discussion of the stability of the Crank-Nicolson procedure, and establish the inequality $u_{i} \geqq \alpha$.
11. What happens to System (6) when $k=h^{2}$?
12. (Multiple choice) In solving the heat equation $u_{x x}=u_{t}$ on the domain $t \geqq 1$ and $0 \leqq x \leqq 1$, one can use the explicit method. Suppose the approximate solution on one horizontal line is a vector \boldsymbol{V}_{j}. Then the whole process turns out to be described by

$$
\boldsymbol{V}_{j+1}=\boldsymbol{A} \boldsymbol{V}_{j}
$$

where \boldsymbol{A} is a tridiagonal matrix, having $1-2 \sigma$ on its diagonal and σ in the superdiagonal and subdiagonal positions. Here $\sigma=k / h^{2}$, where k is the time step and h is the x-step. For stability in the numerical solution, what should we require?
a. $\sigma=\frac{1}{2}$
b. All eigenvalues of \boldsymbol{A} satisfy $|\lambda|<1$.
c. $k \geqq h^{2} / 2$
d. $h=0.01$ and $k=5 \times 10^{-3}$
e. None of these.
13. (Continuation) The fully implicit method for solving the heat conduction problem requires at each step the solution of the equation

$$
\boldsymbol{A} \boldsymbol{V}_{j-1}=\boldsymbol{V}_{j}
$$

Here, \boldsymbol{A} is not the same as in the preceding problem, but is similar: It has $1+2 \sigma$ on the diagonal and $-\sigma$ on the subdiagonal and superdiagonal. What do we know about the eigenvalues of this matrix, \boldsymbol{A} ? Hint: This question concerns eigenvalues of \boldsymbol{A}, not \boldsymbol{A}^{-1}.
a. They are all negative.
b. They are all in the open interval $(0,1)$.
c. They are greater than 1 .
d. They are in the interval $(-1,0)$.
e. None of these.

Computer Problems 15.1

1. Solve the same heat conduction problem as in the text except use $h=2^{-4}, k=2^{-10}$, and $u(x, 0)=x(1-x)$. Carry out the solution until $t=0.0125$.
2. Modify the Crank-Nicolson code in the text so that it uses the alternative scheme (7). Compare the two programs on the same problems with the same spacing.
3. Recode and test the pseudocode in this section using a computer language that supports vector operations.
4. Run the Crank-Nicolson code with different choices of h and k, in particular, letting k be much larger. Try $k=h$, for example.
5. Try to take advantage of any special commands or procedures in mathematical software such as in Matlab, Maple, or Mathematica to solve the numerical example (1).
6. (Continuation) Use the symbolic manipulation capabilities in Maple or Mathematica to verify the general analytical solution of (1). Hint: See Problem 15.1.3.

15.2 Hyperbolic Problems

Wave Equation Model Problem

The wave equation with one space variable

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}} \tag{1}
\end{equation*}
$$

governs the vibration of a string (transverse vibration in a plane) or the vibration in a rod (longitudinal vibration). It is an example of a second-order linear differential equation of the hyperbolic type. If Equation (1) is used to model the vibrating string, then $u(x, t)$ represents the deflection at time t of a point on the string whose coordinate is x when the string is at rest.

To pose a definite model problem, we suppose that the points on the string have coordinates x in the interval $0 \leqq x \leqq 1$ (see Figure 15.7). Let us suppose that at time $t=0$, the deflections satisfy equations $u(x, 0)=f(x)$ and $u_{t}(x, 0)=0$. Assume also that the ends of the string remain fixed. Then $u(0, t)=u(1, t)=0$. A fully defined boundary-value

problem, then, is

$$
\left\{\begin{align*}
u_{t t}-u_{x x} & =0 \tag{2}\\
u(x, 0) & =f(x) \\
u_{t}(x, 0) & =0 \\
u(0, t) & =u(1, t)=0
\end{align*}\right.
$$

The region in the $x t$-plane where a solution is sought is the semi-infinite strip defined by inequalities $0 \leqq x \leqq 1$ and $t \geqq 0$. As in the heat conduction problem of Section 15.1, the values of the unknown function are prescribed on the boundary of the region shown (see Figure 15.8).

FIGURE 15.8

Analytic Solution

The model problem in (2) is so simple that it can be immediately solved. Indeed, the solution is

$$
\begin{equation*}
u(x, t)=\frac{1}{2}[f(x+t)+f(x-t)] \tag{3}
\end{equation*}
$$

provided that f possesses two derivatives and has been extended to the whole real line by defining

$$
f(-x)=-f(x) \quad \text { and } \quad f(x+2)=f(x)
$$

To verify that Equation (3) is a solution, we compute derivatives using the chain rule:

$$
\begin{aligned}
u_{x} & =\frac{1}{2}\left[f^{\prime}(x+t)+f^{\prime}(x-t)\right] & u_{t} & =\frac{1}{2}\left[f^{\prime}(x+t)-f^{\prime}(x-t)\right] \\
u_{x x} & =\frac{1}{2}\left[f^{\prime \prime}(x+t)+f^{\prime \prime}(x-t)\right] & u_{t t} & =\frac{1}{2}\left[f^{\prime \prime}(x+t)+f^{\prime \prime}(x-t)\right]
\end{aligned}
$$

Obviously,

$$
u_{t t}=u_{x x}
$$

Also,

$$
u(x, 0)=f(x)
$$

Furthermore, we have

$$
u_{t}(x, 0)=\frac{1}{2}\left[f^{\prime}(x)-f^{\prime}(x)\right]=0
$$

In checking endpoint conditions, we use the formulas by which f was extended:

$$
\begin{aligned}
u(0, t) & =\frac{1}{2}[f(t)+f(-t)]=0 \\
u(1, t) & =\frac{1}{2}[f(1+t)+f(1-t)] \\
& =\frac{1}{2}[f(1+t)-f(t-1)] \\
& =\frac{1}{2}[f(1+t)-f(t-1+2)]=0
\end{aligned}
$$

The extension of f from its original domain to the entire real line makes it an odd periodic function of period 2 . Odd means that

$$
f(x)=-f(-x)
$$

and the periodicity is expressed by

$$
f(x+2)=f(x)
$$

for all x. To compute $u(x, t)$, we need to know f at only two points on the x-axis, $x+t$ and $x-t$, as in Figure 15.9.

FIGURE 15.9
Wave equation: f stencil

Numerical Solution

The model problem is used next to illustrate again the principle of numerical solution. Choosing step sizes h and k for x and t, respectively, and using the familiar approximations for derivatives, we have from Equation (1)

$$
\begin{aligned}
\frac{1}{h^{2}} & {[u(x+h, t)-2 u(x, t)+u(x-h, t)] } \\
& =\frac{1}{k^{2}}[u(x, t+k)-2 u(x, t)+u(x, t-k)]
\end{aligned}
$$

which can be rearranged as

$$
\begin{equation*}
u(x, t+k)=\rho u(x+h, t)+2(1-\rho) u(x, t)+\rho u(x-h, t)-u(x, t-k) \tag{4}
\end{equation*}
$$

Here,

$$
\rho=\frac{k^{2}}{h^{2}}
$$

Figure 15.10 shows the point $(x, t+k)$ and the nearby points that enter into Equation (4).

FIGURE 15.10
Wave equation: Explicit stencil

The boundary conditions in Problem (2) can be written as

$$
\left\{\begin{align*}
u(x, 0) & =f(x) \tag{5}\\
\frac{1}{k}[u(x, k)-u(x, 0)] & =0 \\
u(0, t)=u(1, t) & =0
\end{align*}\right.
$$

The problem defined by Equations (4) and (5) can be solved by beginning at the line $t=0$, where u is known, and then progressing one line at a time with $t=k, t=2 k, t=3 k, \ldots$ Note that because of (5), our approximate solution satisfies

$$
\begin{equation*}
u(x, k)=u(x, 0)=f(x) \tag{6}
\end{equation*}
$$

The use of the $\mathcal{O}(k)$ approximation for u_{t} leads to low accuracy in the computed solution to Problem (2). Suppose that there is a row of grid points ($x,-k$). Letting $t=0$ in Equation (4), we have

$$
u(x, k)=\rho u(x+h, 0)+2(1-\rho) u(x, 0)+\rho u(x-h, 0)-u(x,-k)
$$

Now the central difference approximation

$$
\frac{1}{2 k}[u(x, k)-u(x,-k)]=0
$$

for

$$
u_{t}(x, 0)=0
$$

can be used to eliminate the fictitious grid point $(x,-k)$. So instead of Equation (6), we set

$$
\begin{equation*}
u(x, k)=\frac{1}{2} \rho[f(x+h)+f(x-h)]+(1-\rho) f(x) \tag{7}
\end{equation*}
$$

because $u(x, 0)=f(x)$. Values of $u(x, n k), n \geqq 2$, can now be computed from Equation (4).

Pseudocode

A pseudocode to carry out this numerical process is given next. For simplicity, three onedimensional arrays $\left(u_{i}\right),\left(v_{i}\right)$, and $\left(w_{i}\right)$ are used: $\left(u_{i}\right)$ represents the solution being computed on the new t line; $\left(v_{i}\right)$ and $\left(w_{i}\right)$ represent solutions on the preceding two t lines.

```
program Hyperbolic
integer }i,j;\quad\mathrm{ real }t,x,\rho;\quad\mathrm{ real array }(\mp@subsup{u}{i}{}\mp@subsup{)}{0:n}{},(\mp@subsup{v}{i}{}\mp@subsup{)}{0:n}{},(\mp@subsup{w}{i}{}\mp@subsup{)}{0:n}{
integer }n\leftarrow10,m\leftarrow2
real }h\leftarrow0.1,k\leftarrow0.0
u
\rho}\leftarrow(k/h\mp@subsup{)}{}{2
for }i=1\mathrm{ to }n-1\mathrm{ do
    x}\leftarrowi
    wi}\leftarrowf(x
    vi}\leftarrow\frac{1}{2}\rho[f(x-h)+f(x+h)]+(1-\rho)f(x
end for
for }j=2\mathrm{ to }m\mathrm{ do
    for i=1 to n-1 do
        u
    end for
    output j, (ui)
    for }i=1\mathrm{ to }n-1\mathrm{ do
        wi}
        vi}\leftarrow\mp@subsup{u}{i}{
        t\leftarrowjk
        x}\leftarrowi
        u
    end for
    output j, ( }\mp@subsup{u}{i}{}
end for
end program Hyperbolic
real function f(x)
real }
f}\leftarrow\operatorname{sin}(\pix
end function }
real function True_Solution(x,t)
real t, x
True_Solution }\leftarrow\operatorname{sin}(\pix)\operatorname{cos}(\pit
end function True_Solution
```

This pseudocode requires accompanying functions to compute values of $f(x)$ and the true solution. We chose $f(x)=\sin (\pi x)$ in our example. It is assumed that the x interval is $[0,1]$, but when h or n is changed, the interval can be $[0, b]$; that is, $n h=b$. The numerical solution is printed on the t lines that correspond to $1 k, 2 k, \ldots, m k$.

More advanced treatments show that the ratios

$$
\rho=\frac{k^{2}}{h^{2}}
$$

must not exceed 1 if the solution of the finite difference equations is to converge to a solution of the differential problem as $k \rightarrow 0$ and $h \rightarrow 0$. Furthermore, if $\rho>1$, roundoff errors that occur at one stage of the computation would probably be magnified at later stages and thereby ruin the numerical solution.

In Matlab, the PDE Toolbox has a function for producing the solution of hyperbolic problems using the finite element formulation of the scalar PDE problem. An example found in the Matlab documentation finds the numerical solution of the two-dimensional wave propagation problem

$$
\frac{\partial^{2} u}{\partial t^{2}}=\nabla^{2} u
$$

on the square $-1 \leqq x, y \leqq 1$ with Dirichlet boundary conditions on the left and right boundaries, $u=0$ for $x= \pm 1$, and zero values of the normal derivatives on the top and bottom boundaries. Further, there are Neumann boundary conditions $\partial u / \partial v=0$ for $y= \pm 1$. The initial conditions $u(0)=\arctan \left(\cos \left(\frac{\pi}{2} x\right)\right)$ and $d u(0) / d t=3 \sin (\pi x) \exp \left(\sin \left(\frac{\pi}{2} y\right)\right)$ are chosen to avoid putting too much energy into the higher vibration modes.

Advection Equation

We focus on the advection equation

$$
\frac{\partial u}{\partial t}=-c \frac{\partial u}{\partial x}
$$

Here, $u=u(x, t)$ and $c=c(x, t)$ in which one can consider x as space and t as time. The advection equation is a hyperbolic partial differential equation that governs the motion of a conserved scalar as it is advected by a known velocity field. For example, the advection equation applies to the transport of dissolved salt in water. Even in one space dimension and constant velocity, the system remains difficult to solve. Since the advection equation is difficult to solve numerically, interest typically centers on discontinuous shock solutions, which are notoriously hard for numerical schemes to handle.

Using the forward difference approximation in time and the central-difference approximations in space, we have

$$
\frac{1}{k}[u(x, t+k)-u(x, t)]=-c \frac{1}{2 h}[u(x+h, t)-u(x-h, t)]
$$

This gives

$$
u(x, t+k)=u(x, t)-\frac{1}{2} \sigma[u(x+h, t)-u(x-h, t)]
$$

where $\sigma=(k / h) c(x, t)$. All numerical solutions grow in magnitude for all time steps k. For all $\sigma>0$, this scheme is unstable by Fourier stability analysis.

Lax Method

In the central-difference scheme above, replace the first term on the right-hand side, $u(x, t)$, by $\frac{1}{2}[u(x, t-k)+u(x, t+k)]$. Then we obtain

$$
\begin{aligned}
u(x, t+k) & =\frac{1}{2}[u(x, t-k)+u(x, t+k)]-\frac{1}{2} \sigma[u(x+h, t)-u(x-h, t)] \\
& =\frac{1}{2}(1+\sigma) u(x-h, t)+\frac{1}{2}(1+\sigma) u(x, t-k)
\end{aligned}
$$

This is the Lax method, and this simple change makes the method conditionally stable.

Upwind Method

Another way of obtaining a stable method is by using a one-sided approximation to u_{x} in the advection equation as long as the side is taken in the upwind direction. If $c>0$, the transport is to the right. This can be interpreted as the wind of speed c blowing the solution from left to right. So the upwind direction is to the left for $c>0$ and to the right for $c<0$. Thus, the upwind difference approximation is

$$
u_{x}(x, t) \approx \begin{cases}-c[u(x, t)-u(x-h, t)] / h & (c>0) \\ -c[u(x+h, t)-u(x, t)] / h & (c<0)\end{cases}
$$

Then the upwind scheme for the advection equation is

$$
u(x, t+k)=u(x, t)-\sigma \begin{cases}-c[u(x, t)-u(x-h, t)] / h & (c>0) \\ -c[u(x+h, t)-u(x, t)] / h & (c<0)\end{cases}
$$

Lax-Wendroff Method

The Lax-Wendroff scheme is second-order in space and time. The following is one of several possible forms of this method. We start with a Taylor series expansion over one time step:

$$
u(x, t+k)=u(x, t)+k u_{t}(x, t)+\frac{1}{2} k^{2} u_{t t}(x, t)+\mathcal{O}\left(k^{3}\right)
$$

Now use the advection equation to replace time derivatives on the right-hand side by space derivatives:

$$
\begin{aligned}
u_{t} & =-c u_{x} \\
u_{t t} & =\left(-c u_{x}\right)_{t} \\
& =-c_{t} u_{x}-c\left(u_{x}\right)_{t} \\
& =-c_{t} u_{x}-c\left(u_{t}\right)_{x} \\
& =-c_{t} u_{x}+c\left(c u_{x}\right)_{t}
\end{aligned}
$$

Here, we have let $c=c(x, t)$ and have not assumed c is a constant. Substituting for u_{t} and $u_{x x}$ gives us

$$
u(x, t+k)=u(x, t)-c k u_{x}+\frac{1}{2} k^{2}\left[-c_{t} u_{x}+c\left(c u_{x}\right)_{x}\right]+\mathcal{O}\left(k^{3}\right)
$$

where everything on the right-hand side is evaluated at (x, t). If we approximate the space derivative with second-order differences, we will have a second-order scheme in space and time:

$$
\begin{aligned}
u(x, t+k) \approx u(x, t) & -c k \frac{1}{2 h}[u(x+h, t)-u(x-h, t)] \\
& +\frac{1}{2} k^{2}\left[-c_{t} \frac{1}{2 h}[u(x+h, t)-u(x-h, t)]+c\left(c u_{x}\right)_{x}\right]
\end{aligned}
$$

The difficulty with this scheme arises when c depends on space and we must evaluate the last term in the expression above. In the case in which c is a constant, we obtain

$$
\begin{aligned}
c\left(c u_{x}\right)_{x} & =c^{2} u_{x x} \\
& \approx \frac{1}{2 h}[u(x+h, t)-2 u(x, t)+u(x-h, t)]
\end{aligned}
$$

The Lax-Wendroff scheme becomes

$$
\begin{aligned}
u(x, t+k)=u(x, t) & -\frac{1}{2} \sigma[u(x+h, t)-u(x-h, t)] \\
& +\frac{1}{2} c \sigma^{2}[u(x+h, t)-2 u(x, t)+u(x-h, t)]
\end{aligned}
$$

where $\sigma=c(k / h)$. As does the Lax method, this method has numerical dissipation (lose of amplitude); however, it is relatively weak.

Summary

(1) We consider a model problem involving the following hyperbolic partial differential equation:

$$
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}
$$

Using finite differences, we approximate it by

$$
\begin{aligned}
& \frac{1}{h^{2}}[u(x+h, t)-2 u(x, t)+u(x-h, t)] \\
& \quad=\frac{1}{k^{2}}[u(x, t+k)-2 u(x, t)+u(x, t-k)]
\end{aligned}
$$

The computational form is

$$
u(x, t+k)=\rho u(x+h, t)+2(1-\rho) u(x, t)+\rho u(x-h, t)-u(x, t-k)
$$

where $\rho=k^{2} / h^{2}<1$. At $t=0$, we use

$$
u(x, k)=\frac{1}{2} \rho[f(x+h)+f(x-h)]+(1-\rho) f(x)
$$

Problems 15.2

${ }^{a}$ 1. What is the solution of the boundary-value problem

$$
u_{t t}=u_{x x} \quad u(x, 0)=x(1-x) \quad u_{t}(x, 0)=0 \quad u(0, t)=u(1, t)=0
$$

at the point where $x=0.3$ and $t=4$?
${ }^{a}$ 2. Show that the function $u(x, t)=f(x+a t)+g(x-a t)$ satisfies the wave equation $u_{t t}=a^{2} u_{x x}$.
${ }^{a}$ 3. (Continuation) Using the idea in the preceding problem, solve this boundary-value problem:

$$
u_{t t}=u_{x x} \quad u(x, 0)=F(x) \quad u_{t}(x, 0)=G(x) \quad u(0, t)=u(1, t)=0
$$

4. Show that the boundary-value problem

$$
u_{t t}=u_{x x} \quad u(x, 0)=2 f(x) \quad u_{t}(x, 0)=2 g(x)
$$

has the solution

$$
u(x, t)=f(x+t)+f(x-t)+G(x+t)-G(x-t)
$$

where G is an antiderivative (i.e., indefinite integral) of g. Here, we assume that $-\infty<$ $x<\infty$ and $t \geqq 0$.
5. (Continuation) Solve the preceding problem on a finite x interval, for example, $0 \leqq x \leqq 1$, adding boundary condition $u(0, t)=u(1, t)=0$. In this case, f and g are defined only for $0 \leqq x \leqq 1$.

Computer Problems 15.2

${ }^{a}$ 1. Given $f(x)$ defined on $[0,1]$, write and test a function for calculating the extended f that obeys the equations $f(-x)=-f(x)$ and $f(x+2)=f(x)$.
2. (Continuation) Write a program to compute the solution of $u(x, t)$ at any given point (x, t) for the boundary-value problem of Equation (2).
3. Compare the accuracy of the computed solution, using first Equation (6) and then Equation (7), in the computer program in the text.
4. Use the program in the text to solve boundary-value Problem (2) with

$$
f(x)=\frac{1}{4}\left(\frac{1}{2}-\left|x-\frac{1}{2}\right|\right) \quad h=\frac{1}{16} \quad k=\frac{1}{32}
$$

5. Modify the code in the text to solve boundary-value Problem (2) when $u_{t}(x, 0)=g(x)$. Hint: Equations (5) and (7) will be slightly different (a fact that affects only the initial loop in the program).
6. (Continuation) Use the program that you wrote for the preceding computer problem to solve the following boundary-value problem:

$$
\left\{\begin{aligned}
u_{t t} & =u_{x x} \quad(0 \leqq x \leqq 1, t \geqq 0) \\
u(x, 0) & =\sin \pi x \\
u_{t}(x, 0) & =\frac{1}{4} \sin 2 \pi x \\
u(0, t) & =u(1, t)=0
\end{aligned}\right.
$$

7. Modify the code in the text to solve the following boundary-value problem:

$$
\left\{\begin{aligned}
u_{t t} & =u_{x x} \quad(-1 \leqq x \leqq 1, t \geqq 0) \\
u(x, 0) & =|x|-1 \\
u_{t}(x, 0) & =0 \\
u(-1, t) & =u(1, t)=0
\end{aligned}\right.
$$

8. Modify the code in the text to avoid storage of the $\left(v_{i}\right)$ and $\left(u_{i}\right)$ arrays.
9. Simplify the code in the text for the special case in which $\rho=1$. Compare the numerical solution at the same grid points for a problem in which $\rho=1$ and $\rho \neq 1$.
10. Use mathematical software such as in Matlab, Maple, or Mathematica to solve the wave Equation (2) and plot both the solution surface and the contour plot.
11. Use the symbolic manipulation capabilities in Maple or Mathematica to verify that Equation (3) is the general analytical solution of the wave equation.

15.3 Elliptic Problems

One of the most important partial differential equations in mathematical physics and engineering is Laplace's equation, which has the following form in two variables:

$$
\nabla^{2} u \equiv \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

Closely related to it is Poisson's equation:

$$
\nabla^{2} u=g(x, y)
$$

These are examples of elliptic equations. (Refer to Problem 17.1.1 for the classification of equations.) The boundary conditions associated with elliptic equations generally differ from those for parabolic and hyperbolic equations. A model problem is considered here to illustrate the numerical procedures that are often used.

Helmholtz Equation Model Problem

Suppose that a function $u=u(x, y)$ of two variables is the solution to a certain physical problem. This function is unknown but has some properties that, theoretically, determine it
uniquely. We assume that on a given region R in the $x y$-plane,

$$
\left\{\begin{array}{l}
\nabla^{2} u+f u=g \tag{1}\\
u(x, y) \quad \text { known on the boundary of } R
\end{array}\right.
$$

Here, $f=f(x, y)$ and $g=g(x, y)$ are given continuous functions defined in R. The boundary values could be given by a third function

$$
u(x, y)=q(x, y)
$$

on the perimeter of R. When f is a constant, this partial differential equation is called the Helmholtz equation. It arises in looking for oscillatory solutions of the wave equations.

Finite-Difference Method

As before, we find an approximate solution of such a problem by the finite-difference method. The first step is to select approximate formulas for the derivatives in our problem. In the present situation, we use the standard formula

$$
\begin{equation*}
f^{\prime \prime}(x) \approx \frac{1}{h^{2}}[f(x+h)-2 f(x)+f(x-h)] \tag{2}
\end{equation*}
$$

derived in Section 4.3. If it is used on a function of two variables, we obtain the five-point formula approximation to Laplace's equation:

$$
\begin{equation*}
\nabla^{2} u \approx \frac{1}{h^{2}}[u(x+h, y)+u(x-h, y)+u(x, y+h)+u(x, y-h)-4 u(x, y)] \tag{3}
\end{equation*}
$$

This formula involves the five points displayed in Figure 15.11.
The local error inherent in the five-point formula is

$$
\begin{equation*}
-\frac{h^{2}}{12}\left[\frac{\partial^{4} u}{\partial x^{4}}(\xi, y)+\frac{\partial^{4} u}{\partial y^{4}}(x, \eta)\right] \tag{4}
\end{equation*}
$$

and for this reason, Formula (3) is said to provide an approximation of order $\mathcal{O}\left(h^{2}\right)$. In other words, if grids are used with smaller and smaller spacing, $h \rightarrow 0$, then the error that is committed in replacing $\nabla^{2} u$ by its finite-difference approximation goes to zero as rapidly as does h^{2}. Equation (3) is called the five-point formula because it involves values of u at (x, y) and at the four nearest grid points.

FIGURE 15.11
Laplace's equation: Five-point stencil

It should be emphasized that when the differential equation in (1) is replaced by the finite-difference analog, we have changed the problem. Even if the analogous finitedifference problem is solved with complete precision, the solution is that of a problem that only simulates the original one. This simulation of one problem by another becomes better and better as h is made to decrease to zero, but the computing cost will inevitably increase.

We should also note that other representations of the derivatives can be used. For example, the nine-point formula is

$$
\begin{align*}
\nabla^{2} u \approx \frac{1}{6 h^{2}} & {[4 u(x+h, y)+4 u(x-h, y)+4 u(x, y+h)+4 u(x, y-h)} \\
& +u(x+h, y+h)+u(x-h, y+h)+u(x+h, y-h) \\
& +u(x-h, y-h)-20 u(x, y)] \tag{5}
\end{align*}
$$

This formula is of order $\mathcal{O}\left(h^{2}\right)$. In the special case that u is a harmonic function (which means it is a solution of Laplace's equation), the nine-point formula is of order $\mathcal{O}\left(h^{6}\right)$. For additional details, see Forsythe and Wasow [1960, pp. 194-195]. Hence, it is an extremely accurate approximation in using finite-difference methods and solving the Poisson equation $\nabla^{2} u=g$, with g a harmonic function. For more general problems, the nine-point Formula (5) has the same order error term as the five-point Formula (3) [namely, $\left.\mathcal{O}\left(h^{2}\right)\right]$ and would not be an improvement over it.

If the mesh spacing is not regular (say, h_{1}, h_{2}, h_{3}, and h_{4} are the left, bottom, right, and top spacing, respectively), then it is not difficult to show that at (x, y) the irregular five-point formula is

$$
\begin{align*}
\nabla^{2} u \approx & \frac{1}{\frac{1}{2} h_{1} h_{3}\left(h_{1}+h_{3}\right)}\left[h_{1} u\left(x+h_{3}, y\right)+h_{3} u\left(x-h_{1}, y\right)\right] \\
& +\frac{1}{\frac{1}{2} h_{2} h_{4}\left(h_{2}+h_{4}\right)}\left[h_{2} u\left(x, y+h_{4}\right)+h_{4} u\left(x, y-h_{2}\right)\right] \\
& -2\left(\frac{1}{h_{1} h_{3}}+\frac{1}{h_{2} h_{4}}\right) u(x, y) \tag{6}
\end{align*}
$$

which is only of order h when $h_{1}=\alpha_{i} h$ for $0<\alpha_{i}<1$. This formula is usually used near boundary points, as in Figure 15.12. If the mesh is small, however, the boundary points can be moved over slightly to avoid the use of (6). This perturbation of the region R (in most

FIGURE 15.12
Boundary points: Irregular mesh spacing

cases for small h) produces an error no greater than that introduced by using the irregular scheme (6).

Returning to the model Problem (1), we cover the region R by mesh points

$$
\begin{equation*}
x_{i}=i h \quad y_{j}=j h \quad(i, j \geqq 0) \tag{7}
\end{equation*}
$$

At this time, it is convenient to introduce an abbreviated notation:

$$
\begin{equation*}
u_{i j}=u\left(x_{i}, y_{i}\right) \quad f_{i j}=f\left(x_{i}, y_{i}\right) \quad g_{i j}=g\left(x_{i}, y_{j}\right) \tag{8}
\end{equation*}
$$

With it, the five-point formula takes on a simple form at the point $\left(x_{i}, y_{j}\right)$:

$$
\begin{equation*}
\left(\nabla^{2} u\right)_{i j} \approx \frac{1}{h^{2}}\left(u_{i+1, j}+u_{i-1, j}+u_{i, j+1}+u_{i, j-1}-4 u_{i j}\right) \tag{9}
\end{equation*}
$$

If this approximation is made in the differential Equation (1), the result is (the reader should verify it)

$$
\begin{equation*}
-u_{i+1, j}-u_{i-1, j}-u_{i, j+1}-u_{i, j-1}+\left(4-h^{2} f_{i j}\right) u_{i j}=-h^{2} g_{i j} \tag{10}
\end{equation*}
$$

The coefficients of this equation can be illustrated by a five-point star in which each point corresponds to the coefficient of u in the grid (see Figure 15.13).

FIGURE 15.13
Helmholtz equations: Five-point star

To be specific, we assume that the region R is a unit square and that the grid has spacing $h=\frac{1}{4}$ (see Figure 15.14). We obtain a single linear equation of the form (10) for each of
the nine interior grid points. These nine equations are as follows:

$$
\left\{\begin{array}{l}
-u_{21}-u_{01}-u_{12}-u_{10}+\left(4-h^{2} f_{11}\right) u_{11}=-h^{2} g_{11} \\
-u_{31}-u_{11}-u_{22}-u_{20}+\left(4-h^{2} f_{21}\right) u_{21}=-h^{2} g_{21} \\
-u_{41}-u_{21}-u_{32}-u_{30}+\left(4-h^{2} f_{31}\right) u_{31}=-h^{2} g_{31} \\
-u_{22}-u_{02}-u_{13}-u_{11}+\left(4-h^{2} f_{12}\right) u_{12}=-h^{2} g_{12} \\
-u_{32}-u_{12}-u_{23}-u_{21}+\left(4-h^{2} f_{22}\right) u_{22}=-h^{2} g_{22} \\
-u_{42}-u_{22}-u_{33}-u_{31}+\left(4-h^{2} f_{32}\right) u_{32}=-h^{2} g_{32} \\
-u_{23}-u_{03}-u_{14}-u_{12}+\left(4-h^{2} f_{13}\right) u_{13}=-h^{2} g_{13} \\
-u_{33}-u_{13}-u_{24}-u_{22}+\left(4-h^{2} f_{23}\right) u_{23}=-h^{2} g_{23} \\
-u_{43}-u_{23}-u_{34}-u_{32}+\left(4-h^{2} f_{33}\right) u_{33}=-h^{2} g_{33}
\end{array}\right.
$$

This system of equations could be solved through Gaussian elimination, but let us examine them more closely. There are 45 coefficients. Since u is known at the boundary points, we move these 12 terms to the right-hand side, leaving only 33 nonzero entries out of 81 in our 9×9 system. The standard Gaussian elimination causes a great deal of fill-in, in the forward elimination phase-that is, zero entries are replaced by nonzero values. So we seek a method that retains the sparse structure of this system. To illustrate how sparse this system of equations is, we write it in matrix notation:

$$
\begin{equation*}
A u=b \tag{11}
\end{equation*}
$$

Suppose that we order the unknowns from left to right and bottom to top:

$$
\begin{equation*}
\boldsymbol{u}=\left[u_{11}, u_{21}, u_{31}, u_{12}, u_{22}, u_{32}, u_{13}, u_{23}, u_{33}\right]^{T} \tag{12}
\end{equation*}
$$

This is called the natural ordering. Now the coefficient matrix is
$\boldsymbol{A}=\left[\begin{array}{rrrrrrrrr}4-h^{2} f_{11} & -1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 4-h^{2} f_{21} & -1 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 4-h^{2} f_{31} & 0 & 0 & -1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 4-h^{2} f_{12} & -1 & 0 & -1 & 0 & 0 \\ 0 & -1 & 0 & -1 & 4-h^{2} f_{22} & -1 & 0 & -1 & 0 \\ 0 & 0 & -1 & 0 & -1 & 4-h^{2} f_{32} & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 & 0 & 0 & 4-h^{2} & f_{13} & -1 \\ 0 & 0 & 0 & 0 & -1 & 0 & -1 & 4-h^{2} f_{23} & -1 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & -1 & 4-h^{2} f_{33}\end{array}\right]$
and the right-hand side is

$$
\boldsymbol{b}=\left[\begin{array}{l}
-h^{2} g_{11}+u_{10}+u_{01} \\
-h^{2} g_{21}+u_{20} \\
-h^{2} g_{31}+u_{30}+u_{41} \\
-h^{2} g_{12}+u_{02} \\
-h^{2} g_{22} \\
-h^{2} g_{32}+u_{42} \\
-h^{2} g_{13}+u_{14}+u_{03} \\
-h^{2} g_{23}+u_{24} \\
-h^{2} g_{33}+u_{34}+u_{43}
\end{array}\right]
$$

Notice that if $f(x, y)<0$, then \boldsymbol{A} is a diagonally dominant matrix.

Gauss-Seidel Iterative Method

Since the equations are similar in form, iterative methods are often used to solve such sparse systems. Solving for the diagonal unknown, we have from Equation (10) the Gauss-Seidel method or iteration given by

$$
u_{i j}^{(k+1)}=\frac{1}{4-h^{2} f_{i j}}\left(u_{i+1, j}^{(k)}+u_{i-1, j}^{(k+1)}+u_{i, j+1}^{(k)}+u_{i, j-1}^{(k+1)}-h^{2} g_{i j}\right)
$$

If we have approximate values of the unknowns at each grid point, this equation can be used to generate new values. We call $u^{(k)}$ the current values of the unknowns at iteration k and $u^{(k+1)}$ the value in the next iteration. Moreover, the new values are used in this equation as soon as they become available. The Gauss-Seidel method and other iterative methods are discussed in Section 8.2.

The pseudocode for this method on a rectangle is as follows:

```
procedure \(\operatorname{Seidel}\left(a_{x}, a_{y}, n_{x}, n_{y}, h, \operatorname{itmax},\left(u_{i j}\right)\right)\)
integer \(i, j, k, n_{x}, n_{y}\), itmax
real \(a_{x}, a_{y}, x, y ; \quad\) real array \(\left(u_{i j}\right)_{0: n_{x}, 0: n_{y}}\)
for \(k=1\) to itmax do
    for \(j=1\) to \(n_{y}-1\) do
        \(y \leftarrow a_{y}+j h\)
        for \(i=1\) to \(n_{x}-1\) do
            \(x \leftarrow a_{x}+i h\)
            \(v \leftarrow u_{i+1, j}+u_{i-1, j}+u_{i, j+1}+u_{i, j-1}\)
            \(u_{i j} \leftarrow\left(v-h^{2} g(x, y)\right) /\left(4-h^{2} f(x, y)\right)\)
        end for
    end for
end for
end procedure Seidel
```

In using this procedure, one must decide on the number of iterative steps to be computed, itmax. The coordinates of the lower left-hand corner of the rectangle, $\left(a_{x}, a_{y}\right)$, and the step size h are specified. The number of x grid points is n_{x}, and the number of y grid points is n_{y}.

Numerical Example and Pseudocode

Let us illustrate this procedure on the boundary-value problem

$$
\left\{\begin{align*}
\nabla^{2} u-\frac{1}{25} u & =0 & & \text { inside } R \text { (unit square) } \tag{13}\\
u & =q & & \text { on the boundary of } R
\end{align*}\right.
$$

where $q=\cosh \left(\frac{1}{5} x\right)+\cosh \left(\frac{1}{5} y\right)$. This problem has the known solution $u=q$. A driver pseudocode for the Gauss-Seidel procedure, starting with $u=1$ and taking 20 iterations, is given next. Notice that only 81 words of storage are needed for the array in solving the 49×49 linear system iteratively. Here, $h=\frac{1}{8}$.

```
program Elliptic
integer \(i, j ; \quad\) real \(h, x, y\); real array \(\left(u_{i j}\right)_{0: n_{x}, 0: n_{y}}\)
integer \(n_{x} \leftarrow 8, n_{y} \leftarrow 8\), itmax \(\leftarrow 20\)
real \(a_{x} \leftarrow 0, b_{x} \leftarrow 1, a_{y} \leftarrow 0, b_{y} \leftarrow 1\)
\(h \leftarrow\left(b_{x}-a_{x}\right) / n_{x}\)
for \(j=0\) to \(n_{y}\) do
    \(y \leftarrow a_{y}+j h\)
    \(u_{0 j} \leftarrow \operatorname{Bndy}\left(a_{x}, y\right)\)
    \(u_{n_{x}, j} \leftarrow \operatorname{Bndy}\left(b_{x}, y\right)\)
end for
for \(i=0\) to \(n_{x}\) do
    \(x \leftarrow a_{x}+i h\)
    \(u_{i 0} \leftarrow \operatorname{Bndy}\left(x, a_{y}\right)\)
    \(u_{i, n_{y}} \leftarrow \operatorname{Bndy}\left(x, b_{y}\right)\)
end for
for \(j=1\) to \(n_{y}-1\) do
    \(y \leftarrow a_{y}+j h\)
    for \(i=1\) to \(n_{x}-1\)
        \(x \leftarrow a_{x}+i h\)
        \(u_{i j} \leftarrow \operatorname{Ustart}(x, y)\)
    end for
end for
output \(0, \operatorname{Norm}\left(\left(u_{i j}\right), n_{x}, n_{y}\right)\)
call \(\operatorname{Seidel}\left(a_{x}, a_{y}, n_{x}, n_{y}, h, \operatorname{itmax},\left(u_{i j}\right)\right)\)
output itmax, \(\operatorname{Norm}\left(\left(u_{i j}\right), n_{x}, n_{y}\right)\)
for \(j=0\) to \(n_{y}\) do
    \(y \leftarrow a_{y}+j h\)
    for \(i=0\) to \(n_{x}\) do
        \(x \leftarrow a_{x}+i h\)
        \(u_{i j} \leftarrow \mid\) True_Solution \((x, y)-u_{i j} \mid\)
    end for
end for
output itmax, \(\operatorname{Norm}\left(\left(u_{i j}\right), n_{x}, n_{y}\right)\)
end program Elliptic
```

For this model problem, the accompanying functions are given next:

```
real function f(x,y)
real }x,
f\leftarrow-0.04
end function }
real function Bndy(x,y)
real x, y
Bndy \leftarrow True_Solution(x, y)
end function Bndy
```

```
real function True_Solution \((x, y)\)
real \(x, y\)
True_Solution \(\leftarrow \cosh (0.2 x)+\cosh (0.2 y)\)
end function True_Solution
real function \(\operatorname{Norm}\left(\left(u_{i j}\right), n_{x}, n_{y}\right)\)
real array \(\left(u_{i j}\right)_{0: n_{x}, 0: n_{y}}\)
\(t \leftarrow 0\)
for \(i=1\) to \(n_{x}-1\) do
for \(j=1\) to \(n_{y}-1\) do
    \(t \leftarrow t+u_{i j}^{2}\)
    end for
end for
Norm \(\leftarrow \sqrt{t}\)
end function Norm
```

After 75 iterations, the computed values at the 49 interior grid points are as follows:

2.0000	2.0003	2.0013	2.0028	2.0050	2.0078	2.0113	2.0154	2.0201
2.0003	2.0006	2.0016	2.0031	2.0053	2.0081	2.0116	2.0157	2.0204
2.0013	2.0016	2.0025	2.0041	2.0062	2.0091	2.0125	2.0166	2.0213
2.0028	2.0031	2.0041	2.0056	2.0078	2.0106	2.0141	2.0182	2.0229
2.0050	2.0053	2.0062	2.0078	2.0100	2.0128	2.0163	2.0204	2.0251
2.0078	2.0081	2.0091	2.0106	2.0128	2.0156	2.0191	2.0232	2.0279
2.0113	2.0116	2.0125	2.0141	2.0163	2.0191	2.0225	2.0266	2.0313
2.0154	2.0157	2.0166	2.0182	2.0204	2.0232	2.0266	2.0307	2.0354
2.0201	2.0204	2.0213	2.0229	2.0251	2.0279	2.0313	2.0354	2.0401

The Euclidean norm $\|u\|_{2}^{2}=\sum_{i=1}^{n_{x}-1} \sum_{j=1}^{n_{y}-1} u_{i j}^{2}$ of the difference between the computed values and the known solution of the boundary-value problem (13) is approximately 0.47×10^{-4}.

This example is a good illustration of the fact that the numerical problem being solved is the system of linear Equations (11), which is a discrete approximation to the continuous-boundary-value Problem (13). When comparing the true solution of (13) with the computed solution of the system, remember the discretization error involved in making the approximation. This error is $\mathcal{O}\left(h^{2}\right)$. With h as large as $h=\frac{1}{8}$, most of the errors in the computed solution are due to the discretization error! To obtain a better agreement between the discrete and continuous problems, select a much smaller mesh size. Of course, the resulting linear system will have a coefficient matrix that is extremely large and quite sparse. Iterative methods are ideal for solving such systems that arise from partial differential equations. For additional information, see the references listed at the end of this section.

For a range of engineering and science applications, Matlab has a PDE Toolbox for the numerical solution of partial differential equations. It can accommodate two space variables and one time variable. After discretizing the equation over an unstructured mesh, it applies finite elements to solve it and offers a provision for visualizing the results. The first example
is Poisson's equation

$$
\nabla^{2} u=-1
$$

in the unit circle with $u=0$ on the boundary. A comparison of the finite-element solution is made with the exact solution.

Finite-Element Methods

The finite-element method has become one of the major strategies for solving partial differential equations. It provides an alternative to the finite-difference methods discussed up to now in this chapter.

As an illustration, we develop a version of the finite-element method for Poisson's equation

$$
\nabla^{2} u \equiv u_{x x}+u_{y y}=r
$$

where r is a constant function. The partial differential equation holds over a specified region R in a two-dimensional plane. Solving Poisson's equation is equivalent to minimizing the expression

$$
J(u)=\iint_{R}\left[\frac{1}{2}\left(u_{x}^{2}+u_{y}^{2}\right)+r u\right] d x d y
$$

This means that if the function u minimizes the expression above, then u obeys Poisson's equation. Suppose the region is subdivided into triangles using approximations as necessary. The function u is approximated by a function φ that is a composite of plane triangular elements, each defined over a triangular piece of R. Then consider the substitute problem of minimizing

$$
\sum_{e} J_{e}\left(\varphi^{(e)}\right)
$$

where each term in the summation is evaluated over its own base triangle T as described below. (By accepting this theory on faith, you should be able to grasp the general idea of the finite-element method.)

Assume that a base triangle has vertices $\left(x_{i}, y_{i}\right),\left(x_{j}, y_{j}\right)$, and $\left(x_{k}, y_{k}\right)$. The solution surface above the triangle is approximated by a plane triangular element denoted $\varphi^{(e)}(x, y)$, where the superscript indicated this element. Let z_{i}, z_{j}, and z_{k} be the distances up to the plane at the triangle corners called nodes. Let $L_{i}^{(e)}$ be one at node i and zero at nodes j and k. Similarly, let $L_{j}^{(e)}$ be one at node j and zero at nodes i and k, and let $L_{k}^{(e)}$ be one at node k and zero at nodes i and j.

As is shown in Figure 15.15, the area of the base triangle, denoted Δ_{e}, is given by

$$
\begin{aligned}
\Delta_{e} & =\frac{1}{2} \operatorname{Det}\left[\begin{array}{ccc}
1 & x_{i} & y_{i} \\
1 & x_{j} & y_{j} \\
1 & x_{k} & y_{k}
\end{array}\right] \\
& =x_{j} y_{k}+x_{i} y_{j}+x_{k} y_{i}-x_{j} y_{i}-x_{i} y_{k}-x_{k} y_{j}
\end{aligned}
$$

FIGURE 15.15

Consequently, we obtain

$$
\begin{aligned}
L_{i}^{(e)} & =\frac{1}{2} \Delta_{e}^{-1} \operatorname{Det}\left[\begin{array}{ccc}
1 & x & y \\
1 & x_{j} & y_{j} \\
1 & x_{k} & y_{k}
\end{array}\right] \\
& =\frac{1}{2} \Delta_{e}^{-1}\left[\left(x_{j} y_{k}-x_{k} y_{j}\right)+\left(y_{j}-y_{k}\right) x+\left(x_{k}-x_{j}\right) y\right] \\
& \equiv \frac{1}{2} \Delta_{e}^{-1}\left(a_{i}^{(e)}+b_{i}^{(e)} x+c_{i}^{(e)} y\right)
\end{aligned}
$$

We have defined the coefficients $a_{i}^{(e)}, b_{i}^{(e)}$, and $c_{i}^{(e)}$. Similarly, we find

$$
\begin{aligned}
L_{j}^{(e)} & =\frac{1}{2} \Delta_{e}^{-1} \operatorname{Det}\left[\begin{array}{ccc}
1 & x & y \\
1 & x_{k} & y_{k} \\
1 & x_{i} & y_{i}
\end{array}\right] \\
& =\frac{1}{2} \Delta_{e}^{-1}\left[\left(x_{k} y_{i}-x_{i} y_{k}\right)+\left(y_{k}-y_{i}\right) x+\left(x_{i}-x_{k}\right) y\right] \\
& \equiv \frac{1}{2} \Delta_{e}^{-1}\left(a_{j}^{(e)}+b_{j}^{(e)} x+c_{j}^{(e)} y\right)
\end{aligned}
$$

and

$$
\begin{aligned}
L_{k}^{(e)} & =\frac{1}{2} \Delta_{e}^{-1} \operatorname{Det}\left[\begin{array}{ccc}
1 & x & y \\
1 & x_{i} & y_{i} \\
1 & x_{j} & y_{j}
\end{array}\right] \\
& =\frac{1}{2} \Delta_{e}^{-1}\left[\left(x_{i} y_{j}-x_{j} y_{i}\right)+\left(y_{i}-y_{j}\right) x+\left(x_{j}-x_{i}\right) y\right] \\
& \equiv \frac{1}{2} \Delta_{e}^{-1}\left(a_{k}^{(e)}+b_{k}^{(e)} x+c_{k}^{(e)} y\right)
\end{aligned}
$$

Finally, we obtain

$$
\varphi^{(e)}=L_{i}^{(e)} z_{i}+L_{j}^{(e)} z_{j}+L_{k}^{(e)} z_{k}
$$

We have

$$
J_{e}\left(\varphi^{(e)}\right)=\iint_{T}\left[\frac{1}{2}\left(\left(\varphi_{x}^{(e)}\right)^{2}+\left(\varphi_{y}^{(e)}\right)^{2}\right)+r \varphi^{(e)}\right] d x d y \equiv F\left(z_{i}, z_{j}, z_{k}\right)
$$

To solve the minimization problem, we set the appropriate derivatives to zero, which requires derivatives of the components. Notice that

$$
\varphi_{x}^{(e)}=\frac{1}{2} \Delta_{e}^{-1}\left(b_{i}^{(e)} z_{i}+b_{j}^{(e)} z_{j}+b_{k}^{(e)} z_{k}\right)
$$

and

$$
\varphi_{y}^{(e)}=\frac{1}{2} \Delta_{e}^{-1}\left(c_{i}^{(e)} z_{i}+c_{j}^{(e)} z_{j}+c_{k}^{(e)} z_{k}\right)
$$

We carry out the differentiations

$$
\begin{aligned}
\partial F / \partial z_{i}= & \iint_{T}\left(\varphi_{x}^{(e)} \varphi_{x z_{i}}^{(e)}+\varphi_{y}^{(e)} \varphi_{y z_{i}}^{(e)}+r \varphi_{z_{i}}^{(e)}\right) d x d y \\
= & \iint_{T}\left(\varphi_{x}^{(e)} \frac{1}{2} \Delta_{e}^{-1} b_{i}^{(e)}+\varphi_{y}^{(e)} \frac{1}{2} \Delta_{e}^{-1} c_{i}^{(e)}+r L_{i}^{(e)}\right) d x d y \\
= & \frac{1}{4} \Delta_{e}^{-1}\left[\left(\left(b_{i}^{(e)}\right)^{2}+\left(c_{i}^{(e)}\right)^{2}\right) z_{i}+\left(b_{i}^{(e)} b_{j}^{(e)}+c_{i}^{(e)} c_{j}^{(e)}\right) z_{j}\right. \\
& \left.\quad+\left(b_{i}^{(e)} b_{k}^{(e)}+c_{i}^{(e)} c_{k}^{(e)}\right) z_{k}\right]+r \frac{1}{3} \Delta_{e}
\end{aligned}
$$

Here, the integrations are straightforward by elementary calculus. Moreover, it can be shown that

$$
\iint_{T} L_{i}^{(e)} d x d y=\iint_{T} L_{j}^{(e)} d x d y=\iint_{T} L_{k}^{(e)} d x d y=\frac{1}{3} \Delta_{e}
$$

where Δ_{e} is the area of each triangle T. Similar results are obtained for $\partial F / \partial z_{j}$ and $\partial F / \partial z_{k}$. Consequently, we set

$$
\left[\begin{array}{l}
\partial F / \partial z_{i} \\
\partial F / \partial z_{j} \\
\partial F / \partial z_{k}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

and we obtain

$$
\left[\begin{array}{ccc}
\left(b_{i}^{(e)}\right)^{2}+\left(c_{i}^{(e)}\right)^{2} & b_{i}^{(e)} b_{j}^{(e)}+c_{i}^{(e)} c_{j}^{(e)} & b_{i}^{(e)} b_{k}^{(e)}+c_{i}^{(e)} c_{k}^{(e)} \\
b_{i}^{(e)} b_{j}^{(e)}+c_{i}^{(e)} c_{j}^{(e)} & \left(b_{j}^{(e)}\right)^{2}+\left(c_{j}^{(e)}\right)^{2} & b_{j}^{(e)} b_{k}^{(e)}+c_{j}^{(e)} c_{k}^{(e)} \\
b_{i}^{(e)} b_{k}^{(e)}+c_{i}^{(e)} c_{k}^{(e)} & b_{j}^{(e)} b_{k}^{(e)}+c_{j}^{(e)} c_{k}^{(e)} & \left(b_{k}^{(e)}\right)^{2}+\left(c_{k}^{(e)}\right)^{2}
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right]=-\frac{4}{3} r \Delta_{e}^{2}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

This matrix equation contains all the ingredients we need to assemble the partial derivatives. In a particular application, we need to do the proper assembling. For each element $\varphi^{(e)}$, the active nodes i, j, and k are those that contribute nonzero values. These contributions are recorded for derivatives relative to the corresponding variables among the z_{i}, z_{j}, z_{k}, and so on.

EXAMPLE 1 Apply the finite-element method to solve Poisson's equation $u_{x x}+u_{y y}=4$ over the unit square with the triangularizations shown in Figure 15.16 and using boundary values corresponding to the exact solution $u(x, y)=x^{2}+y^{2}$.

FIGURE 15.16

Solution By symmetry, we need to consider only the bottom right-hand part of the square, which has been split into two triangles. The input ingredients are nodes 1 to 4 , where the coordinates (x, y) are as follows: node $1:\left(\frac{1}{2}, \frac{1}{2}\right)$, node $2:(0,0)$, node $3:(1,0)$, and node $4:(1,1)$. The elements are two triangles with node numbers indicated: $e=1: 1,2,3$ and $e=2$: $1,3,4$. The astute reader will notice that the z coordinates need to be determined only for node 1 , since they are boundary values for nodes $2,3,4$! However, we will ignore this fact for the moment to illustrate the assembly process in the finite-element method. Notice that the areas of the triangular elements are $\Delta_{1}=\Delta_{2}=\frac{1}{4}$ and $r=4$. First, we compute the $a^{(e)}, b^{(e)}, c^{(e)}$ coefficients from this basic information. In the following table, each column corresponds to a node (i, j, k):

	$e=1$			$e=2$		
$a^{(e)}$	0	$\frac{1}{2}$	0	1	0	$-\frac{1}{2}$
$b^{(e)}$	0	$-\frac{1}{2}$	$\frac{1}{2}$	-1	$\frac{1}{2}$	$\frac{1}{2}$
$c^{(e)}$	1	$-\frac{1}{2}$	$-\frac{1}{2}$	0	$-\frac{1}{2}$	$\frac{1}{2}$

One can verify that the columns do produce the desired $L_{i}^{(e)}, L_{j}^{(e)}$, and $L_{k}^{(e)}$ functions. For example, the first column gives $L_{i}^{(1)}=\frac{1}{2} \Delta_{1}^{-1}[0+0 \cdot x+1 \cdot y]=2 y$. At node 1, this gives the value of 1 , while at nodes 2 and 3, it gives the value 0 . Similarly, the other columns produce the desired results.

Next, we obtain the matrix equation for element $e=1$:

$$
\left[\begin{array}{rrr}
1 & -\frac{1}{2} & -\frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2} & 0 \\
-\frac{1}{2} & 0 & \frac{1}{2}
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right]=\left[\begin{array}{r}
-\frac{1}{3} \\
-\frac{1}{3} \\
-\frac{1}{3}
\end{array}\right]
$$

and the matrix equation for element $e=2$:

$$
\left[\begin{array}{rrr}
1 & -\frac{1}{2} & -\frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2} & 0 \\
-\frac{1}{2} & 0 & -\frac{1}{2}
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{3} \\
z_{4}
\end{array}\right]=\left[\begin{array}{l}
-\frac{1}{3} \\
-\frac{1}{3} \\
-\frac{1}{3}
\end{array}\right]
$$

Then we assemble the two matrices, obtaining

$$
\left[\begin{array}{rrrr}
2 & -\frac{1}{2} & -1 & -\frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2} & 0 & 0 \\
-1 & 0 & 1 & 0 \\
-\frac{1}{2} & 0 & 0 & -\frac{1}{2}
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3} \\
z_{4}
\end{array}\right]=\left[\begin{array}{r}
-\frac{2}{3} \\
-\frac{1}{3} \\
-\frac{2}{3} \\
-\frac{1}{3}
\end{array}\right]
$$

Now that we have illustrated the process of assembling the elements, we can quickly find the solution using the fact that $z_{2}=0, z_{3}=1$, and $z_{4}=2$, since they are boundary values. Using these values in the last matrix equation above, we immediately find that $z_{1}=\frac{2}{3}$. This is a rough approximation, since the true value is $\frac{1}{2}$. Remember that $u(x, y)=x^{2}+y^{2}$ is the exact solution.

We can obtain more accurate approximations by adding more elements and writing a computer program to handle the computations. (See Computer Problem 15.3.15.) For additional details, see Scheid [1990] and Sauer [2006].

More on Finite Elements

At first, we take a very general approach to this topic, supposing that we have a linear transformation \boldsymbol{A} and want to solve the equation

$$
A u=b
$$

for \boldsymbol{u}, when \boldsymbol{b} is given. This obviously includes the case when \boldsymbol{A} is an $m \times n$ matrix and \boldsymbol{b} is a vector of m components. But there are many complicated problems that fit this same mold.

For example, \boldsymbol{A} can be a linear differential operator, and we may wish to solve a two-point boundary-value problem involving it, such as

$$
\left\{\begin{array}{l}
u^{\prime \prime}(t)+2 u(t)=t^{2} \quad(0 \leqq t \leqq 1) \\
u(0)=u(1)=0
\end{array}\right.
$$

Here, \boldsymbol{A} operates on functions and is defined by the equation $\boldsymbol{A} \boldsymbol{u}=\boldsymbol{u}^{\prime \prime}+2 \boldsymbol{u}$.
Another example of great importance is the model problem Equation (1). In this case, \boldsymbol{A} would be the Laplacian differential operator. This problem is discussed in Chapter 17 as well.

The basic strategy of the finite-element method for solving the equation $\boldsymbol{A} \boldsymbol{u}=\boldsymbol{b}$ is to select basic functions $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ and try to solve the equation with a linear combination of these basic functions. Since \boldsymbol{A} is assumed to be a linear transformation, we obtain

$$
\boldsymbol{A} \boldsymbol{u}=\boldsymbol{A} \sum_{j=1}^{n} c_{j} \boldsymbol{v}_{j}=\sum_{j=1}^{n} c_{j}\left(\boldsymbol{A} \boldsymbol{v}_{j}\right)=\boldsymbol{b}
$$

Now the unknowns in the problem are the coefficients c_{j}. Typically, the equation just displayed is inconsistent because \boldsymbol{b} is not in the linear span of the set of functions $\left\{\boldsymbol{A} \boldsymbol{v}_{1}, \boldsymbol{A} \boldsymbol{v}_{2}, \ldots\right.$, $\left.\boldsymbol{A} \boldsymbol{v}_{n}\right\}$. In this case, one must compromise and accept an approximate solution to the set of equations. Many different tactics can be used to arrive at an approximate solution to the problem. For example, a least-squares approach can be used if the linear space involved has an inner product, $\langle\cdot, \cdot\rangle$. The coefficients c_{j} would then be chosen so that the orthogonality condition was fulfilled; that is,

$$
\sum_{j=1}^{n} c_{j} \boldsymbol{A} \boldsymbol{v}_{j}-\boldsymbol{b} \quad \perp \quad \operatorname{Span}\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}
$$

This leads to the normal equations

$$
\sum_{j=1}^{n}\left\langle\boldsymbol{A} \boldsymbol{v}_{j}, \boldsymbol{v}_{i}\right\rangle c_{j}=\left\langle\boldsymbol{b}, \boldsymbol{v}_{i}\right\rangle \quad(1 \leqq i \leqq n)
$$

These equations for the unknown coefficients c_{j} are also known (in this context) as the Galerkin equations. They form a system of n linear equations in n unknowns.

We shall illustrate this process with a two-point boundary-value problem involving a second-order ordinary differential equation:

$$
\left\{\begin{array}{c}
u^{\prime \prime}(t)+g(t) u(t)=f(t) \\
u(0)=a \quad u(1)=b
\end{array}\right.
$$

The finite element method usually uses local functions as the basic functions in the previous discussion. This means that each basic function should be zero except on a short interval. B splines have this property and are therefore often used in the finite-element method. In the
present problem, we shall want to use B splines having two continuous derivatives because the operator \boldsymbol{A} will be defined by

$$
A u=u^{\prime \prime}+g u
$$

Hence, cubic splines would suggest themselves. Define knots $t_{i}=i h$, where h is a chosen step size. (Its reciprocal should be an integer in this example.) Let \boldsymbol{B}_{j}^{3} be the cubic B splines corresponding to the given knots. This is an infinite list of B splines, as discussed in Chapter 9. All but a finite number are zero on the interval $[0,1]$. The ones that are not identically zero on the interval $[0,1]$ can be relabeled as $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$. These are our test functions. Proceeding as before, we arrive at a set of n linear equations in n unknowns. The details require one to find the functions $\boldsymbol{A} \boldsymbol{v}_{j}$ by using the B spline formulas in Chapter 9. This is tedious and not very instructive.

Similar considerations can be applied to Laplace's equation on a given domain. To illustrate, we take the domain to be a square of side 2 , where $0 \leqq x, y \leqq 2$. On the boundary of the square, we require $u(x, y)=\sin (x y)$. Such a problem is called a Dirichlet problem. For base functions, we use functions v_{j} that already satisfy the homogeneous part of the problem. That is, we want each v_{j} to satisfy Laplace's equation inside the square domain. Functions that satisfy Laplace's equation are said to be harmonic. We can exploit the fact that the real and imaginary parts of an analytic function are harmonic. Thus, if we set $z=x+i y$ and compute z^{k}, we will be able to extract harmonic functions that are polynomials. Here are a few harmonic polynomials, v_{j} for $0 \leqq j \leqq 6$:

$$
\begin{array}{rlll}
z=1 & v_{0}(x, y)=1 & \\
z=x+i y & v_{1}(x, y)=x & v_{2}(x, y)=y \\
z^{2}=(x+i y)^{2} & v_{3}(x, y)=x^{2}-y^{2} & v_{4}(x, y)=2 x y \\
z^{3}=(x+i y)^{3} & v_{5}(x, y)=x^{3}-3 x y^{2} & v_{6}(x, y)=3 x^{2} y-y^{3}
\end{array}
$$

Using these seven functions, we form $u=\sum_{j=0}^{6} c_{j} v_{j}$. This satisfies Laplace's equation, and we can concentrate on making u close to the specified boundary value $x^{3}-y^{2}$ on the perimeter of the square. There are many ways to proceed, and we choose first to use a method called collocation. In this process, we select a number of points on the boundary and write down an equation at each point that says the value of $\sum_{j=0}^{6} c_{j} v_{j}$ equals the prescribed value. If the number of points equals the number of basic functions, we have the classical collocation method. Here, we took eight points, whereas there are only seven functions and seven coefficients. Hence, we ask for a least-squares solution. We took the so-called collocation points to be $(0,2),(1,2),(2,2),(2,1),(2,0),(1,0),(0,0)$ and $(0,1)$. This led to the following system of eight equations:

$$
\left[\begin{array}{rrrrrrr}
1 & 0 & 2 & -4 & 0 & 0 & -8 \\
1 & 1 & 2 & -3 & 4 & -11 & -2 \\
1 & 2 & 2 & 0 & 8 & -16 & 16 \\
1 & 2 & 1 & 3 & 4 & 2 & 11 \\
1 & 2 & 0 & 4 & 0 & 8 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & -1 & 0 & 0 & -1
\end{array}\right]\left[\begin{array}{c}
c_{0} \\
c_{1} \\
c_{2} \\
c_{3} \\
c_{4} \\
c_{5} \\
c_{6} \\
c_{7}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\sin (2) \\
\sin (4) \\
\sin (2) \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The least-squares solution is a \boldsymbol{c}-vector having components

$$
\boldsymbol{c}=[0.3219,-0.8585,-0.8585,0,1.1931,0.2146,-0.2146]^{T}
$$

The residual function is $\sum_{j=0}^{6} c_{j} \boldsymbol{v}_{j}-\boldsymbol{b}$, where $\boldsymbol{b}_{i}(x, y)=\sin (x y)$. Its absolute value is 0.3219 at each of the eight collocation points. To improve the accuracy, one must employ more basic functions and more collocation points.

Another technique that is often used in the finite-element method is the replacement of a differential equation by an optimization problem. This can be illustrated by a two-point boundary-value problem such as

$$
\left\{\begin{aligned}
\left(h u^{\prime}\right)^{\prime}-g u & =f \\
u(a)=\alpha \quad u(b) & =\beta
\end{aligned}\right.
$$

Here, u is the unknown function, while h, g, and f are prescribed functions, all defined on the interval $[a, b]$. This problem is called a Sturm-Liouville problem. There is an accompanying functional, defined by

$$
\Phi(u)=\int_{a}^{b}\left[\left(u^{\prime}\right)^{2} h+u^{2} g+2 u f\right] d x
$$

The functional and the two-point boundary-value problem are related by several theorems. One of these states roughly that if we find the function u that minimizes the functional $\Phi(u)$ subject to the side conditions $u(a)=\alpha$ and $u(b)=\beta$, then we will have the solution of the boundary-value problem. It is possible to exploit the fact that $\Phi(u)$ is defined as long as u has a derivative, whereas in the differential equation, we require a function possessing two derivatives. In fact, for the functional, we require only that u be piecewise differentiable, a property that spline functions of degrees 0 and 1 possess. These ideas extend to functions of two or more variables and allow one to use spline functions of low degree in two or more variables to approximate the solution to a differential equation. These are the principal features of the finite element method. For the mathematical theory of finite-element methods, see the books by Brenner and Scott [2002], Strang [2006], and others.

Summary

(1) We study a model problem involving the following elliptic partial differential equation

$$
\nabla^{2} u+f u=g
$$

over a region, with the value of u given on the boundary. The first term involves the Laplace operator ∇^{2}, which is

$$
\nabla^{2} u \equiv \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}
$$

By placing a grid over the region with uniform spacing h in both directions the Laplacian term can be approximated by using the five-point finite differences

$$
\nabla^{2} u \approx \frac{1}{h^{2}}[u(x+h, y)+u(x-h, y)+u(x, y+h)+u(x, y-h)-4 u(x, y)]
$$

At each interior grid point, we write $u_{i j}=u\left(x_{i}, y_{j}\right)=u(i h, j h)$, and we obtain the following equation for our model problem:

$$
-u_{i+1, j}-u_{i-1, j}-u_{i, j+1}-u_{i, j-1}+\left(4-h^{2} f_{i j}\right) u_{i j}=-h^{2} g_{i j}
$$

Usually, the resulting linear system of equations is large and sparse, and iterative methods can be used to solve it. For example, the Gauss-Seidel iterative method for our linear
system is

$$
u_{i j}^{(k+1)}=\frac{1}{4-h^{2} f_{i j}}\left(u_{i+1, j}^{(k)}+u_{i-1, j}^{(k+1)}+u_{i, j+1}^{(k)}+u_{i, j-1}^{(k+1)}-h^{2} g_{i j}\right)
$$

The grid points can be ordered in different ways, such as the natural ordering or the red-black ordering, which affects the rate of convergence of the iterative procedures.
(2) The distinguishing feature of the finite-element method is that we solve an equation $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ approximately by setting $\boldsymbol{u}=\sum_{j=1}^{n} c_{j} \boldsymbol{v}_{j}$, where $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ are chosen by the user. The unknown coefficients c_{j} are computed so that $\sum_{j=1}^{n} c_{j} \boldsymbol{A} \boldsymbol{v}_{j}$ is as close as possible to \boldsymbol{b}. Typically, in partial differential equations, the functions \boldsymbol{v}_{j} will be multidimensional spline functions.

Additional References

For additional study and reading, see Ames [1992], Evans [2000], Forsythe and Wasow [1960], Gockenbach [2002], Mattheij, Rienstra and Boonkkamp [2005], Ortega and Voigt [1985], Rice and Boisvert [1984], Smith [1965], Street [1973], Varga [1962, 2002], Wachspress [1966], Young [1971], and Young and Gregory [1972].

Problems 15.3

1. Establish the formula for the error in the
a. five-point formula, Equation (3).
b. nine-point formula, Equation (5).
2. Establish the irregular five-point Formula (6) and its error term.
3. Write the matrices that occur in Equation (11) when the unknowns are ordered according to the vector $\boldsymbol{u}=\left[u_{11}, u_{31}, u_{22}, u_{13}, u_{33}, u_{21}, u_{12}, u_{32}, u_{23}\right]^{T}$. This is known as redblack or checkerboard ordering.
4. a. Verify Equation (10).
b. Verify that the solution of Equation (13) is as given in the text.
${ }^{a} 5$. Consider the problem of solving the partial differential equation

$$
20 u_{x x}-30 u_{y y}+\frac{5}{x+y} u_{x}+\frac{1}{y} u_{y}=69
$$

in a region R with u prescribed on the boundary. Derive a five-point finite difference equation of order $\mathcal{O}\left(h^{2}\right)$ that corresponds to this equation at some interior point $\left(x_{i}, y_{j}\right)$.
${ }^{a}$ 6. Solve this boundary-value problem to estimate $u\left(\frac{1}{2}, \frac{1}{2}\right)$ and $u\left(0, \frac{1}{2}\right)$:

$$
\left\{\begin{aligned}
\nabla^{2} u & =0 & & (x, y) \in R \\
u & =x & & (x, y) \in \partial R
\end{aligned}\right.
$$

The region R with boundary ∂R is shown in the figure (the arc is circular). Use $h=\frac{1}{2}$. Note: This problem (and many others in this text) can be stated in physical terms also. For example, in this problem, we are finding the steady-state temperature in a beam of cross section R if the surface of the beam is held at temperature $u(x, y)=x$.

${ }^{a}$ 7. Consider the boundary-value problem

$$
\left\{\begin{aligned}
\nabla^{2} u & =9\left(x^{2}+y^{2}\right) & & (x, y) \in R \\
u & =x-y & & (x, y) \in \partial R_{1}
\end{aligned}\right.
$$

for the region in the unit square with $h=\frac{1}{3}$ in the figure below. Here, ∂R is the boundary of $R, \partial R_{2}=\left\{(x, y) \in \partial R: \frac{2}{3} \leqq x<1, \frac{2}{3} \leqq y<1\right\}$, and $\partial R_{1}=\partial R-\partial R_{2}$. At the mesh points, determine the system of linear equations that yields an approximate value for $u(x, y)$. Write the system in the form $\boldsymbol{A} \boldsymbol{u}=\boldsymbol{b}$.

8. Determine the linear system to be solved if the nine-point Formula (5) is used as the approximation in the problem of Equation (1). Notice the pattern in the coefficient matrix with both the five-point and nine-point formulas when unknowns in each row are grouped together. (Draw dotted lines through \boldsymbol{A} to form 3×3 submatrices.)
9. In Equation (11), show that \boldsymbol{A} is diagonally dominant when $f(x, y) \leqq 0$.
10. What is the linear system if an alternative nine-point formula

$$
\begin{aligned}
\nabla^{2} u \approx \frac{1}{12 h^{2}} & {[16 u(x+h, y)+16 u(x-h, y)+16 u(x, y+h)} \\
+ & 16 u(x, y-h)-u(x+2 h, y)-u(x-2 h, y) \\
& -u(x, y+2 h)-u(x, y-2 h)-60 u(x, y)]
\end{aligned}
$$

is used? What are the advantages and disadvantages of using it? Hint: It has accuracy $\mathcal{O}\left(h^{4}\right)$.
11. (Multiple choice) What is Laplace's equation in three variables?
a. $u-x+u_{y}+u_{z}=0$
b. $u_{x x}+u_{y y}=0$
c. $u_{x x}+u_{y y}+y_{z z}=0$
d. $u_{x x}+u_{y y}=y u_{t}$
e. None of these.
12. (Multiple choice) Which of these is not a harmonic function of (x, y) ?
a. $x^{2}-y^{2}$
b. $2 x y$
c. $x^{3} y-x y^{3}$
d. $x^{3}-x y^{3}$
e. None of these.
13. (Multiple choice) In solving the Dirichlet problem on the unit square, where $0<x<1$ and $0<y<1$, suppose that we have chosen step size $h=1 / 100$. How many unknown function values $u(x, y)$ will there be in this discrete version of the problem? Take into account that $x_{i}=i h$ for $0 \leqq i \leqq n+1$, and similarly for y_{i}. Also, $x_{0}=0$ and $x_{n+1}=1$, and similarly for y.Hint: Boundary values on the perimeter of the square are given and are not unknowns.
a. $9801=99^{2}$
b. $10,000=100^{2}$
c. $10,404=102^{2}$
d. $10,201=101^{2}$
e. None of these.
14. Let $z^{n}=u_{n}+i v_{n}$. Verify that u_{n} and v_{n} can be determined by the algorithm $u_{0}=1$, $v_{0}=0, u_{n+1}=x u_{n}-y v_{n}$, and $v_{n+1}=x v_{n}+y u_{n}$.

Computer Problems 15.3

1. Print the system of linear equations for solving Equation (13) with $h=\frac{1}{4}$ and $\frac{1}{8}$. Solve these systems using procedures Gauss and Solve of Chapter 7.
2. Try the Gauss-Seidel routine on the problem

$$
\left\{\begin{aligned}
\nabla^{2} u & =2 e^{x+y} & & (x, y) \in R \\
u & =e^{x+y} & & (x, y) \in \partial R
\end{aligned}\right.
$$

R is the rectangle shown in the figure. Starting values and mesh sizes are in the following table. Compare your numerical solutions with the exact solutions after itmax iterations.

Starting Values	\boldsymbol{h}	itmax
$u=x y$	0.1	15
$u=0$	0.2	20
$u=(1+x)(1+y)$	0.25	40
$u=\left(1+x+\frac{1}{2} x^{2}\right)\left(1+y+\frac{1}{2} y^{2}\right)$	0.05	100
$u=1+x y$	0.25	200

3. Modify the Gauss-Seidel procedure to handle the red-black ordering. Redo the preceding computer problem with this ordering. Does the ordering make any difference? (See Problem 15.3.3.)
4. Rewrite the Gauss-Seidel pseudocode so that it can handle any ordering; that is, introduce an ordering array $\left(\ell_{i}\right)$. Try several different orderings-natural, red-black, spiral, and diagonal.
${ }^{a}$ 5. Consider the heat transfer problem on the irregular region shown in the figure below. The mathematical statement of this problem is as follows:

$$
\left\{\begin{aligned}
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}} & =0 & & \text { inside } \\
\frac{\partial u}{\partial x} & =0 & & \text { sides } \\
u & =0 & & \text { top } \\
u & =100 & & \text { bottom }
\end{aligned}\right.
$$

Here, the partial derivative $\partial u / \partial x$ can be approximated by a divided-difference formula. Establish that the insulated boundaries act like mirrors so that we can assume that the temperature is the same as at an adjacent interior grid point. Determine the associated linear system, and solve for the temperature u_{i} with $1 \leqq i \leqq 10$.
6. Modify procedure Seidel so that is uses the nine-point Formula (5). Re-solve model Problem (13) and compare results.
7. Solve the example that begins this chapter with $h=\frac{1}{9}$.
8. Solve the boundary-value problem

$$
\left\{\begin{aligned}
\nabla^{2} u+2 u=g & \text { inside } R \\
u=0 & \text { on boundary of } R
\end{aligned}\right.
$$

where $g(x, y)=(x y+1)(x y-x-y)+x^{2}+y^{2}$ and R is the unit square. This problem has the known solution $u=\frac{1}{2} x y(x-1)(y-1)$. Use the Gauss-Seidel procedure Seidel starting with $u=x y$ and take 30 iterations.
9. (Continuation) Using the modified procedure Seidel of Computer Problem 15.3.6, in which the nine-point Formula (5) is used, re-solve this problem. Compare results and explain the difference.
10. For the elliptic PDE problem (13), use Maple, Mathematica, or Matlab to find the numerical solution of the linear system (11), where $h=\frac{1}{4}, f_{i j}=\frac{1}{25}$, and $g_{i j}=0$ in the 7×7 coefficient matrix and the 1×7 right-hand side. Compare it with the exact solution of the boundary-value problem, which is $u_{i j}=\cosh \left(\frac{1}{5} i h\right)+\cosh \left(\frac{1}{5} j h\right)$. Also, compare these results with those obtained in the example in text when $h=\frac{1}{8}$ and the Gauss-Seidel method was used. What conclusions can you draw?
11. Find, approximately, a harmonic function on the circular domain $x^{2}+y^{2}<1$ that takes the values $\sin 3 \theta$ on the boundary circle. Here, θ is the angular coordinate of the point in polar coordinates. Use the seven basic harmonic polynomials employed in the example of this section. Choose 100 equally spaced points on the circumference, and use the (extended) collocation method, in which a least-squares solution to the system of linear equations is computed.
12. In the collocation example in the text, solve the Dirichlet problem but substitute the boundary values $x^{3}-x^{2}$.
13. Take advantage of any special commands or procedures in mathematical software systems such as Matlab, Maple, or Mathematica to solve the numerical example (13).
14. (Continuation) Use the symbolic manipulation capabilities in mathematical software such as in Maple or Mathematica to verify the general solution of (13).
15. Write a computer program using the finite-element method to solve Poisson's equation $u_{x x}+u_{y y}=4$ with boundary conditions $u(x, y)=x^{2}+y^{2}$ using nine nodes in the finer triangularization shown. See Scheid (1988) for additional details.

Minimization of Functions

$$
\begin{aligned}
& \text { An engineering design problem leads to a function } \\
& \qquad F(x, y)=\cos \left(x^{2}\right)+e^{(y-6)^{2}}+3(x+y)^{4} \\
& \text { in which } x \text { and } y \text { are parameters to be selected and } F(x, y) \text { is a function } \\
& \text { related to the cost of manufacturing and is to be minimized. Methods for } \\
& \text { locating optimal points }(x, y) \text { in such problems are developed in this chapter. }
\end{aligned}
$$

16.1 One-Variable Case

An important application of calculus is the problem of finding the local minima of a function. Problems of maximization are covered by the theory of minimization because the maxima of F occur at points where $-F$ has its minima. In calculus, the principal technique for minimization is to differentiate the function whose minimum is sought, set the derivative equal to zero, and locate the points that satisfy the resulting equation.

This technique can be used on functions of one or several variables. For example, if a minimum value of $F\left(x_{1}, x_{2}, x_{3}\right)$ is sought, we look for the points where all three partial derivatives are simultaneously zero:

$$
\frac{\partial F}{\partial x_{1}}=\frac{\partial F}{\partial x_{2}}=\frac{\partial F}{\partial x_{3}}=0
$$

This procedure cannot be readily accepted as a general-purpose numerical method because it requires differentiation followed by the solution of one or more equations in one or more variables using methods from Chapter 3. This task may be as difficult to carry out as a direct frontal attack on the original problem.

Unconstrained and Constrained Minimization Problems

The minimization problem has two forms: the unconstrained and the constrained. In an unconstrained minimization problem, a function F is defined from the n-dimensional space \mathbb{R}^{n} into the real line \mathbb{R}, and a point $z \in \mathbb{R}^{n}$ is sought with the property that

$$
F(z) \leqq F(x) \quad \text { for all } x \in \mathbb{R}^{n}
$$

It is convenient to write points in \mathbb{R}^{n} simply as $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$, and so on. If it is necessary to display the components of a point, we write $\boldsymbol{x}=\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{T}$. In a constrained minimization
problem, a subset \boldsymbol{K} in \mathbb{R}^{n} is prescribed, and a point $z \in \boldsymbol{K}$ is sought for which

$$
F(z) \leqq F(\boldsymbol{x}) \quad \text { for all } \boldsymbol{x} \in \boldsymbol{K}
$$

Such problems are more difficult because of the need to keep the points within the set \boldsymbol{K}. Sometimes the set \boldsymbol{K} is defined in a complicated way.

Consider the elliptic paraboloid $F\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}-2 x_{1}-2 x_{2}+4$, which is sketched in Figure 16.1. The unconstrained minimum occurs at $(1,1)$ because $F\left(x_{1}, x_{2}\right)=$ $\left(x_{1}-1\right)^{2}+\left(x_{2}-1\right)^{2}+2$. If $\boldsymbol{K}=\left\{\left(x_{1}, x_{2}\right): x_{1} \leqq 0, x_{2} \leqq 0\right\}$, the constrained minimum is 4 at $(0,0)$.

FIGURE 16.1
Elliptic paraboloid

Mathematical software systems such as Matlab, Maple, and Mathematica contain commands for the optimization of general linear and nonlinear functions. For example, we can solve the minimization problem corresponding to the elliptic paraboloid shown in Figure 16.1. First, we define the function, find the minimum value close to the point $\left(\frac{1}{2}, \frac{1}{2}\right)$, and plot this function. We obtain the minimum point as $(1,1)$ and the value of the function at this point as 2 .

One-Variable Case

The special case in which a function F is defined on \mathbb{R} is considered first because the more general problem with n variables is often solved by a sequence of one-variable problems.

Suppose that $F: \mathbb{R} \rightarrow \mathbb{R}$ and that we seek a point $z \in \mathbb{R}$ with the property that $F(z) \leqq F(x)$ for all $x \in \mathbb{R}$. Note that if no assumptions are made about F, this problem is insoluble in its general form. For instance, the function

$$
f(x)=\frac{1}{1+x^{2}}
$$

has no minimum point. Even for relatively well-behaved functions, such as

$$
F(x)=x^{2}+\sin (53 x)
$$

numerical methods may encounter some difficulties because of the large number of purely local minima. See Figure 16.2. Recall that a point z is a local minimum point of a function F if there is some neighborhood of z in which all points satisfy $F(z) \leqq F(x)$. We can use

FIGURE 16.2
$F(x)=$ $x^{2}+\sin (53 x)$

mathematical software such as Matlab and Mathematica to find local minimum values for the function $F(x)=x^{2}+\sin (53 x)$. First, we define the function, find a local minimum value in the interval $\left[-\frac{1}{2}, \frac{1}{2}\right]$, and plot the curve. The point that is computed may not be a global minimum point! To try to find the global minimum point, we could use various starting values to find local minimum values and then find the minimum of them. (See Computer Problem 16.1.6.) In fact, we find a local minimum -0.999122 at $t=-0.0296166$, which is the global minimum for this function.

Unimodal Functions F

In attacking a minimization problem, one reasonable assumption is that on some interval $[a, b]$ given to us in advance, F has only a single local minimum. This property is often expressed by saying that F is unimodal on $[a, b]$. (Caution: In statistics, unimodal refers to a single local maximum.) Some unimodal functions are sketched in Figure 16.3.

An important property of a continuous unimodal function, which might be surmised from Figure 16.3, is that it is strictly decreasing up to the minimum point and strictly increasing thereafter.

FIGURE 16.3
Examples of unimodal and nonunimodal functions

To be convinced of this, let x^{*} be the minimum point of F on $[a, b]$ and suppose, for instance, that F is not strictly decreasing on the interval $\left[a, x^{*}\right]$. Then points x_{1} and x_{2} that satisfy $a \leqq x_{1}<x_{2} \leqq x^{*}$ and $F\left(x_{1}\right) \leqq F\left(x_{2}\right)$ must exist. Now let $x^{* *}$ be a minimum point of F on the interval $\left[a, x_{2}\right]$. (Recall that a continuous function on a closed finite interval attains its minimum value.) We can assume that $x^{* *} \neq x_{2}$ because if $x^{* *}$ were initially chosen as x_{2}, it could be replaced by x_{1} inasmuch as $F\left(x_{1}\right) \leqq F\left(x_{2}\right)$. But now we see that $x^{* *}$ is a local minimum point of F in the interval $[a, b]$ because it is a minimum point of F on $\left[a, x_{2}\right]$, but it is not x_{2} itself. The presence of two local minimum points, of course, contradicts the unimodality of F.

Fibonacci Search Algorithm

Now we pose a problem concerning the search for a minimum point x^{*} of a continuous unimodal function F on a given interval $[a, b]$. How accurately can the true minimum point x^{*} be computed with only n evaluations of F ? With no evaluations of F, the best that can be said is that $x^{*} \in[a, b]$; taking the midpoint $\widehat{x}=\frac{1}{2}(b+a)$ as the best estimate gives an error of $\left|x^{*}-\widehat{x}\right| \leqq \frac{1}{2}(b-a)$. One evaluation by itself does not improve this situation, so the best estimate and the error remain the same as in the previous case. Consequently, we need at least two function evaluations to obtain a better estimate.

FIGURE 16.4
Fibonacci search algorithm: F evaluated at a^{\prime} and b^{\prime}

Suppose that F is evaluated at a^{\prime} and b^{\prime} with the results shown in Figure 16.4. If $F\left(a^{\prime}\right)<$ $F\left(b^{\prime}\right)$, then because F is increasing to the right of x^{*}, we can be sure that $x^{*} \in\left[a, b^{\prime}\right]$. On the other hand, similar reasoning for the case $F\left(a^{\prime}\right) \geqq F\left(b^{\prime}\right)$ shows that $x^{*} \in\left[a^{\prime}, b\right]$. To make both intervals of uncertainty as small as possible, we move b^{\prime} to the left and a^{\prime} to the right. Thus, F should be evaluated at two nearby points on either side of the midpoint, as shown in Figure 16.5. Suppose that

$$
a^{\prime}=\frac{1}{2}(a+b)-2 \delta \quad \text { and } \quad b^{\prime}=\frac{1}{2}(a+b)+2 \delta
$$

Taking the midpoint of the appropriate subinterval $\left[a, b^{\prime}\right]$ or $\left[a^{\prime}, b\right]$ as the best estimate \widehat{x} of x^{*}, we find that the error does not exceed $\frac{1}{4}(b-a)+\delta$. The reader can easily verify this.

For $n=3$, two evaluations are first made at the $\frac{1}{3}$ and $\frac{2}{3}$ points of the initial interval [$a, b]$; that is,

$$
a^{\prime}=a+\frac{1}{3}(b-a) \quad \text { and } \quad b^{\prime}=a+\frac{2}{3}(b-a)
$$

From the two values $F\left(a^{\prime}\right)$ and $F\left(b^{\prime}\right)$, it can be determined whether $x^{*} \in\left[a, b^{\prime}\right]$ or $x^{*} \in\left[a^{\prime}, b\right]$. The two cases are, of course, similar. Let us suppose that $F\left(a^{\prime}\right) \geqq F\left(b^{\prime}\right)$, so

FIGURE 16.5
Fibonacci search algorithm: F evaluated on either side of the midpoint

FIGURE 16.6
Fibonacci search algorithm: Reset $b=b^{\prime}$

that our minimum point x^{*} must be in $\left[a^{\prime}, b\right]$, as shown in Figure 16.6. The third (final) evaluation is made close to b^{\prime}, for example, at $b^{\prime}+\delta$ (where $\delta>0$). If $F\left(b^{\prime}\right) \geqq F\left(b^{\prime}+\delta\right)$, then $x^{*} \in\left[b^{\prime}, b\right]$. Taking the midpoint of this interval, we obtain $\widehat{x}=\frac{1}{2}\left(b^{\prime}+b\right)$ as our estimate of x^{*} and find that $\left|\widehat{x}-x^{*}\right| \leqq \frac{1}{6}(b-a)$. On the other hand, if $F\left(b^{\prime}\right)<F\left(b^{\prime}+\delta\right)$, then $x^{*} \in\left[a^{\prime}, b^{\prime}+\delta\right]$. Again we take the midpoint, $\hat{x}=\frac{1}{2}\left(a^{\prime}+b^{\prime}+\delta\right)$, and find that $\left|\widehat{x}-x^{*}\right| \leqq \frac{1}{6}(b-a)+\frac{1}{2} \delta$. So if we ignore the small quantity $\delta / 2$, our accuracy is $\frac{1}{6}(b-a)$ in using three evaluations of F.

By continuing the search pattern outlined, we find an estimate \widehat{x} of x^{*} with only n evaluations of F and with an error not exceeding

$$
\begin{equation*}
\frac{1}{2}\left(\frac{b-a}{\lambda_{n}}\right) \tag{1}
\end{equation*}
$$

where λ_{n} is the $(n+1)$ st member of the Fibonacci sequence:

$$
\left\{\begin{array}{l}
\lambda_{1}=1, \quad \lambda_{2}=1 \tag{2}\\
\lambda_{k}=\lambda_{k-1}+\lambda_{k-2} \quad(k \geqq 3)
\end{array}\right.
$$

For example, elements λ_{1} through λ_{8} are $1,1,2,3,5,8,13$, and 21 .
In the Fibonacci search algorithm, we initially determine the number of steps N for a desired accuracy $\epsilon>\delta$ by selecting N to be the subscript of the smallest Fibonacci number greater than $\frac{1}{2}(b-a) / \epsilon$. We define a sequence of intervals, starting with the given interval $[a, b]$ of length $\ell=b-a$, and, for $k=N, N-1, \ldots, 3$, use these formulas
for updating:

$$
\begin{align*}
& \Delta=\left(\frac{\lambda_{k-2}}{\lambda_{k}}\right)(b-a) \tag{3}\\
& a^{\prime}=a+\Delta \quad b^{\prime}=b-\Delta \\
& \begin{cases}a=a^{\prime} & \text { if } F\left(a^{\prime}\right) \geqq F\left(b^{\prime}\right) \\
b=b^{\prime} & \text { if } F\left(a^{\prime}\right)<F\left(b^{\prime}\right)\end{cases}
\end{align*}
$$

At the step $k=2$, we set

$$
\begin{aligned}
& a^{\prime}=\frac{1}{2}(a+b)-2 \delta \quad b^{\prime}=\frac{1}{2}(a+b)+2 \delta \\
& \begin{cases}a=a^{\prime} \quad \text { if } F\left(a^{\prime}\right) \geqq F\left(b^{\prime}\right) \\
b=b^{\prime} \quad \text { if } F\left(a^{\prime}\right)<F\left(b^{\prime}\right)\end{cases}
\end{aligned}
$$

and we have the final interval $[a, b]$, from which we compute $\widehat{x}=\frac{1}{2}(a+b)$. This algorithm requires only one function evaluation per step after the initial step.

FIGURE 16.7
Fibonacci search algorithm: Verify using a typical situation

To verify the algorithm, consider the situation shown in Figure 16.7. Since $\lambda_{k}=$ $\lambda_{k-1}+\lambda_{k-2}$, we have

$$
\begin{equation*}
\ell^{\prime}=\ell-\Delta=\ell-\left(\frac{\lambda_{k-2}}{\lambda_{k}}\right) \ell=\left(\frac{\lambda_{k-1}}{\lambda_{k}}\right) \ell \tag{4}
\end{equation*}
$$

and the length of the interval of uncertainty has been reduced by the factor $\left(\lambda_{k-1} / \lambda_{k}\right)$. The next step yields

$$
\begin{equation*}
\Delta^{\prime}=\left(\frac{\lambda_{k-3}}{\lambda_{k-1}}\right) \ell^{\prime} \tag{5}
\end{equation*}
$$

and Δ^{\prime} is actually the distance between a^{\prime} and b^{\prime}. Therefore, one of the preceding points at which the function was evaluated is at one end or the other of $[a, b]$; that is,

$$
\begin{aligned}
b^{\prime}-a^{\prime} & =\ell=2 \Delta=\left(\frac{\lambda_{k}-2 \lambda_{k-2}}{\lambda_{k}}\right) \ell \\
& =\left(\frac{\lambda_{k-1}-\lambda_{k-2}}{\lambda_{k}}\right) \ell=\left(\frac{\lambda_{k-3}}{\lambda_{k}}\right) \ell \\
& =\left(\frac{\lambda_{k-3}}{\lambda_{k-1}}\right) \ell^{\prime}=\Delta^{\prime}
\end{aligned}
$$

by Equations (2), (4), and (5).

It is clear by Equation (4) that after $N-1$ function evaluations, the next-to-last interval has length $\left(1 / \lambda_{N}\right)$ times the length of the initial interval $[a, b]$. So the final interval is $(b-a)\left(1 / \lambda_{N}\right)$ wide, and the maximum error (1) is established. The final step is similar to that outlined, and F is evaluated at a point 2δ away from the midpoint of the next-to-last interval. Finally, set $\widehat{x}=\frac{1}{2}(b+a)$ from the last interval $[a, b]$.

One disadvantage of the Fibonacci search is that the algorithm is rather complicated. Also, the desired precision must be given in advance, and the number of steps to be computed for this precision must be determined before beginning the computation. Thus, the initial evaluation points for the function F depend on N, the number of steps.

Golden Section Search Algorithm

A similar algorithm that is free of these drawbacks is described next. It has been termed the golden section search because it depends on a ratio ρ known to the early Greeks as the golden section ratio:

$$
\rho=\frac{1}{2}(1+\sqrt{5}) \approx 1.6180339887
$$

The mathematical history of this number can be found in Roger [1998], and ρ satisfies the equation $\rho^{2}=\rho+1$, which has roots $\frac{1}{2}(1+\sqrt{5}) \approx 1.61803 \ldots$ and $\frac{1}{2}(1-\sqrt{5}) \approx$ $-0.61803 \ldots$. In each step of this iterative algorithm, an interval $[a, b]$ is available from the previous work. It is an interval that is known to contain the minimum point x^{*}, and our objective is to replace it by a smaller interval that is also known to contain x^{*}. In each step, two values of F are needed:

$$
\begin{cases}x=a+r(b-a) & u=F(x) \tag{6}\\ y=a+r^{2}(b-a) & v=F(y)\end{cases}
$$

where $r=1 / \rho$ and $r^{2}+r=1$, which has roots $\frac{1}{2}(-1+\sqrt{5}) \approx 0.61803 \ldots$ and $\frac{1}{2}(-1-\sqrt{5}) \approx-1.61803 \ldots$. There are two cases to consider: Either $u>v$ or $u \leqq v$. Let us take the first. Figure 16.8 depicts this situation. Since F is assumed continuous and unimodal, the minimum of F must be in the interval $[a, x]$. This interval is the input interval at the beginning of the next step. Observe now that within the interval $[a, x]$, one evaluation of F is already available, namely, at y. Also note that

$$
a+r(x-a)=y
$$

FIGURE 16.8
Golden section search algorithm: $u>v$

because $x-a=r(b-a)$. In the next step, therefore, y will play the role of x, and we shall need the value of F at the point $a+r^{2}(x-a)$.

So what must be done in this step is to carry out the following replacements in order:

$$
\begin{aligned}
& b \leftarrow x \\
& x \leftarrow y \\
& u \leftarrow v \\
& y \leftarrow a+r^{2}(b-a) \\
& v \leftarrow F(y)
\end{aligned}
$$

The other case is similar. If $u \leqq v$, the picture might be as in Figure 16.9. In this case, the minimum point must lie in $[y, b]$. Within this interval, one value of F is available, namely, at x. Observe that

$$
y+r^{2}(b-y)=x
$$

(See Problem 16.1.9.) Thus, x should now be given the role of y, and the value of F is to be computed at $y+r(b-y)$. The following ordered replacements accomplish this:

$$
\begin{aligned}
& a \leftarrow y \\
& y \leftarrow x \\
& v \leftarrow u \\
& x \leftarrow a+r(b-a) \\
& u \leftarrow F(x)
\end{aligned}
$$

Problems 16.1.10 and 16.1.11 hint at a shortcoming of this procedure: It is quite slow. Slowness in this context refers to the large number of function evaluations that are needed to achieve reasonable precision. It can be surmised that this slowness is attributable to the extreme generality of the algorithm. No advantage has been taken of any smoothness that the function F may possess.

If $[a, b]$ is the starting interval in the search for a minimum of F, then at the beginning, with one evaluation of F, we can be sure only that the minimum point, x^{*}, is in an interval of width $b-a$. In the golden section search, the corresponding lengths in successive steps are $r(b-a)$ for two evaluations of $F, r^{2}(b-a)$ for three evaluations of F, and so on. After n steps, the minimum point has been pinned down to an interval of length $r^{n-1}(b-a)$. How does this compare with the Fibonacci search algorithm using n evaluations? The corresponding width of interval, at the last step of this algorithm, is $\lambda_{n}^{-1}(b-a)$. Now, the Fibonacci algorithm should be better, because it is designed to do as well as possible with a prescribed

FIGURE 16.9
Golden section search algorithm: $u \leqq v$

number of steps. So we expect the ratio $r^{n-1} / \lambda_{n}^{-1}$ to be greater than 1 . But it approaches 1.17 as $n \rightarrow \infty$. (See Problem 16.1.8.) Thus, one may conclude that the extra complexity of the Fibonacci algorithm, together with the disadvantage of having the algorithm itself depend on the number of evaluations permitted, mitigates against its use in general.

In the golden section search algorithm, how is the correct ratio r determined? Remember that when we pass from one interval to the next in the algorithm, one of the points x or y is to be retained in the next step. Here, we present first a sketch of the first interval in which we let $x=a+r(b-a)$ and $y=b+r(a-b)$. It is followed by a sketch of the next interval.

In this new interval, the same ratios should hold, so we have $y=a+r(x-a)$. Since $x-a=r(b-a)$, we can write $y=a+r[r(b-a)]$. Setting the two formulas for y equal to each other gives us

$$
a+r^{2}(b-a)=b+r(a-b)
$$

whence

$$
a-b+r^{2}(b-a)=r(a-b)
$$

Dividing by $(a-b)$ gives

$$
r^{2}+r-1=0
$$

The roots of this quadratic equation are as given previously.

Quadratic Interpolation Algorithm

Suppose that F is represented by a Taylor series in the vicinity of the point x^{*}. Then

$$
F(x)=F\left(x^{*}\right)+\left(x-x^{*}\right) F^{\prime}\left(x^{*}\right)+\frac{1}{2}\left(x-x^{*}\right)^{2} F^{\prime \prime}\left(x^{*}\right)+\cdots
$$

Since x^{*} is a minimum point of F, we have $F^{\prime}\left(x^{*}\right)=0$. Thus,

$$
F(x) \approx F\left(x^{*}\right)+\frac{1}{2}\left(x-x^{*}\right)^{2} F^{\prime \prime}\left(x^{*}\right)
$$

This tells us that, in the neighborhood of $x^{*}, F(x)$ is approximated by a quadratic function whose minimum is also at x^{*}. Since we do not know x^{*} and do not want to involve derivatives in our algorithms, a natural stratagem is to interpolate F by a quadratic polynomial. Any three values $\left(x_{i}, F\left(x_{i}\right)\right), i=1,2,3$, can be used for this purpose. The minimum point of the resulting quadratic function may be a better approximation to x^{*} than is x_{1}, x_{2}, or x_{3}. Writing an algorithm that carries out this idea iteratively is not trivial, and many unpleasant cases must be handled. What should be done if the quadratic interpolant has a maximum instead of a minimum, for example? There is also the possibility that $F^{\prime \prime}\left(x^{*}\right)=0$, in which case higher-order terms of the Taylor series determine the nature of F near x^{*}.

Here is the outline of an algorithm for this procedure. At the beginning, we have a function F whose minimum is sought. Two starting points x and y are given, as well as two
control numbers δ and ε. Computing begins by evaluating the two numbers

$$
\left\{\begin{array}{l}
u=F(x) \\
v=F(y)
\end{array}\right.
$$

Now let

$$
z= \begin{cases}2 x-y & \text { if } u<v \\ 2 y-x & \text { if } u \geqq v\end{cases}
$$

In either case, the number

$$
w=F(z)
$$

is to be computed.
At this stage, we have three points x, y, and z together with corresponding function values u, v, and w. In the main iteration step of the algorithm, one of these points and its accompanying function value are replaced by a new point and new function value. The process is repeated until a success or failure is reached.

In the main calculation, a quadratic polynomial q is determined to interpolate F at the three current points x, y, and z. The formulas are discussed below. Next, the point t where $q^{\prime}(t)=0$ is determined. Under ideal circumstances, t is a minimum point of q and an approximate minimum point of F. So one of the x, y, or z should be replaced by t. We are interested in examining $q^{\prime \prime}(t)$ to determine the shape of the curve q near t.

For the complete description of this algorithm, the formulas for t and $q^{\prime \prime}(t)$ must be given. They are obtained as follows:

$$
\left\{\begin{array}{l}
a=\frac{v-u}{y-x} \\
b=\frac{w-v}{z-y} \\
c=\frac{b-a}{z-x} \\
t=\frac{1}{2}\left[x+y-\frac{a}{c}\right] \\
q^{\prime \prime}(t)=2 c
\end{array}\right.
$$

Their derivation is outlined in Problem 16.1.12.
The solution case occurs if

$$
q^{\prime \prime}(t)>0 \quad \text { and } \quad \max \{|t-x|,|t-y|,|t-z|\}<\varepsilon
$$

The condition $q^{\prime \prime}(t)>0$ indicates, of course, that q^{\prime} is increasing in the vicinity of t, so t is indeed a minimum point of q. The second condition indicates that this estimate, t, of the minimum point of F is within distance ε of each of the three points x, y, and z. In this case, t is accepted as a solution.

The usual case occurs if

$$
q^{\prime \prime}(t)>0 \quad \text { and } \quad \delta \geqq \max \{|t-x|,|t-y|,|t-z|\} \geqq \varepsilon
$$

These inequalities indicate that t is a minimum point of q but not near enough to the three initial points to be accepted as a solution. Also, t is not farther than δ units from each of x, y, and z and can thus be accepted as a reasonable new point. The old point that has the greatest function value is now replaced by t and its function value by $F(t)$.

FIGURE 16.10
Taylor series algorithm: First bad case

The first bad case occurs if

$$
q^{\prime \prime}(t)>0 \quad \text { and } \quad \max \{|t-x|,|t-y|,|t-z|\}>\delta
$$

Here, t is a minimum point of q but is so remote that there is some danger in using it as a new point. We identify one of the original three points that is farthest from t, for example, x, and also we identify the point closest to t, say z. Then we replace x by $z+\delta \operatorname{sign}(t-z)$ and u by $F(x)$. Figure 16.10 shows this case. The curve is the graph of q.

The second bad case occurs if

$$
q^{\prime \prime}(t)<0
$$

thus indicating that t is a maximum point of q. In this case, identify the greatest and the least among u, v, and w. Suppose, for example, that $u \geqq v \geqq w$. Then replace x by $z+$ $\delta \operatorname{sign}(z-x)$. An example is shown in Figure 16.11.

FIGURE 16.11
Taylor series algorithm: Second bad case

Summary

We consider the problem of finding the local minimum of a unimodal function of a one-variable. Algorithms discussed are Fibonacci search, golden section search, and quadratic interpolation.

Problems 16.1

${ }^{a}$ 1. For the function $F\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+3 x_{2}^{2}+2 x_{3}^{2}-4 x_{1}-6 x_{2}+8 x_{3}$, find the unconstrained minimum point. Then find the constrained minimum over the set \boldsymbol{K} defined by inequalities $x_{1} \leqq 0, x_{2} \leqq 0$, and $x_{3} \leqq 0$. Next, solve the same problem when \boldsymbol{K} is defined by $x_{1} \leqq 2, x_{2} \leqq 0$, and $x_{3} \leqq-2$.
${ }^{a}$ 2. For the function $F(x, y)=13 x^{2}+13 y^{2}-10 x y-18 x-18 y$, find the unconstrained minimum. Hint: Try substituting $x=u+v$ and $y=u-v$.
3. If F is unimodal and continuous on the interval $[a, b]$, how many local maxima may F have on $[a, b]$?
${ }^{a}$ 4. For the Fibonacci search algorithm, write expressions for \widehat{x} in the two cases $n=2,3$.
5. Carry out four steps of the Fibonacci search algorithm using $\epsilon=\frac{1}{4}$ to determine the following:
${ }^{a}$ a. Minimum of $F(x)=x^{2}-6 x+2$ on $[0,10]$
b. Minimum of $F(x)=2 x^{3}-9 x^{2}+12 x+2$ on $[0,3]$
c. Maximum of $F(x)=2 x^{3}-9 x^{2}+12 x$ on $[0,2]$
6. Let F be a continuous unimodal function defined on the interval $[a, b]$. Suppose that the values of F are known at n points, namely, $a=t_{1}<t_{2}<\cdots<t_{n}=b$. How accurately can one estimate the minimum point x^{*} from only the values of t_{i} and $F\left(t_{i}\right)$?
${ }^{a} 7$. The equation satisfied by Fibonacci numbers, namely, $\lambda_{n}-\lambda_{n-1}-\lambda_{n-2}=0$, is an example of a linear difference equation with constant coefficients. Solve it by postulating that $\lambda_{n}=\lambda^{n}$ and finding that $\alpha=\frac{1}{2}(1+\sqrt{5})$ or $\beta=\frac{1}{2}(1-\sqrt{5})$ will serve for λ. Initial conditions $\lambda_{1}=\lambda_{2}=1$ can be met by a solution of the form $\lambda_{n}=A \alpha^{n}+B \beta^{n}$. Find A and B. Establish that

$$
\lim _{n \rightarrow \infty}\left(\frac{\lambda_{n}}{\lambda_{n-1}}\right)=\alpha=\frac{1}{2}(1+\sqrt{5})
$$

Show that this agrees with Equations (10) and (11) of Section 3.3.
8. (Continuation) Refer to the golden section search algorithm and to the preceding problem. Prove that $\alpha \beta=-1$ and $\alpha+\beta=1$ so that $\alpha=1 / r$ and $\beta=-r$. Then establish that $r^{n} \lambda_{n}$ converges to $1 / \sqrt{5}$ as $n \rightarrow \infty$.
${ }^{a}$ 9. Verify that $y+r^{2}(b-y)=x$ in the golden section algorithm. Hint: Use $r^{2}+r=1$.
${ }^{a}$ 10. If F is unimodal on an interval of length ℓ, how many evaluations are necessary in the golden section algorithm to estimate the minimum point with an error of at most 10^{-k} ?
${ }^{a}$ 11. (Continuation) In the preceding problem, how large must n be if $\ell=1$ and $k=10$?
12. Using the divided-difference algorithm on the table

x	y	z
u	v	w

show that the quadratic interpolant in Newton form is

$$
q(t)=u+a(t-x)+c(t-x)(t-y)
$$

with a, b, and c given by Equation (7). Then verify the formulas for t and $q^{\prime \prime}(t)$ given in (7).
${ }^{a}$ 13. If routines can be written easily for F, F^{\prime}, and $F^{\prime \prime}$, how can Newton's method be used to locate the minimum point of F ? Write down the formula that defines the iterative process. Does it involve F?
${ }^{a}$ 14. If routines are available for F and F^{\prime}, how can the secant method be used to minimize F ?
15. The golden section ratio, $\rho=\frac{1}{2}(1+\sqrt{5})$, has many mystical properties; for example,
a. $\rho=1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\cdots}}}}$
${ }^{a}$ b. $\rho=\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\cdots}}}}$
c. $\rho^{n}=\rho^{n-1}+\rho^{n-2}$
d. $\rho=\rho^{-1}+\rho^{-2}+\rho^{-3}+\cdots$

Establish these properties.
16. (Multiple choice) In the golden section search algorithm, we use a number $r=$ $0.618 \ldots$, which is the larger of the two roots of the quadratic equation $r^{2}+r=1$. Let f be a unimodal function on the interval $[a, b]$. Thus, f has a single local minimum in $[a, b]$, where here we assume that $a<b$. Let $x=a+r(b-a)$ and $y=a+r^{2}(b-a)$. Also, let $u=f(x)$ and $v=f(y)$, where we suppose that $u<v$. What interval must contain the minimum point of f ?
a. $[y, b]$
b. $[a, x]$
c. $[a, y]$
d. $[y, x]$
e. None of these.

Computer Problems 16.1

1. Write a routine to carry out the golden section algorithm for a given function and interval. The search should continue until a preassigned error bound is reached but not beyond 100 steps in any case.
2. (Continuation) Test the routine of the preceding computer problem on these examples or use a routine from a package such as Matlab, Maple, or Mathematica:
a. $F(x)=\sin x$
on $[0, \pi / 2]$
b. $F(x)=(\arctan x)^{2}$
on $[-1,1]$
c. $F(x)=|\ln x|$
on $\left[\frac{1}{2}, 4\right]$
d. $F(x)=|x|$
on $[-1,1]$
3. Code and test the following algorithm for approximating the minima of a function F of one variable over an interval $[a, b]$: The algorithm defines a sequence of quadruples $a<a^{\prime}<b^{\prime}<b$ by initially setting $a^{\prime}=\frac{2}{3} a+\frac{1}{3} b$ and $b^{\prime}=\frac{1}{3} a+\frac{2}{3} b$ and repeatedly updating by $a=a^{\prime}, a^{\prime}=b^{\prime}$, and $b^{\prime}=\frac{1}{2}\left(b+b^{\prime}\right)$ if $F\left(a^{\prime}\right)>F\left(b^{\prime}\right) ; b=b^{\prime}, a^{\prime}=$ $\frac{1}{2}\left(a+a^{\prime}\right)$, and $b^{\prime}=a$ if $F\left(a^{\prime}\right)<F\left(b^{\prime}\right) ; a=a^{\prime}, b=b^{\prime}, a^{\prime}=\frac{2}{3} a+\frac{1}{3} b$, and $b^{\prime}=\frac{1}{3} a+\frac{2}{3} b$ if $F\left(a^{\prime}\right)=F\left(b^{\prime}\right)$. Note: The construction ensures that $a<a^{\prime}<b^{\prime}<b$, and the minimum of F always occurs between a and b. Furthermore, only one new function value need be computed at each stage of the calculation after the first unless the case $F\left(a^{\prime}\right)=F\left(b^{\prime}\right)$ is obtained. The values of $a, a^{\prime}, b^{\prime}$, and b tend to the same limit, which is a minimum point of F. Notice the similarity to the method of bisection of Section 3.1.
4. Write and test a routine for the Fibonacci search algorithm. Verify that a partial algorithm for the Fibonacci search is as follows: Initially, set

$$
\begin{aligned}
\Delta & =\left(\frac{\lambda_{N-2}}{\lambda_{N}}\right)(b-a) \\
a^{\prime} & =a+\Delta \\
b^{\prime} & =b-\Delta \\
u & =F\left(a^{\prime}\right) \\
v & =F\left(b^{\prime}\right)
\end{aligned}
$$

Then loop on k from $N-1$ downward to 3 , updating as follows:

$$
\begin{array}{ll}
\text { If } u \geqq v: & \text { If } v>u: \\
\begin{cases}a \leftarrow a^{\prime} \\
a^{\prime} \leftarrow b^{\prime} \\
u \leftarrow v & \left\{\begin{array}{l}
b \leftarrow b^{\prime} \\
b^{\prime} \leftarrow a^{\prime} \\
\Delta \leftarrow\left(\frac{\lambda_{k-2}}{\lambda_{k}}\right)(b-a) \\
v \leftarrow u \\
b^{\prime} \leftarrow b-\Delta \\
v \leftarrow F\left(b^{\prime}\right)
\end{array}\right. \\
\Delta \leftarrow\left(\frac{\lambda_{k-2}}{\lambda_{k}}\right)(b-a) \\
a^{\prime} \leftarrow a+\Delta \\
u \leftarrow F\left(a^{\prime}\right)\end{cases}
\end{array}
$$

Add steps for $k=2$.
5. (Berman algorithm) Suppose that F is unimodal on $[a, b]$. Then if x_{1} and x_{2} are any two points such that $a \leqq x_{1}<x_{2} \leqq b$, we have

$$
\begin{array}{lll}
F\left(x_{1}\right)>F\left(x_{2}\right) & \text { implies } & x^{*} \in\left(x_{1}, b\right] \\
F\left(x_{1}\right)=F\left(x_{2}\right) & \text { implies } & x^{*} \in\left[x_{1}, x_{2}\right] \\
F\left(x_{1}\right)<F\left(x_{2}\right) & \text { implies } & x^{*} \in\left[a, x_{2}\right)
\end{array}
$$

So by evaluating F at x_{1} and x_{2} and comparing function values, we are able to reduce the size of the interval that is known to contain x^{*}. The simplest approach is to start at the midpoint $x_{0}=\frac{1}{2}(a+b)$ and if F is, say, decreasing for $x>x_{0}$, we test F at $x_{0}+i h, i=1,2, \ldots, q$, with $h=(b-a) / 2 q$, until we find a point x_{1} from which F begins to increase again (or until we reach b). Then we repeat this procedure starting at x_{1} and using a smaller step length h / q. Here, q is the maximal number of evaluations at each step, say, 4. Write a subroutine to perform the Berman algorithm and test it for evaluating the approximate minimization of one-dimensional functions. Note: The total number of evaluations of F needed for executing this algorithm up to some iterative step k depends on the location of x^{*}. If, for example, $x^{*}=b$, then clearly, we need q evaluations at each iteration and hence $k q$ evaluations. This number will decrease the closer x^{*} is to x_{0}, and it can be shown that with $q=4$, the expected number of evaluations is three per step. It is interesting to compare the efficiency of the Berman algorithm $(q=4)$ with that of the Fibonacci search algorithm. The expected number of evaluations per step is three, and the uncertainty interval decreases by a factor $4^{-1 / 3} \approx 0.63$ per evaluation. In comparison, the Fibonacci search algorithm has
a reduction factor of $\frac{1}{2}(1+\sqrt{5}) \approx 0.62$. Of course, the factor 0.63 in the Berman algorithm represents only an average and can be considerably lower but also as high as $4^{-1 / 4} \approx 0.87$.
6. Select a routine from your program library or from a package such as Matlab, Maple, or Mathematica for finding the minimum point of a function of one variable. Experiment with the function $F(x)=x^{4}+\sin (23 x)$ to determine whether this routine encounters any difficulties in finding a global minimum point. Use starting values both near to and far from the global minimum point. (See Figure 16.2.)
7. (Student project) The Greek mathematician Euclid of Alexandria (325-265 b.c.e.) wrote a collection of 13 books on mathematics and geometry. In book six, Proposition 30 shows how to divide a line into its mean and extreme mean, which is finding the golden section point on a line. This states that the ratio of the smaller part of a line segment to the larger part is the same as the ratio of the larger part to the whole line segment. For a line segment of length 1, denote the larger part by r and the smaller part by $1-r$ as shown here:

Hence, we have the ratios

$$
\frac{1-r}{r}=\frac{r}{1}
$$

and we obtain the quadratic equation

$$
r^{2}=1-r
$$

This equation has two roots, one positive and one negative. The reciprocal of the positive root is the golden ratio $\frac{1}{2}(1+\sqrt{5})$, which was of interest to Pythagoras (580-500 B.C.E.). It was also used in the construction of the Great Pyramid of Gizah. Mathematical software systems such as Matlab, Maple, or Mathematica contain the golden ratio constant. In fact, the default width-to-height ratio for the plot function is the golden ratio. Investigate the golden section ratio and its use in scientific computing.
8. Using a mathematical software system such as Matlab, Maple, or Mathematica, write computer program to reproduce
a. Figure 16.1.
b. Figure 16.2. Also, find the global minimum of the function as well as several local minimum points near the origin.

16.2 Multivariate Case

Now we consider a real-valued function of n real variables $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$. As before, a point \boldsymbol{x}^{*} is sought such that

$$
F\left(\boldsymbol{x}^{*}\right) \leqq F(\boldsymbol{x}) \quad \text { for all } \boldsymbol{x} \in \mathbb{R}^{n}
$$

Some of the theory of multivariate functions must be developed to understand the rather sophisticated minimization algorithms in current use.

Taylor Series for F: Gradient Vector and Hessian Matrix

If the function F possesses partial derivatives of certain low orders (which is usually assumed in the development of these algorithms), then at any given point \boldsymbol{x}, a gradient vector $\boldsymbol{G}(\boldsymbol{x})=\left(G_{i}\right)_{n}$ is defined with components

$$
\begin{equation*}
G_{i}=G_{i}(\boldsymbol{x})=\frac{\partial F(\boldsymbol{x})}{\partial x_{i}} \quad(1 \leqq i \leqq n) \tag{1}
\end{equation*}
$$

and a Hessian matrix $\boldsymbol{H}(\boldsymbol{x})=\left(H_{i j}\right)_{n \times n}$ is defined with components

$$
\begin{equation*}
H_{i j}=H_{i j}(\boldsymbol{x})=\frac{\partial^{2} F(\boldsymbol{x})}{\partial x_{i} \partial x_{j}} \quad(1 \leqq i, j \leqq n) \tag{2}
\end{equation*}
$$

We interpret $\boldsymbol{G}(\boldsymbol{x})$ as an n-component vector and $\boldsymbol{H}(\boldsymbol{x})$ as an $n \times n$ matrix, both depending on \boldsymbol{x}.

Using the gradient and Hessian, we can write the first few terms of the Taylor series for F as

$$
\begin{equation*}
F(\boldsymbol{x}+\boldsymbol{h})=F(\boldsymbol{x})+\sum_{i=1}^{n} G_{i}(\boldsymbol{x}) h_{i}+\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} h_{i} H_{i j}(\boldsymbol{x}) h_{j}+\cdots \tag{3}
\end{equation*}
$$

Equation (3) can also be written in an elegant matrix-vector form:

$$
\begin{equation*}
F(\boldsymbol{x}+\boldsymbol{h})=F(\boldsymbol{x})+\boldsymbol{G}(\boldsymbol{x})^{T} \boldsymbol{h}+\frac{1}{2} \boldsymbol{h}^{T} \boldsymbol{H}(\boldsymbol{x}) \boldsymbol{h}+\cdots \tag{4}
\end{equation*}
$$

Here, \boldsymbol{x} is the fixed point of expansion in \mathbb{R}^{n}, and \boldsymbol{h} is the variable in \mathbb{R}^{n} with components $h_{1}, h_{2}, \ldots, h_{n}$. The three dots indicate higher-order terms in \boldsymbol{h} that are not needed in this discussion.

A result in calculus states that the order in which partial derivatives are taken is immaterial if all partial derivatives that occur are continuous. In the special case of the Hessian matrix, if the second partial derivatives of F are all continuous, then \boldsymbol{H} is a symmetric matrix; that is, $\boldsymbol{H}=\boldsymbol{H}^{T}$ because

$$
H_{i j}=\frac{\partial^{2} F}{\partial x_{i} \partial x_{j}}=\frac{\partial^{2} F}{\partial x_{j} \partial x_{i}}=H_{j i}
$$

EXAMPLE 1 To illustrate Formula (4), let us compute the first three terms in the Taylor series for the function

$$
F\left(x_{1}, x_{2}\right)=\cos \left(\pi x_{1}\right)+\sin \left(\pi x_{2}\right)+e^{x_{1} x_{2}}
$$

taking $(1,1)$ as the point of expansion.

Solution Partial derivatives are

$$
\begin{aligned}
\frac{\partial F}{\partial x_{1}} & =-\pi \sin \left(\pi x_{1}\right)+x_{2} e^{x_{1} x_{2}} & \frac{\partial F}{\partial x_{2}} & =\pi \cos \left(\pi x_{2}\right)+x_{1} e^{x_{1} x_{2}} \\
\frac{\partial^{2} F}{\partial x_{1}^{2}} & =-\pi^{2} \cos \left(\pi x_{1}\right)+x_{2}^{2} e^{x_{1} x_{2}} & \frac{\partial^{2} F}{\partial x_{2} \partial x_{1}} & =\left(x_{1} x_{2}+1\right) e^{x_{1} x_{2}} \\
\frac{\partial^{2} F}{\partial x_{1} \partial x_{2}} & =\left(x_{1} x_{2}+1\right) e^{x_{1} x_{2}} & \frac{\partial^{2} F}{\partial x_{2}^{2}} & =-\pi^{2} \sin \left(\pi x_{2}\right)+x_{1}^{2} e^{x_{1} x_{2}}
\end{aligned}
$$

Note the equality of cross derivatives; that is, $\partial^{2} F / \partial x_{1} \partial x_{2}=\partial^{2} F / \partial x_{2} \partial x_{1}$. At the particular point $\boldsymbol{x}=[1,1]^{T}$, we have

$$
F(\boldsymbol{x})=-1+e, \quad \boldsymbol{G}(\boldsymbol{x})=\left[\begin{array}{c}
e \\
-\pi+e
\end{array}\right], \quad \boldsymbol{H}(\boldsymbol{x})=\left[\begin{array}{cc}
\pi^{2}+e & 2 e \\
2 e & e
\end{array}\right]
$$

So by Equation (4),

$$
\begin{aligned}
F\left(1+h_{1}, 1+h_{2}\right)= & -1+e+[e,-\pi+e]\left[\begin{array}{l}
h_{1} \\
h_{2}
\end{array}\right] \\
& +\frac{1}{2}\left[h_{1}, h_{2}\right]\left[\begin{array}{cc}
\pi^{2}+e & 2 e \\
2 e & e
\end{array}\right]\left[\begin{array}{l}
h_{1} \\
h_{2}
\end{array}\right]+\cdots
\end{aligned}
$$

or equivalently, by Equation (3),

$$
\begin{aligned}
F\left(1+h_{1}, 1+h_{2}\right)= & -1+e+e h_{1}+(-\pi+e) h_{2} \\
& +\frac{1}{2}\left[\left(\pi^{2}+e\right) h_{1}^{2}+(2 e) h_{1} h_{2}+(2 e) h_{2} h_{1}+e h_{2}^{2}\right]+\cdots
\end{aligned}
$$

In mathematical software systems such Maple or Mathematica, we can verify these calculations using built-in routines for the gradient and Hessian. Also, we can obtain two terms in the Taylor series in two variables expanded about the point $(1,1)$ and then carry out a change of variables to obtain similar results as above.

Alternative Form of Taylor Series

Another form of the Taylor series is useful. First let z be the point of expansion, and then let $\boldsymbol{h}=\boldsymbol{x}-\boldsymbol{z}$. Now from Equation (4),

$$
\begin{equation*}
F(x)=F(z)+\boldsymbol{G}(z)^{T}(x-z)+\frac{1}{2}(x-z)^{T} \boldsymbol{H}(z)(x-z)+\cdots \tag{5}
\end{equation*}
$$

We illustrate with two special types of functions.
First, the linear function has the form

$$
F(\boldsymbol{x})=c+\sum_{i=1}^{n} b_{i} x_{i}=c+\boldsymbol{b}^{T} \boldsymbol{x}
$$

for appropriate coefficients $c, b_{1}, b_{2}, \ldots, b_{n}$. Clearly, the gradient and Hessian are $G_{i}(z)=$ b_{i} and $H_{i j}(z)=0$, so Equation (5) yields

$$
F(\boldsymbol{x})=F(\boldsymbol{z})+\sum_{i=1}^{n} b_{i}\left(x_{i}-z_{i}\right)=F(z)+\boldsymbol{b}^{T}(\boldsymbol{x}-\boldsymbol{z})
$$

Second, consider a general quadratic function. For simplicity, we take only two variables. The form of the function is

$$
\begin{equation*}
F\left(x_{1}, x_{2}\right)=c+\left(b_{1} x_{1}+b_{2} x_{2}\right)+\frac{1}{2}\left(a_{11} x_{1}^{2}+2 a_{12} x_{1} x_{2}+a_{22} x_{2}^{2}\right) \tag{6}
\end{equation*}
$$

which can be interpreted as the Taylor series for F when the point of expansion is $(0,0)$. To verify this assertion, the partial derivatives must be computed and evaluated at $(0,0)$:

$$
\begin{aligned}
\frac{\partial F}{\partial x_{1}} & =b_{1}+a_{11} x_{1}+a_{12} x_{2} & \frac{\partial F}{\partial x_{2}} & =b_{2}+a_{22} x_{2}+a_{12} x_{1} \\
\frac{\partial^{2} F}{\partial x_{1}^{2}} & =a_{11} & \frac{\partial^{2} F}{\partial x_{1} \partial x_{2}} & =a_{12} \\
\frac{\partial^{2} F}{\partial x_{2} \partial x_{1}} & =a_{12} & \frac{\partial^{2} F}{\partial x_{2}^{2}} & =a_{22}
\end{aligned}
$$

Letting $z=[0,0]^{T}$, we obtain from Equation (5)

$$
F(\boldsymbol{x})=c+\left[b_{1}, b_{2}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\frac{1}{2}\left[x_{1}, x_{2}\right]\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{12} & a_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

This is the matrix form of the original quadratic function of two variables. It can also be written as

$$
\begin{equation*}
F(\boldsymbol{x})=c+\boldsymbol{b}^{T} \boldsymbol{x}+\frac{1}{2} \boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x} \tag{7}
\end{equation*}
$$

where c is a scalar, \boldsymbol{b} a vector, and \boldsymbol{A} a matrix. Equation (7) holds for a general quadratic function of n variables, with \boldsymbol{b} an n-component vector and \boldsymbol{A} an $n \times n$ matrix.

Returning to Equation (3), we now write out the complicated double sum in complete detail to assist in understanding it:

$$
\begin{aligned}
\boldsymbol{x}^{T} \boldsymbol{H} \boldsymbol{x}=\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} H_{i j} x_{j} & =\left\{\begin{array}{c}
\sum_{j=1}^{n} x_{1} H_{1 j} x_{j} \\
+\sum_{j=1}^{n} x_{2} H_{2 j} x_{j} \\
+\cdots \\
+\cdots \\
+\sum_{j=1}^{n} x_{n} H_{n j} x_{j}
\end{array}\right\} \\
& =\left\{\begin{array}{cc}
x_{1} H_{11} x_{1}+x_{1} H_{12} x_{2}+\cdots+x_{1} H_{1 n} x_{n} \\
+x_{2} H_{21} x_{1}+x_{2} H_{22} x_{2}+\cdots+x_{2} H_{2 n} x_{n} \\
+\cdots & +\cdots \\
+\cdots & +\cdots \\
+x_{n} H_{n 1} x_{1}+x_{n} H_{n 2} x_{2}+\cdots+x_{n} H_{n n} x_{n}
\end{array}\right\}
\end{aligned}
$$

Thus, $\boldsymbol{x}^{T} \boldsymbol{H} \boldsymbol{x}$ can be interpreted as the sum of all n^{2} terms in a square array of which the (i, j) element is $x_{i} H_{i j} x_{j}$.

Steepest Descent Procedure

A crucial property of the gradient vector $\boldsymbol{G}(\boldsymbol{x})$ is that it points in the direction of the most rapid increase in the function F, which is the direction of steepest ascent. Conversely, $-\boldsymbol{G}(\boldsymbol{x})$ points in the direction of the steepest descent. This fact is so important that it is worth a few words of justification. Suppose that \boldsymbol{h} is a unit vector, $\sum_{i=1}^{n} h_{i}^{2}=1$. The rate of change of F (at \boldsymbol{x}) in the direction \boldsymbol{h} is defined naturally by

$$
\left.\frac{d}{d t} F(\boldsymbol{x}+t \boldsymbol{h})\right|_{t=0}
$$

This rate of change can be evaluated by using Equation (4). From that equation, it follows that

$$
\begin{equation*}
F(\boldsymbol{x}+t \boldsymbol{h})=F(\boldsymbol{x})+t \boldsymbol{G}(\boldsymbol{x})^{T} \boldsymbol{h}+\frac{1}{2} t^{2} \boldsymbol{h}^{T} \boldsymbol{H}(\boldsymbol{x}) \boldsymbol{h}+\cdots \tag{8}
\end{equation*}
$$

Differentiation with respect to t leads to

$$
\begin{equation*}
\frac{d}{d t} F(\boldsymbol{x}+t \boldsymbol{h})=\boldsymbol{G}(\boldsymbol{x})^{T} \boldsymbol{h}+t \boldsymbol{h}^{T} \boldsymbol{H}(\boldsymbol{x}) \boldsymbol{h}+\cdots \tag{9}
\end{equation*}
$$

By letting $t=0$ here, we see that the rate of change of F in the direction \boldsymbol{h} is nothing else than

$$
\boldsymbol{G}(\boldsymbol{x})^{T} \boldsymbol{h}
$$

Now we ask: For what unit vector \boldsymbol{h} is the rate of change a maximum? The simplest path to the answer is to invoke the powerful Cauchy-Schwarz inequality:

$$
\begin{equation*}
\sum_{i=1}^{n} u_{i} v_{i} \leqq\left(\sum_{i=1}^{n} u_{i}^{2}\right)^{1 / 2}\left(\sum_{i=1}^{n} v_{i}^{2}\right)^{1 / 2} \tag{10}
\end{equation*}
$$

where equality holds only if one of the vectors \boldsymbol{u} or \boldsymbol{v} is a nonnegative multiple of the other. Applying this to

$$
\boldsymbol{G}(\boldsymbol{x})^{T} \boldsymbol{h}=\sum_{i=1}^{n} G_{i}(\boldsymbol{x}) h_{i}
$$

and remembering that $\sum_{i=1}^{n} h_{i}^{2}=1$, we conclude that the maximum occurs when \boldsymbol{h} is a positive multiple of $\boldsymbol{G}(\boldsymbol{x})$, that is, when \boldsymbol{h} points in the direction of \boldsymbol{G}.

On the basis of the foregoing discussion, a minimization procedure called best-step steepest descent can be described. At any given point \boldsymbol{x}, the gradient vector $\boldsymbol{G}(\boldsymbol{x})$ is calculated. Then a one-dimensional minimization problem is solved by determining the value t^{*} for which the function

$$
\phi(t)=F(\boldsymbol{x}+t \boldsymbol{G}(\boldsymbol{x}))
$$

is a minimum. Then we replace \boldsymbol{x} by $\boldsymbol{x}+t^{*} \boldsymbol{G}(\boldsymbol{x})$ and begin anew.
The general method of steepest descent takes a step of any size in the direction of the negative gradient. It is not usually competitive with other methods, but it has the advantage of simplicity. One way of speeding it up is described in Computer Problem 16.2.2.

Contour Diagrams

In understanding how these methods work on functions of two variables, it is often helpful to draw contour diagrams. A contour of a function F is a set of the form

$$
\{\boldsymbol{x}: F(\boldsymbol{x})=c\}
$$

where c is a given constant. For example, the contours of function

$$
F(\boldsymbol{x})=25 x_{1}^{2}+x_{2}^{2}
$$

are ellipses, as shown in Figure 16.12. Contours are also called level sets by some authors. At any point on a contour, the gradient of F is perpendicular to the curve. So, in general, the path of steepest descent may look like Figure 16.13.

FIGURE 16.12
Contours of $F(x)=25 x_{1}^{2}+x_{2}^{2}$

More Advanced Algorithms

To explain more advanced algorithms, we consider a general real-valued function F of n variables. Suppose that we have obtained the first three terms in the Taylor series of F in the vicinity of a point z. How can they be used to guess the minimum point of F ? Obviously,

FIGURE 16.13
Path of steepest descent

we could ignore all terms beyond the quadratic terms and find the minimum of the resulting quadratic function:

$$
\begin{equation*}
F(\boldsymbol{x}+z)=F(z)+\boldsymbol{G}(z)^{T} \boldsymbol{x}+\frac{1}{2} \boldsymbol{x}^{T} \boldsymbol{H}(z) \boldsymbol{x}+\cdots \tag{11}
\end{equation*}
$$

Here, \boldsymbol{z} is fixed and \boldsymbol{x} is the variable. To find the minimum of this quadratic function of \boldsymbol{x}, we must compute the first partial derivatives and set them equal to zero. Denoting this quadratic function by Q and simplifying the notation slightly, we have

$$
\begin{equation*}
Q(\boldsymbol{x})=F(\boldsymbol{z})+\sum_{i=1}^{n} G_{i} x_{i}+\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} H_{i j} x_{j} \tag{12}
\end{equation*}
$$

from which it follows that

$$
\begin{equation*}
\frac{\partial Q}{\partial x_{k}}=G_{k}+\sum_{j=1}^{n} H_{k j} x_{j} \quad(1 \leqq k \leqq n) \tag{13}
\end{equation*}
$$

(See Problem 16.2.13.) The point \boldsymbol{x} that is sought is thus a solution of the system of n equations

$$
\sum_{j=1}^{n} H_{k j} x_{j}=-G_{k} \quad(1 \leqq k \leqq n)
$$

or, equivalently,

$$
\begin{equation*}
\boldsymbol{H}(z) \boldsymbol{x}=-\boldsymbol{G}(z) \tag{14}
\end{equation*}
$$

The preceding analysis suggests the following iterative procedure for locating a minimum point of a function F : Start with a point z that is a current estimate of the minimum point. Compute the gradient and Hessian of F at the point z. They can be denoted by \boldsymbol{G} and \boldsymbol{H}, respectively. Of course, \boldsymbol{G} is an n-component vector of numbers and \boldsymbol{H} is an $n \times n$ matrix of numbers. Then solve the matrix equation

$$
H x=-G
$$

obtaining an n-component vector \boldsymbol{x}. Replace \boldsymbol{z} by $\boldsymbol{z}+\boldsymbol{x}$ and return to the beginning of the procedure.

Minimum, Maximum, and Saddle Points

There are many reasons for expecting trouble from the iterative procedure just outlined. One especially noisome aspect is that we can expect to find a point only where the first partial derivatives of F vanish; it need not be a minimum point. It is what we call a stationary point. Such points can be classified into three types: minimum point, maximum point, and saddle point. They can be illustrated by simple quadratic surfaces familiar from analytic geometry:

- Minimum of $F(x, y)=x^{2}+y^{2}$ at $(0,0)$
- Maximum of $F(x, y)=1-x^{2}-y^{2}$ at $(0,0)$
- Saddle point of $F(x, y)=x^{2}-y^{2}$ at $(0,0)$
(See Figure 16.14(a).)
(See Figure 16.14(b).)
(See Figure 16.14(c).)

(a) Minimum point

FIGURE 16.14
Simple quadratic surfaces

(b) Maximum point

Positive Definite Matrix

If z is a stationary point of F, then

$$
\boldsymbol{G}(\boldsymbol{z})=0
$$

Moreover, a criterion ensuring that Q, as defined in Equation (12), has a minimum point is as follows:

THEOREM 1

QUADRATIC FUNCTION THEOREM

If the matrix \boldsymbol{H} has the property that $\boldsymbol{x}^{T} \boldsymbol{H} \boldsymbol{x}>0$ for every nonzero vector \boldsymbol{x}, then the quadratic function Q has a minimum point.
(See Problem 16.2.15.) A matrix that has this property is said to be positive definite. Notice that this theorem involves only second-degree terms in the quadratic function Q.

As examples of quadratic functions that do not have minima, consider the following:

$$
\begin{array}{ll}
-x_{1}^{2}-x_{2}^{2}+13 x_{1}+6 x_{2}+12 & x_{1}^{2}-x_{2}^{2}+3 x_{1}+5 x_{2}+7 \\
x_{1}^{2}-2 x_{1} x_{2}+x_{1}+2 x_{2}+3 & 2 x_{1}+4 x_{2}+6
\end{array}
$$

In the first two examples, let $x_{1}=0$ and $x_{2} \rightarrow \infty$. In the third, let $x_{1}=x_{2} \rightarrow \infty$. In the last, let $x_{1}=0$ and $x_{2} \rightarrow-\infty$. In each case, the function values approach $-\infty$, and no global minimum can exist.

Quasi-Newton Methods

Algorithms that converge faster than steepest descent in general and that are currently recommended for minimization are of a type called quasi-Newton. The principal example is an algorithm introduced in 1959 by Davidon, called the variable metric algorithm. Subsequently, important modifications and improvements were made by others, such as R. Fletcher, M. J. D. Powell, C. G. Broyden, P. E. Gill, and W. Murray. These algorithms proceed iteratively, assuming in each step that a local quadratic approximation is known for the function F whose minimum is sought. The minimum of this quadratic function either provides the new point directly or is used to determine a line along which a one-dimensional search can be carried out. In implementation of the algorithm, the gradient can be either provided in the form of a procedure or computed numerically by finite differences. The Hessian \boldsymbol{H} is not computed, but an estimate of its $\boldsymbol{L} \boldsymbol{U}$ factorization is kept up to date as the process continues.

Nelder-Mead Algorithm

For minimizing a function $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$, another method called the Nelder-Mead algorithm is available. It is a method of direct search and proceeds without involving any derivatives of the function F and without any line searches.

Before beginning the calculations, the user assigns values to three parameters: α, β, and γ. The default values are $1, \frac{1}{2}$, and 1 , respectively. In each step of the algorithm, a set
of $n+1$ points in \mathbb{R}^{n} is given: $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$. This set is in general position in \mathbb{R}^{n}. This means that the set of n points $x_{i}-x_{0}$, with $1 \leqq i \leqq n$, is linearly independent. A consequence of this assumption is that the convex hull of the original set $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ is an \boldsymbol{n}-simplex. For example, a 2-simplex is a triangle in \mathbb{R}^{2}, and a 3 -simplex is a tetrahedron in \mathbb{R}^{3}. To make the description of the algorithm as simple as possible, we assume that the points have been relabeled (if necessary) so that $F\left(x_{0}\right) \geqq F\left(x_{1}\right) \geqq \cdots \geqq F\left(x_{n}\right)$. Since we are trying to minimize the function F, the point x_{0} is the worst of the current set, because it produces the highest value of F.

We compute the point

$$
u=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

This is the centroid of the face of the current simplex opposite the worst vertex, x_{0}. Next, we compute a reflected point $v=(1+\alpha) u-\alpha x_{0}$.

If $F(v)$ is less than $F\left(x_{n}\right)$, then this is a favorable situation, and one is tempted to replace x_{0} by v and begin anew. However, we first compute an expanded reflected point $w=(1+\gamma) v-\gamma u$ and test to see whether $F(w)$ is less than $F\left(x_{n}\right)$. If so, we replace x_{0} by w and begin anew. Otherwise, we replace x_{0} by v as originally suggested and begin with the new simplex.

Assume now that $F(v)$ is not less than $F\left(x_{n}\right)$. If $F(v) \leqq F\left(x_{1}\right)$, then replace x_{0} by v and begin again. Having disposed of all cases when $F(v) \leqq F\left(x_{1}\right)$, we now consider two further cases. First, if $F(v) \leqq F\left(x_{0}\right)$, then define $w=u+\beta(v-u)$. If $F(v)>F\left(x_{0}\right)$, compute $w=u+\beta\left(x_{0}-u\right)$. With w now defined, test whether $F(w)<F\left(x_{0}\right)$. If this is true, replace x_{0} by w and begin anew. However, if $F(w) \geqq F\left(x_{0}\right)$, shrink the simplex by using $x_{i} \leftarrow \frac{1}{2}\left(x_{i}+x_{n}\right)$ for $0 \leqq i \leqq n-1$. Then begin anew.

The algorithm needs a stopping test in each major step. One such test is whether the relative flatness is small. That is the quantity

$$
\frac{F\left(x_{0}\right)-F\left(x_{n}\right)}{\left|F\left(x_{0}\right)\right|+\left|F\left(x_{n}\right)\right|}
$$

Other tests to make sure progress is being made can be added. In programming the algorithm, one keeps the number of evaluations of f to a minimum. In fact, only three indices are needed: the indices of the greatest $F\left(x_{i}\right)$, the next greatest, and the least.

In addition to the original paper of Nelder and Mead [1965], one can consult Dennis and Woods [1987], Dixon [1974], and Torczon [1997]. Different authors give slightly different versions of the algorithm. We have followed the original description by Nelder and Mead.

Method of Simulated Annealing

This method has been proposed and found to be effective for the minimization of difficult functions, especially if they have many purely local minimum points. It involves no derivatives or line searches; indeed, it has found great success in minimizing discrete functions, such as arise in the traveling salesman problem.

Suppose we are given a real-valued function of n real variables; that is, $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$. We must be able to compute the values $F(x)$ for any x in \mathbb{R}^{n}. It is desired to locate a global minimum point of F, which is a point x^{*} such that $F\left(x^{*}\right) \leqq F(x)$ for all x in \mathbb{R}^{n}. In other words, $F\left(x^{*}\right)$ is equal to $\inf _{x \in \mathbb{R}^{n}} F(x)$. The algorithm generates a
sequence of points $x_{1}, x_{2}, x_{3}, \ldots$, and one hopes that $\min _{j \leqq k} F\left(x_{j}\right)$ converges to inf $F(x)$ as $k \rightarrow \infty$.

It suffices to describe the computation that leads to x_{k+1}, assuming that x_{k} has been computed. We begin by generating a modest number of random points $u_{1}, u_{2}, \ldots, u_{m}$ in a large neighborhood of x_{k}. For each of these points, the value of F must be computed. The next point, x_{k+1}, in our sequence is chosen to be one of the points $u_{1}, u_{2}, \ldots, u_{m}$. This choice is made as follows. Select an index j such that

$$
F\left(u_{j}\right)=\min \left\{F\left(u_{1}\right), F\left(u_{2}\right), \ldots, F\left(u_{m}\right)\right\}
$$

If $F\left(u_{j}\right)<F\left(x_{k}\right)$, then set $x_{k+1}=u_{j}$. In the other case, for each i, we assign a probability p_{i} to u_{i} by the formula

$$
p_{i}=e^{\alpha\left[F\left(x_{k}\right)-F\left(u_{i}\right)\right]} \quad(1 \leqq i \leqq m)
$$

Here, α is a positive parameter chosen by the user of the code. We normalize the probabilities by dividing each by their sum. That is, we compute

$$
S=\sum_{i=1}^{m} p_{i}
$$

and then carry out a replacement

$$
p_{i} \leftarrow p_{i} / S
$$

Finally, a random choice is made among the points $u_{1}, u_{2}, \ldots, u_{m}$, taking account of the probabilities p_{i} that have been assigned to them. This randomly chosen u_{i} becomes x_{k+1}.

The simplest way to make this random choice is to employ a random number generator to get a random point ξ in the interval $(0,1)$. Select i to be the first integer such that

$$
\xi \leqq p_{1}+p_{2}+\cdots+p_{i}
$$

Thus, if $\xi \leqq p_{1}$, let $i=1\left(\right.$ and $\left.x_{n+1}=u_{1}\right)$. If $p_{1}<\xi \leqq p_{1}+p_{2}$, then let $i=2\left(\right.$ and $\left.x_{n+1}=u_{2}\right)$, and so on.

The formula for the probabilities p_{i} is taken from the theory of thermodynamics. The interested reader can consult the original articles by Metropolis et al. [1953] or Otten and van Ginneken [1989]. Presumably, other functions can serve in this role as well.

What is the purpose of the complicated choice for x_{k+1} ? Because of the possibility of encountering local minima, the algorithm must occasionally choose a point that is uphill from the current point. Then there is a chance that subsequent points might begin to move toward a different local minimum. An element of randomness is introduced to make this possible.

With minor modifications, the algorithm can be used for functions $f: X \rightarrow \mathbb{R}$, where X is any set. For example, in the traveling salesman problem, X will be the set of all permutations of a set of integers $\{1,2,3, \ldots, N\}$. All that is required is a procedure for generating random permutations and, of course, a code for evaluating the function f.

Computer programs for this algorithm can be found on the Internet such as at the websites http://www.netlib.gov and http://www.ingber.com. A collection of papers on this subject, emphasizing parallel computation, is Azencott [1992].

Summary

(1) In a typical minimization problem, we seek a point \boldsymbol{x}^{*} such that

$$
F\left(\boldsymbol{x}^{*}\right) \leqq F(\boldsymbol{x}) \quad \text { for all } \boldsymbol{x} \in \mathbb{R}^{n}
$$

where F is a real-valued multivariate function.
(2) A gradient vector $\boldsymbol{G}(\boldsymbol{x})$ has components

$$
G_{i}=G_{i}(x)=\frac{\partial F(x)}{\partial x_{i}} \quad(1 \leqq i \leqq n)
$$

and a Hessian matrix $\boldsymbol{H}(\boldsymbol{x})$ has components

$$
H_{i j}=H_{i j}(\boldsymbol{x})=\frac{\partial^{2} F(\boldsymbol{x})}{\partial x_{i} \partial x_{j}} \quad(1 \leqq i, j \leqq n)
$$

It is a symmetric matrix if the second-order derivatives are continuous.
(3) The Taylor series for F is

$$
F(\boldsymbol{x}+\boldsymbol{h})=F(\boldsymbol{x})+\boldsymbol{G}(\boldsymbol{x})^{T} \boldsymbol{h}+\frac{1}{2} \boldsymbol{h}^{T} \boldsymbol{H}(\boldsymbol{x}) \boldsymbol{h}+\cdots
$$

Here, \boldsymbol{x} is the fixed point of expansion in \mathbb{R}^{n} and \boldsymbol{h} is the variable in \mathbb{R}^{n} with components $h_{1}, h_{2}, \ldots, h_{n}$. The three dots indicate higher-order terms in \boldsymbol{h} that are not needed in this discussion.
(4) An alternative form of the Taylor series is

$$
F(x)=F(z)+\boldsymbol{G}(z)^{T}(x-z)+\frac{1}{2}(x-z)^{T} \boldsymbol{H}(z)(x-z)+\cdots
$$

For example, a linear function $F(\boldsymbol{x})=c+\boldsymbol{b}^{T} \boldsymbol{x}$ has the Taylor series

$$
F(x)=F(z)+\boldsymbol{b}^{T}(\boldsymbol{x}-z)
$$

A quadratic function is

$$
F(\boldsymbol{x})=c+\boldsymbol{b}^{T} \boldsymbol{x}+\frac{1}{2} \boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}
$$

(5) An iterative procedure for locating a minimum point of a function F is to start with a point z that is a current estimate of the minimum point, compute the gradient \boldsymbol{G} and Hessian \boldsymbol{H} of F at the point \boldsymbol{z}, and solve the matrix equation

$$
H x=-G
$$

for \boldsymbol{x}. Then replace \boldsymbol{z} by $\boldsymbol{z}+\boldsymbol{x}$ and repeat.
(6) If the matrix \boldsymbol{H} has the property that $\boldsymbol{x}^{T} \boldsymbol{H} \boldsymbol{x}>0$ for every nonzero vector \boldsymbol{x}, then the quadratic function Q has a unique minimum point.
(7) Algorithms that are discussed are steepest descent, Nelder-Mead, and simulated annealing.

Additional References

For more reading on the subject of optimization, see books and papers by Azencott [1992], Baldick [2006], Beale [1988], Cvijovic and Kilnowski [1995], Dennis and Schnabel [1983, 1996], Dennis and Woods [1987], Dixon [1974], Fletcher [1976], Floudas and Pardalos [1992], Gill, Murray and Wright [1981], Herz-Fischer [1998], Horst, Pardalos, and Thoai [2000], Kelley [2003], Kirkpatrick et al. [1983], Lootsam [1972], Moré and Wright [1993], Nelder and Mead [1965], Nocedal and Wright [2006], Otten and van Ginneken [1989], Rheinboldt [1998], Roos, Terlaky, and Vial [1997], Torczon [1997], and Törn and Zilinskas [1989].

Problems 16.2

1. Determine whether these functions have minimum values in \mathbb{R}^{2} :
${ }^{a}$ a. $x_{1}^{2}-x_{1} x_{2}+x_{2}^{2}+3 x_{1}+6 x_{2}-4$
${ }^{a}$ b. $x_{1}^{2}-3 x_{1} x_{2}+x_{2}^{2}+7 x_{1}+3 x_{2}+5$
c. $2 x_{1}^{2}-3 x_{1} x_{2}+x_{2}^{2}+4 x_{1}-x_{2}+6$
d. $a x_{1}^{2}-2 b x_{1} x_{2}+c x_{2}^{2}+d x_{1}+e x_{2}+f$

Hint: Use the method of completing the square.
${ }^{a}$ 2. Locate the minimum point of $3 x^{2}-2 x y+y^{2}+3 x-46+7$ by finding the gradient and Hessian and solving the appropriate linear equations.
${ }^{a}$ 3. Using $(0,0)$ as the point of expansion, write the first three terms of the Taylor series for $F(x, y)=e^{x} \cos y-y \ln (x+1)$.
4. Using $(1,1)$ as the point of expansion, write the first three terms of the Taylor series for $F(x, y)=2 x^{2}-4 x y+7 y^{2}-3 x+5 y$.
5. The Taylor series expansion about zero can be written as

$$
F(\boldsymbol{x})=F(0)+\boldsymbol{G}(0)^{T} \boldsymbol{x}+\frac{1}{2} \boldsymbol{x}^{T} \boldsymbol{H}(0) \boldsymbol{x}+\cdots
$$

Show that the Taylor series about z can be written in a similar form by using matrixvector notation; that is,

$$
F(x)=F(z)+\mathcal{G}(z)^{T} \mathcal{X}+\frac{1}{2} \mathcal{X}^{T} \mathcal{H}(z) \mathcal{X}+\cdots
$$

where

$$
\mathcal{X}=\left[\begin{array}{l}
\boldsymbol{x} \\
z
\end{array}\right], \quad \mathcal{G}(z)=\left[\begin{array}{r}
\boldsymbol{G}(z) \\
-\boldsymbol{G}(z)
\end{array}\right], \quad \mathcal{H}(z)=\left[\begin{array}{rr}
\boldsymbol{H}(z) & -\boldsymbol{H}(z) \\
-\boldsymbol{H}(z) & \boldsymbol{H}(z)
\end{array}\right]
$$

${ }^{a}$ 6. Show that the gradient of $F(x, y)$ is perpendicular to the contour. Hint: Interpret the equation $F(x, y)=c$ as defining y as a function of x. Then by the chain rule,

$$
\frac{\partial F}{\partial x}+\frac{\partial F}{\partial y} \frac{d y}{d x}=0
$$

From it obtain the slope of the tangent to the contour.
7. Consider the function

$$
F\left(x_{1}, x_{2}, x_{3}\right)=3 e^{x_{1} x_{2}}-x_{3} \cos x_{1}+x_{2} \ln x_{3}
$$

a. Determine the gradient vector and Hessian matrix.
${ }^{a}$ b. Derive the first three terms of the Taylor series expansion about $(0,1,1)$.
c. What linear system should be solved for a reasonable guess as to the minimum point for F ? What is the value of F at this point?
8. It is asserted that the Hessian of an unknown function F at a certain point is

$$
\left[\begin{array}{ll}
3 & 2 \\
1 & 4
\end{array}\right]
$$

What conclusion can be drawn about F ?
9. What are the gradients of the following functions at the points indicated?
${ }^{a}$ a. $F(x, y)=x^{2} y-2 x+y$ at $(1,0)$
${ }^{a}$ b. $F(x, y, z)=x y+y z^{2}+x^{2} z$ at $(1,2,1)$
${ }^{a}$ 10. Consider $F(x, y, z)=y^{2} z^{2}\left(1+\sin ^{2} x\right)+(y+1)^{2}(z+3)^{2}$. We want to find the minimum of the function. The program to be used requires the gradient of the function. What formulas must we program for the gradient?
11. Let F be a function of two variables whose gradient at $(0,0)$ is $[-5,1]^{T}$ and whose Hessian is

$$
\left[\begin{array}{rr}
6 & -1 \\
-1 & 2
\end{array}\right]
$$

Make a reasonable guess as to the minimum point of F. Explain.
${ }^{a}$ 12. Write the function $F\left(x_{1}, x_{2}\right)=3 x_{1}^{2}+6 x_{1} x_{2}-2 x_{2}^{2}+5 x_{1}+3 x_{2}+7$ in the form of Equation (7) with appropriate $\boldsymbol{A}, \boldsymbol{b}$, and c. Show in matrix form the linear equations that must be solved in order to find a point where the first partial derivatives of F vanish. Finally, solve these equations to locate this point numerically.
13. Verify Equation (13). In differentiating the double sum in Equation (12), first write all terms that contain x_{k}. Then differentiate and use the symmetry of the matrix \boldsymbol{H}.
14. Consider the quadratic function Q in Equation (12). Show that if \boldsymbol{H} is positive definite, then the stationary point is a minimum point.
15. (General quadratic function) Generalize Equation (6) to n variables. Show that a general quadratic function $Q(\boldsymbol{x})$ of n variables can be written in the matrix-vector form of Equation (7), where \boldsymbol{A} is an $n \times n$ symmetric matrix, \boldsymbol{b} a vector of length n, and c a scalar. Establish that the gradient and Hessian are

$$
\boldsymbol{G}(\boldsymbol{x})=\boldsymbol{A} \boldsymbol{x}+\boldsymbol{b} \quad \text { and } \quad \boldsymbol{H}(\boldsymbol{x})=\boldsymbol{A}
$$

respectively.
16. Let \boldsymbol{A} be an $n \times n$ symmetric matrix and define an upper triangular matrix $\boldsymbol{U}=\left(u_{i j}\right)$ by putting

$$
u_{i j}= \begin{cases}a_{i j} & i=j \\ 2 a_{i j} & i<j \\ 0 & i>j\end{cases}
$$

Show that $\boldsymbol{x}^{T} \boldsymbol{U} \boldsymbol{x}=\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}$ for all vectors \boldsymbol{x}.
17. Show that the general quadratic function $Q(\boldsymbol{x})$ of n variables can be written

$$
Q(\boldsymbol{x})=c+\boldsymbol{b}^{T} \boldsymbol{x}+\frac{1}{2} \boldsymbol{x}^{T} \boldsymbol{U} \boldsymbol{x}
$$

where \boldsymbol{U} is an upper triangular matrix. Can this simplify the work of finding the stationary point of Q ?
18. Show that the gradient and Hessian satisfy the equation

$$
\boldsymbol{H}(z)(x-z)=\boldsymbol{G}(x)-\boldsymbol{G}(z)
$$

for a general quadratic function of n variables.
19. Using Taylor series, show that a general quadratic function of n variables can be written in block form

$$
\boldsymbol{Q}(\boldsymbol{x})=\frac{1}{2} \mathcal{X}^{T} \mathcal{A} \mathcal{X}+\mathcal{B}^{T} \mathcal{X}+c
$$

where

$$
\mathcal{X}=\left[\begin{array}{l}
x \\
z
\end{array}\right], \quad \mathcal{A}=\left[\begin{array}{rr}
\boldsymbol{A} & -\boldsymbol{A} \\
-\boldsymbol{A} & \boldsymbol{A}
\end{array}\right], \quad \mathcal{B}=\left[\begin{array}{r}
\boldsymbol{b} \\
-\boldsymbol{b}
\end{array}\right]
$$

Here z is the point of expansion.
20. (Least-squares problem) Consider the function

$$
F(\boldsymbol{x})=(\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x})^{T}(\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x})+\alpha \boldsymbol{x}^{T} \boldsymbol{x}
$$

where \boldsymbol{A} is a real $m \times n$ matrix, \boldsymbol{b} is a real column vector of order m, and α is a positive real number. We want the minimum point of F for given $\boldsymbol{A}, \boldsymbol{b}$, and α. Show that

$$
F(\boldsymbol{x}+\boldsymbol{h})-F(\boldsymbol{x})=(\boldsymbol{A} \boldsymbol{h})^{T}(\boldsymbol{A} \boldsymbol{h})+\alpha \boldsymbol{h}^{T} \boldsymbol{h} \geqq 0
$$

for \boldsymbol{h} a vector of order n, provided that

$$
\left(\boldsymbol{A}^{T} \boldsymbol{A}+\alpha \boldsymbol{I}\right) \boldsymbol{x}=\boldsymbol{A}^{T} \boldsymbol{b}
$$

This means that any solution of this linear system minimizes $F(\boldsymbol{x})$; hence, this is the normal equation.
21. (Multiple choice) What is the gradient of the function $f(\boldsymbol{x})=3 x_{1}^{2}-\sin \left(x_{1} x_{2}\right)$ at the point $(3,0)$?
a. $(6,-3)$
b. $(3,-1)$
c. $(18,0)$
d. $(18,-3)$
e. None of these.
22. (Multiple choice, continuation) The directional derivative of the function f at the point \boldsymbol{x} in the direction \boldsymbol{u} is given by the expression

$$
\left.\frac{d}{d t} f(\boldsymbol{x}+t \boldsymbol{u})\right|_{t=0}
$$

In this description, \boldsymbol{u} should be a unit vector. What is the numerical value of the directional derivative where $f(\boldsymbol{x})$ is the function defined in the preceding problem, $\boldsymbol{x}=(1, \pi / 2)$, and $\boldsymbol{u}=(1,1) / \sqrt{2}$.
a. $6 / \sqrt{2}$
b. 6
c. 18
d. 3
e. None of these.
23. (Multiple choice, continuation) If f is a real-valued function of n variables, the Hessian $\boldsymbol{H}=\left(H_{i j}\right)$ is given by $H_{i j}=\partial^{2} f / \partial x_{i} \partial x_{j}$, all terms being evaluated at a specific point \boldsymbol{x}. What is the entry H_{22} in this matrix in the case of f as given in the previous problem and $\boldsymbol{x}=(1, \pi / 2)$?
a. 6
b. $6 / \sqrt{2}$
c. 1
d. $\pi^{2} / 2$
e. None of these.
24. (Multiple choice) Let f be a real-valued function of n real variables. Let \boldsymbol{x} and \boldsymbol{u} be given as numerical vectors, and $\boldsymbol{u} \neq 0$. Then the expression $f(\boldsymbol{x}+t \boldsymbol{u})$ defines a function of t. Suppose that the minimum of $f(\boldsymbol{x}+t \boldsymbol{u})$ occurs at $t=0$. What conclusion can be drawn?
a. The gradient of f at \boldsymbol{x}, denoted by $\boldsymbol{G}(\boldsymbol{x})$, is 0 .
b. \boldsymbol{u} is perpendicular to the gradient of f at \boldsymbol{x}.
c. $\boldsymbol{u}=\boldsymbol{G}(\boldsymbol{x})$, where $\boldsymbol{G}(\boldsymbol{x})$ denotes the gradient of f at \boldsymbol{x}.
d. $\boldsymbol{G}(\boldsymbol{x})$ is perpendicular to \boldsymbol{x}.
e. None of these.
25. (Multiple choice) If f is a (real-valued) quadratic function of n real variables, we can write it in the form $f \boldsymbol{x})=c-\boldsymbol{b}^{T} \boldsymbol{x}+\frac{1}{2} \boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}$. The gradient of f is then:
a. $A x$
b. $b-A x$
c. $A x-b$
d. $\frac{1}{2} \boldsymbol{A x}-\boldsymbol{b}$
e. None of these.

Computer Problems 16.2

1. Select a routine from your program library or from a package such as Matlab, Maple, or Mathematica for minimizing a function of many variables without the need to program derivatives. Test it on one or more of the following well-known functions. The ordering of our variables is (x, y, z, w).
a. Rosenbrock's: $100\left(y-x^{2}\right)^{2}+(1-x)^{2}$. Start at $(-1.2,1.0)$.
b. Powell's: $(x+10 y)^{2}+5(z-w)^{2}+(y-2 z)^{4}+10(x-w)^{4}$. Start at $(3,-1,0,1)$.
c. Powell's: $x^{2}+2 y^{2}+3 z^{2}+4 w^{2}+(x+y+z+w)^{4}$. Start at $(1,-1,1,1)$.
d. Fletcher and Powell's: $100(z-10 \phi)^{2}+\left(\sqrt{x^{2}+y^{2}}-1\right)^{2}+z^{2}$ in which ϕ is an angle determined from (x, y) by

$$
\frac{\cos 2 \pi \phi=x}{\sqrt{x^{2}+y^{2}}} \quad \text { and } \quad \frac{\sin 2 \pi \phi=y}{\sqrt{x^{2}+y^{2}}}
$$

where $-\pi / 2<2 \pi \phi \leqq 3 \pi / 2$. Start at $(1,1,1)$.
e. Wood's: $100\left(x^{2}-y\right)^{2}+(1-x)^{2}+90\left(z^{2}-w\right)^{2}+(1-z)^{2}+10(y-1)^{2}+$ $(w-1)^{2}+19.8(y-1)(w-1)$. Start at $(-3,-1,-3,-1)$.
2. (Accelerated steepest descent) This version of steepest descent is superior to the basic one. A sequence of points $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots$ is generated as follows: Point \boldsymbol{x}_{1} is specified as the starting point. Then \boldsymbol{x}_{2} is obtained by one step of steepest descent from \boldsymbol{x}_{1}. In the general step, if $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{m}$ have been obtained, we find a point \boldsymbol{z} by steepest descent from \boldsymbol{x}_{m}. Then \boldsymbol{x}_{m+1} is taken as the minimum point on the line $\boldsymbol{x}_{m-1}+t\left(\boldsymbol{z}-\boldsymbol{z}_{m-1}\right)$. Program and test this algorithm on one of the examples in Computer Problem 16.2.1.
3. Using a routine in your program library or in Matlab, Maple, or Mathematica,
a. solve the minimization problem that begins this chapter.
b. plot and solve for the minimum point, the maximum point, and the saddle point of these functions, respectively: $x^{2}+y^{2}, 1-x^{2}-y^{2}, x^{2}-y^{2}$.
c. plot and numerically experiment with these functions that do not have minima: $-x^{2}-y^{2}+13 x+6 y+12, x^{2}-y^{2}+3 x+5 y+7, x^{2}-2 x y+x+2 y+3$, $2 x+4 y+6$.
4. We want to find the minimum of $F(x, y, z)=z^{2} \cos x+x^{2} y^{2}+x^{2} e^{z}$ using a computer program that requires procedures for the gradient of F together with F. Write the necessary procedures. Find the minimum using a preprogrammed code that uses the gradient.
5. Assume that
procedure $\operatorname{Xmin}\left(f,\left(\operatorname{grad}_{i}\right), n,(x i),\left(g_{i j}\right)\right)$
is available to compute the minimum value of a function of two variables. Suppose that this routine requires not only the function but also its gradient. If we are going to use this routine with the function $F(x, y)=e^{x} \cos ^{2}(x y)$, what procedure will be needed? Write the appropriate code. Find the minimum using a preprogrammed code that uses the gradient.
6. Program and test the Nelder-Mead algorithm.
7. Program and test the Simulated Annealing algorithm.
8. (Student research project) Explore one of the newer methods for minimization such as generic algorithms, methods of simulated annealing, or the Nelder-Mead algorithm. Use some of the software that is available for them.
9. Use built-in routines in mathematical software systems such as Maple or Mathematica to verify the calculations in Example 1. Hint: In Maple, use grad and Hessian, and in Mathematica, use Series. For example, obtain two terms in the Taylor series in two variables expanded about the point $(1,1)$, and then carry out a change of variables.
10. (Molecular conformation: Protein folding project) Forces that govern folding of amino acids into proteins are due to bonds between individual atoms and to weaker interactions between unbound atoms such as electrostatic and Van der Waals forces. The Van der Waals forces are modeled by the Lennard-Jones potential

$$
U(r)=\frac{1}{r^{12}}-\frac{2}{r^{6}}
$$

where r is the distance between atoms.

In the figure, the energy minimum is -1 and it is achieved at $r=1$. Explore this subject and the numerical methods used. One approach is to predict the conformation of the proteins in finding the minimum potential energy of the total configuration of amino acids. For a cluster of atoms with positions $\left(x_{1}, y_{1}, z_{1}\right)$ to $\left(x_{n}, y_{n}, z_{n}\right)$, the objective function to be minimized is

$$
U=\sum_{i<j} \frac{1}{r_{i j}^{12}}-\frac{2}{r_{i j}^{6}}
$$

over all pairs of atoms. Here, $r_{i j}=\left[\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}+\left(z_{i}-z_{j}\right)^{2}\right]^{2}$ is the distance between atoms i and j. This optimization problem finds the rectangular coordinates of the atoms. See Sauer [2006] for additional details.

Linear Programming

In the study of how the U.S. economy is affected by changes in the supply and cost of energy, it has been found appropriate to use a linear programming model. This is a large system of linear inequalities that govern the variables in the model, together with a linear function of these variables to be maximized. Typically, the variables are the activity levels of various processes in the economy, such as the number of barrels of oil pumped per day or the number of men's shirts produced per day. A model that contains reasonable detail could easily involve thousands of variables and thousands of linear inequalities. Such problems are discussed in this chapter, and some guidance is offered on how to use existing software.

17.1 Standard Forms and Duality

First Primal Form

Linear programming is a branch of mathematics that deals with finding extreme values of linear functions when the variables are constrained by linear inequalities. Any problem of this type can be put into a standard form known as first primal form by simple manipulations (to be discussed later).

In matrix notation, the linear programming problem in first primal form looks like this:

$$
\left\{\begin{array}{l}
\text { maximize: } \boldsymbol{c}^{T} \boldsymbol{x} \tag{1}\\
\text { constraints: }\left\{\begin{array}{l}
\boldsymbol{A} \boldsymbol{x} \leqq \boldsymbol{b} \\
\boldsymbol{x} \geqq 0
\end{array}\right.
\end{array}\right.
$$

FIRST PRIMAL FORM

Given data $c_{j}, a_{i j}, b_{i}$ (for $1 \leqq j \leqq n, 1 \leqq i \leqq m$), we wish to determine the x_{j} 's $(1 \leqq j \leqq n)$ that maximize the linear function

$$
\sum_{j=1}^{n} c_{j} x_{j}
$$

subject to the constraints

$$
\begin{cases}\sum_{j=1}^{n} a_{i j} x_{j} \leqq b_{i} & (1 \leqq i \leqq m) \\ x_{j} \leqq 0 & (1 \leqq j \leqq n)\end{cases}
$$

Here, \boldsymbol{c} and \boldsymbol{x} are n-component vectors, \boldsymbol{b} is an m-component vector, and \boldsymbol{A} is an $m \times n$ matrix. A vector inequality $\boldsymbol{u} \leqq \boldsymbol{v}$ means that \boldsymbol{u} and \boldsymbol{v} are vectors with the same number of components and that all the individual components satisfy the inequality $u_{i} \leqq v_{i}$. The linear function $\boldsymbol{c}^{T} \boldsymbol{x}$ is called the objective function.

In a linear programming problem, the set of all vectors that satisfy the constraints is called the feasible set, and its elements are the feasible points. So in the preceding notation, the feasible set is

$$
\boldsymbol{K}=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{x} \geqq 0 \quad \text { and } \quad \boldsymbol{A} \boldsymbol{x} \leqq \boldsymbol{b}\right\}
$$

A more precise (and concise) statement of the linear programming problem, then, is as follows: Determine $\boldsymbol{x}^{*} \in \boldsymbol{K}$ such that $\boldsymbol{c}^{T} \boldsymbol{x}^{*} \geqq \boldsymbol{c}^{T} \boldsymbol{x}$ for all $\boldsymbol{x} \in \boldsymbol{K}$.

Numerical Example

To get an idea of the type of practical problem that can be solved by linear programming, consider a simple example of optimization. Suppose that a certain factory uses two raw materials to produce two products. Suppose also that the following are true:

- Each unit of the first product requires 5 units of the first raw material and 3 of the second.
- Each unit of the second product requires 3 units of the first raw material and 6 of the second.
- On hand are 15 units of the first raw material and 18 units of the second.
- The profits on sales of the products are 2 per unit for the first product and 3 per unit for the second product.

How should the raw materials be used to realize a maximum profit? To answer this question, variables x_{1} and x_{2} are introduced to represent the number of units of the two products to be manufactured. In terms of these variables, the profit is

$$
2 x_{1}+3 x_{2}
$$

The process uses up $5 x_{1}+3 x_{2}$ units of the first raw material and $3 x_{1}+6 x_{2}$ units of the second. The limitations in the third fact above are expressed by these inequalities:

$$
\left\{\begin{array}{l}
5 x_{1}+3 x_{2} \leqq 15 \\
3 x_{1}+6 x_{2} \leqq 18
\end{array}\right.
$$

Of course, $x_{1} \geqq 0$ and $x_{2} \geqq 0$. Thus, the solution to the problem is a vector $x \geqq 0$ that maximizes the objective function $2 x_{1}+3 x_{2}$ while satisfying the constraints above. So the linear programming problem is

$$
\begin{cases}\text { maximize: } & 2 x_{1}+3 x_{2} \tag{2}\\
\text { constraints: } & \left\{\begin{array}{l}
5 x_{1}+3 x_{2} \leqq 15 \\
3 x_{1}+6 x_{2} \leqq 18 \\
x_{1} \leqq 0 \quad x_{2} \leqq 0
\end{array}\right.\end{cases}
$$

More precisely, among all vectors \boldsymbol{x} in the set

$$
\boldsymbol{K}=\left\{\boldsymbol{x}: \boldsymbol{x} \geqq 0,5 x_{1}+3 x_{2} \leqq 15,3 x_{1}+6 x_{2} \leqq 18\right\}
$$

we want the one that makes $2 x_{1}+3 x_{2}$ as large as possible.
Because the number of variables in this example is only two, the problem can be solved graphically. To locate the solution, we begin by graphing the set \boldsymbol{K}. This is the shaded region in Figure 17.1. Then we draw some of the lines $2 x_{1}+3 x_{2}=\alpha$, where α is given various values. These lines are dashed in the figure and labeled with the values of α. Finally, we select one of these lines with a maximum α that intersects \boldsymbol{K}. That intersection is the solution point and a vertex of \boldsymbol{K}. It is obtained numerically by solving simultaneously the equations $5 x_{1}+3 x_{2}=15$ and $3 x_{1}+6 x_{2}=18$. Thus, $\boldsymbol{x}=\left[\frac{12}{7}, \frac{15}{7}\right]^{T}$, and the corresponding profit from Equation (2) is $2\left(\frac{12}{7}\right)+3\left(\frac{15}{7}\right)=\frac{69}{7}$.

We can use mathematical software systems such as Matlab, Maple, or Mathematica to solve this linear programming problem. For example, we obtain the solution $x=\frac{12}{7}$

FIGURE 17.1 Graphical solution method

and $y=\frac{15}{7}$ with objective function value $\frac{69}{7}$ using one system, and we obtain the solution $x=1.7143$ and $y=2.1429$ with the value of the objective function used as -9.8571 on another. (Why?)

Some of these mathematical systems contain large collections of commands for the optimization of general linear and nonlinear functions. For nonlinear optimization, these functions can handle unconstrained and constrained minimization as well as a large number of other tasks. If the program performs minimization of the objective function and we wish to maximize the objective function, we need to minimize the negative of the objective function. Also, it may allow for additional equality constraints, and since we do not have any, we set them to null entries.

Note in this example that the units that are used-whether dollars, pesos, pounds, or kilograms-do not matter for the mathematical method as long as they are used consistently. Notice also that x_{1} and x_{2} are permitted to be arbitrary real numbers. The problem would be quite different if only integer values were acceptable as a solution. This situation would occur if the products being produced consisted of indivisible units, such as a manufactured article. If the integer constraint is imposed, only points with integer coordinates inside \boldsymbol{K} are acceptable. So $(0,3)$ is the best of them. Observe particularly that we cannot simply round off the solution $(1.71,2.14)$ to the nearest integers to solve the problem with integer constraints. The point $(2,2)$ lies just outside \boldsymbol{K}. However, if the company could alter the constraints slightly by increasing the amount of the first raw material to 16 , the integer solution (2,2) would be allowable. Special programs for integer linear programming are available but are outside the scope of this book.

Observe how the solution would be altered if our profit or objective function were $2 x_{1}+x_{2}$. In this case, the dashed lines in the figure would have a different slope (namely, $-2)$ and a different vertex of the shaded region would occur as the solution-namely, (3, 0). A characteristic feature of linear programming problems is that the solutions (if any exist) can always be found among the vertices.

Transforming Problems into First Primal Form

A linear programming problem that is not already in the first primal form can be put into that form by some standard techniques:

- If the original problem calls for the minimization of the linear function $\boldsymbol{c}^{T} \boldsymbol{x}$, this is the same as maximizing $(-\boldsymbol{c})^{T} \boldsymbol{x}$.
- If the original problem contains a constraint like $\boldsymbol{a}^{T} \boldsymbol{x} \geqq \beta$, it can be replaced by the constraint $(-\boldsymbol{a})^{T} \boldsymbol{x} \leqq-\beta$.
- If the objective function contains a constant, this fact has no effect on the solution. For example, the maximum of $\boldsymbol{c}^{T} \boldsymbol{x}+\lambda$ occurs for the same \boldsymbol{x} as the maximum of $\boldsymbol{c}^{T} \boldsymbol{x}$.
- If the original problem contains equality constraints, each can be replaced by two inequality constraints. Thus, the equation $\boldsymbol{a}^{T} \boldsymbol{x}=\beta$ is equivalent to $\boldsymbol{a}^{T} \boldsymbol{x} \leqq \beta$ and $\boldsymbol{a}^{T} \boldsymbol{x} \geqq \beta$.
- If the original problem does not require a variable (say, x_{i}) to be nonnegative, we can replace x_{i} by the difference of two nonnegative variables, say, $x_{i}=u_{i}-v_{i}$, where $u_{i} \geqq 0$ and $v_{i} \geqq 0$.

Here is an example that illustrates all five techniques. Consider the linear programming problem

$$
\begin{cases}\text { minimize: } & 2 x_{1}+3 x_{2}-x_{3}+4 \tag{3}\\
\text { constraints: } & \left\{\begin{array}{l}
x_{1}-x_{2}+4 x_{3} \geqq 2 \\
x_{1}+x_{2}+x_{3}=15 \\
x_{2} \geqq 0 \geqq x_{3}
\end{array}\right.\end{cases}
$$

It is equivalent to the following problem in first primal form:

$$
\left\{\begin{aligned}
\text { maximize: } & -2 u+2 v-3 z-w \\
\text { constraints: } & \left\{\begin{array}{rl}
-u+v+z+4 w \leqq & -2 \\
u-v+z-w \leqq & \\
-u+v-z+w \leqq & -15 \\
u \geqq 0 \quad v \geqq 0 \quad z \geqq 0 & w \geqq 0
\end{array}\right.
\end{aligned}\right.
$$

Dual Problem

Corresponding to a given linear programming problem in first primal form is another problem, called its dual. It is obtained from the original primal problem
$(\mathbf{P}) \begin{cases}\text { maximize: } & \boldsymbol{c}^{T} \boldsymbol{x} \\ \text { constraints: } & \left\{\begin{array}{l}\boldsymbol{A} \boldsymbol{x} \leqq \boldsymbol{b} \\ \boldsymbol{x} \geqq 0\end{array}\right.\end{cases}$
by defining the dual to be the problem
(D) $\begin{cases}\text { minimize: } & \boldsymbol{b}^{T} \boldsymbol{y} \\ \text { constraints: } & \left\{\begin{array}{l}\boldsymbol{A}^{T} \boldsymbol{y} \geqq \boldsymbol{c} \\ \boldsymbol{y} \geqq 0\end{array}\right.\end{cases}$

For example, the dual of the problem

$$
\begin{cases}\text { maximize: } & 2 x_{1}+3 x_{2} \tag{4}\\
\text { constraints: } & \left\{\begin{aligned}
& 4 x_{1}+5 x_{2} \leqq 6 \\
& 7 x_{1}+8 x_{2} \leqq 9 \\
& 10 x_{1}+11 x_{2} \leqq 12 \\
& x_{1} \geqq 0 x_{2} \geqq 0
\end{aligned}\right.\end{cases}
$$

is this problem:

$$
\begin{cases}\text { minimize: } & 6 y_{1}+9 y_{2}+12 y_{3} \\
\text { constraints: } & \left\{\begin{array}{l}
4 y_{1}+7 y_{2}+10 y_{3} \geqq 2 \\
5 y_{1}+8 y_{2}+11 y_{3} \geqq 3 \\
y_{1} \geqq 0 \quad y_{2} \geqq 0 \quad y_{3} \geqq 0
\end{array}\right.\end{cases}
$$

Note that, in general, the dual problem has different dimensions from those of the original problem. Thus, the number of inequalities in the original problem becomes the number of variables in the dual problem.

An elementary relationship between the original primal problem and its dual is as follows:

THEOREM ON PRIMAL AND DUAL PROBLEMS

If \boldsymbol{x} satisfies the constraints of the primal problem and \boldsymbol{y} satisfies the constraints of its dual, then $\boldsymbol{c}^{T} \boldsymbol{x} \leqq \boldsymbol{b}^{T} \boldsymbol{y}$. Consequently, if $\boldsymbol{c}^{T} \boldsymbol{x}=\boldsymbol{b}^{T} \boldsymbol{y}$, then \boldsymbol{x} and \boldsymbol{y} are solutions of the primal problem and the dual problem, respectively.

Proof By the assumptions made, $\boldsymbol{x} \geqq 0, \boldsymbol{A} \boldsymbol{x} \leqq \boldsymbol{b}, \boldsymbol{y} \geqq 0$, and $\boldsymbol{A}^{T} \boldsymbol{y} \geqq \boldsymbol{c}$. Consequently,

$$
\boldsymbol{c}^{T} \boldsymbol{x} \leqq\left(\boldsymbol{A}^{T} \boldsymbol{y}\right)^{T} \boldsymbol{x}=\boldsymbol{y}^{T} \boldsymbol{A} \boldsymbol{x} \leqq \boldsymbol{y}^{T} \boldsymbol{b}=\boldsymbol{b}^{T} \boldsymbol{y}
$$

This relationship can be used to estimate the number $\lambda=\max \left\{\boldsymbol{c}^{T} \boldsymbol{x}: \boldsymbol{x} \geqq 0\right.$ and $\boldsymbol{A} \boldsymbol{x} \leqq \boldsymbol{b}\}$. (This number is often termed the value of the linear programming problem.) To estimate λ, take any \boldsymbol{x} and \boldsymbol{y} that satisfy $\boldsymbol{x} \geqq 0, \boldsymbol{y} \geqq 0, \boldsymbol{A} \boldsymbol{x} \leqq \boldsymbol{b}$, and $\boldsymbol{A}^{T} \boldsymbol{y} \geqq \boldsymbol{c}$. Then $\boldsymbol{c}^{T} \boldsymbol{x} \leqq \lambda \leqq \boldsymbol{b}^{T} \boldsymbol{y}$. The importance of the dual problem stems from the fact that the extreme values in the primal and dual problems are the same. Formally stated, we have the following:

DUALITY THEOREM

If the original problem has a solution \boldsymbol{x}^{*}, then the dual problem has a solution \boldsymbol{y}^{*}; furthermore, $\boldsymbol{c}^{T} \boldsymbol{x}^{*}=\boldsymbol{b}^{T} \boldsymbol{y}^{*}$.

This result is nicely illustrated by the numerical example from the beginning of this section. The dual to that problem is

$$
\begin{cases}\text { minimize: } & 15 y_{1}+18 y_{2} \tag{5}\\
\text { constraints: } & \left\{\begin{array}{l}
5 y_{1}+3 y_{2} \geqq 2 \\
3 y_{1}+6 y_{2} \geqq 3 \\
y_{1} \geqq 0 \quad y_{2} \geqq 0
\end{array}\right.\end{cases}
$$

The graph of this problem is given in Figure 17.2. Moving the line $15 y_{1}+18 y_{2}=\alpha$, we see that the vertex $\left(\frac{1}{7}, \frac{3}{7}\right)$ is the minimum point. The values of the objective functions are indeed identical because $15\left(\frac{1}{7}\right)+18\left(\frac{3}{7}\right)=\frac{69}{7}$. Moreover, the solutions $\boldsymbol{x}=\left[\frac{12}{7}, \frac{15}{7}\right]^{T}$ and $\boldsymbol{y}=\left[\frac{1}{7}, \frac{3}{7}\right]^{T}$ can be related, but we will not discuss this.

We can use mathematical software systems such as Matlab, Maple, or Mathematica to solve this linear programming problem. For example, we obtain $x=0.1429$ and $y=0.4286$ with $f(x, y)=9.8571$.

FIGURE 17.2
Graphical method of the dual problem

Second Primal Form

Returning to the general problem in the first primal form, we introduce additional nonnegative variables $x_{n+1}, x_{n+2}, \ldots, x_{n+m}$, known as slack variables, so that some of the inequalities can be written as equalities. Using this device, we can put the original problem into the following standard form:

SECOND PRIMAL FORM

Maximize the linear function

$$
\sum_{j=1}^{n} c_{j} x_{j}
$$

subject to the constraints

$$
\begin{cases}\sum_{j=1}^{n} a_{i j} x_{j}+x_{n+i}=b_{i} & (1 \leqq i \leqq m) \\ x_{j} \geqq 0 & (1 \leqq j \leqq m+n)\end{cases}
$$

Using matrix notation, we have

$$
\begin{cases}\text { maximize: } & \boldsymbol{c}^{T} \boldsymbol{x} \\
\text { constraints: } & \left\{\begin{array}{l}
\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} \\
\boldsymbol{x} \geqq 0
\end{array}\right.\end{cases}
$$

Here, it is assumed that the $m \times n$ matrix \boldsymbol{A} contains an $m \times m$ identity matrix in its last m columns and that the last m entries of \boldsymbol{c} are 0 . Also, note that when a problem in first primal form is changed to second primal form, we increase the number of variables and thus alter the quantities $n, \boldsymbol{x}, \boldsymbol{c}$, and \boldsymbol{A}. That is, a problem in the first primal form with n variables would contain $n+m$ variables in the second form.

To illustrate the transformation of a problem from first to second primal form, consider the example introduced at the beginning of this section:

$$
\left\{\begin{array}{ll}
\text { maximize: } & 2 x_{1}+3 x_{2} \tag{6}\\
\text { constraints: } & \left\{\begin{array}{l}
5 x_{1}+3 x_{2} \leqq 15 \\
3 x_{1}+6 x_{2} \leqq 18 \\
x_{1} \geqq 0
\end{array} x_{2} \geqq 0\right.
\end{array}, ~ \$\right.
$$

Two slack variables x_{3} and x_{4} are introduced to take up the slack in two of the inequalities. The new problem in second primal form is then

Problems involving absolute values of the variables or absolute values of linear expressions can often be turned into linear programming problems. To illustrate, consider the problem of minimizing $|x-y|$ subject to linear constraints on x and y. We can introduce a new variable $z \geqq 0$ and then impose constraints $x-y \leqq z,-x+y \leqq z$. Then we seek to minimize the linear form $0 x+0 y+1 z$.

Summary

(1) The linear programming problem in first primal form is

$$
\begin{cases}\text { maximize: } & \boldsymbol{c}^{T} \boldsymbol{x} \\
\text { constraints: } & \left\{\begin{array}{l}
\boldsymbol{A} \boldsymbol{x} \leqq \boldsymbol{b} \\
\boldsymbol{x} \geqq 0
\end{array}\right.\end{cases}
$$

(2) Its dual problem is

$$
\begin{cases}\text { minimize: } & \boldsymbol{b}^{T} \boldsymbol{y} \\
\text { constraints: } & \left\{\begin{array}{l}
\boldsymbol{A}^{T} \boldsymbol{y} \geqq \boldsymbol{c} \\
\boldsymbol{y} \geqq 0
\end{array}\right.\end{cases}
$$

(3) The second primal form is

$$
\left\{\begin{aligned}
\text { maximize: } & \boldsymbol{c}^{T} \boldsymbol{x} \\
\text { constraints: } & \left\{\begin{array}{l}
\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} \\
\boldsymbol{x} \geqq 0
\end{array}\right.
\end{aligned}\right.
$$

where the $m \times n$ matrix \boldsymbol{A} contains an $m \times m$ identity matrix in its last m columns and where the last m entries of \boldsymbol{c} are 0 .
(4) If \boldsymbol{x} satisfies the constraints of the primal problem and \boldsymbol{y} satisfies the constraints of its dual, then $\boldsymbol{c}^{T} \boldsymbol{x} \leqq \boldsymbol{b}^{T} \boldsymbol{y}$. Consequently, if $\boldsymbol{c}^{T} \boldsymbol{x}=\boldsymbol{b}^{T} \boldsymbol{y}$, then \boldsymbol{x} and \boldsymbol{y} are solutions of the primal problem and the dual problem, respectively.
(5) The extreme values in the primal and dual problems are the same.

Problems 17.1

1. Put the following problem into first primal form:

Hint: $|\alpha| \leqq \beta$ can be written as $-\beta \leqq \alpha \leqq \beta$.
${ }^{a}$ 2. A program is available for solving linear programming problems in first primal form. Put the following problem into that form:
3. Consider the following linear programming problems:
a. maximize: $2 x_{1}+3 x_{2}$
constraints: $\left\{\begin{aligned} & x_{1}+2 x_{2} \geqq-6 \\ &-x_{1}+3 x_{2} \leqq 3 \\ &\left|2 x_{1}-5 x_{2}\right| \leqq 5 \\ & x_{1} \geqq 0 \quad x_{2} \geqq 0\end{aligned}\right.$
b. minimize: $7 x_{1}+x_{2}-x_{3}+4$
constraints: $\left\{\begin{aligned} & x_{1}-x_{2}+x_{3} \geqq 2 \\ & x_{1}+x_{2}+x_{3} \leqq 10 \\ &-2 x_{1}-x_{2} \leqq-4 \\ & x_{1} \geqq 0 \quad x_{2} \geqq 0\end{aligned}\right.$
Rewrite each problem in first primal form and give the dual problem.
4. Sketch the feasible region for the following constraints:

$$
\left\{\begin{array}{r}
x-y \leqq 2 \\
x+y \leqq 3 \\
2 x+y \geqq 3 \\
x \geqq 0 \quad y \geqq 0
\end{array}\right.
$$

${ }^{a}$ a. By substituting the vertices into the objective function

$$
z(x, y)=x+2 y
$$

determine the minimum value of this function on the feasible region.
b. Let

$$
z(x, y)=\left(x-\frac{1}{2}\right)^{2}+\left(y-\frac{1}{2}\right)^{2}
$$

Show that the minimum value of z over the feasible region does not occur at a vertex.
5. Put the following linear programming problems into first primal form. What is the dual of each?
a. $\begin{cases}\text { minimize: } & 2 x+y-3 z+1 \\ \text { constraints: } & \left\{\begin{array}{l}x-y \geqq 3 \\ |x-z| \leqq 2 \\ x \geqq 0 \quad y \geqq 0\end{array}\right.\end{cases}$
${ }^{a}$ b. $\left\{\begin{array}{l}\text { minimize: } \\ \text { constraints: }\left\{\begin{array}{l}x-2 y+5 z+3 \\ x+y+z \geqq 4 \\ x-y-z=2 \\ x \geqq 0 \quad y \geqq 0 \quad z \geqq 0\end{array}\right.\end{array}\right.$
c. $\begin{cases}\text { maximize: } & 3 x+2 y \\ \text { constraints: }\left\{\begin{array}{l}6 x+5 y \leqq 17 \\ 2 x+11 y \leqq 23 \\ x \leqq 0\end{array}\right.\end{cases}$
6. Consider the following linear programming problem:
${ }^{a}$ a. Reformulate this problem in second primal form.
${ }^{a}$ b. Formulate the dual problem.
${ }^{a}$ 7. Solve the following linear programming problem graphically:

$$
\left\{\begin{aligned}
\text { maximize: } & 3 x_{1}+5 x_{2} \\
\text { constraints: } & \left\{\begin{array}{rl}
x_{1} & \leqq 4 \\
x_{2} & \leqq 6 \\
3 x_{1}+2 x_{2} & \leqq 18 \\
x_{1} \geqq 0 & x_{2}
\end{array}>0\right.
\end{aligned}\right.
$$

${ }^{a}$ 8. (Continuation) Solve the dual problem of the preceding problem.
9. Show that the dual problem may be written as

$$
\begin{cases}\text { maximize: } & \boldsymbol{b}^{T} \boldsymbol{y} \\
\text { constraints: } & \left\{\begin{array}{l}
\boldsymbol{y}^{T} \boldsymbol{A} \geqq \boldsymbol{c}^{T} \\
\boldsymbol{y} \geqq 0
\end{array}\right.\end{cases}
$$

10. Describe how max $\{|x-y-3|,|2 x+y+4|,|x+2 y-7|\}$ can be minimized by using a linear programming code.
${ }^{a}$ 11. Show how this problem can be solved by linear programming:

$$
\begin{cases}\text { minimize: } & |x-y| \\
\text { constraints: } & \left\{\begin{array}{l}
x \leqq 3 y \\
x \geqq y \\
y \leqq x-2
\end{array}\right.\end{cases}
$$

12. Consider the linear programming problem

$$
\begin{cases}\text { minimize: } & x_{1}+x_{4}+25 \\
\text { constraints: } & \left\{\begin{array}{r}
2 x_{1}+2 x_{2}+x_{3}<7 \\
2 x_{1}-3 x_{2}+x_{4}=4 \\
x_{2}-x_{4}>1 \\
3 x_{2}-8 x_{3}+x_{4}=5 \\
x_{1}, x_{2}, x_{3}, x_{4} \geqq 0
\end{array}\right.\end{cases}
$$

Write in matrix-vector form the dual problem and the second primal problem.
13. Solve each of the linear programming problems by the graphical method. Determine x to

$$
\begin{cases}\text { maximize: } & \boldsymbol{c}^{T} \boldsymbol{x} \\
\text { constraints: } & \left\{\begin{array}{l}
\boldsymbol{A} \boldsymbol{x} \leqq \boldsymbol{b} \\
\boldsymbol{x} \geqq 0
\end{array}\right.\end{cases}
$$

Here, nonunique and unbounded "solutions" may be obtained.
${ }^{a}$ a. $\boldsymbol{c}=[2,-4]^{T} \quad \boldsymbol{A}=\left[\begin{array}{rr}-3 & -5 \\ 4 & 9\end{array}\right] \quad \boldsymbol{b}=[-15,36]$
b. $\boldsymbol{c}=\left[2, \frac{1}{2}\right]^{T} \quad \boldsymbol{A}=\left[\begin{array}{ll}6 & 5 \\ 4 & 1\end{array}\right] \quad \boldsymbol{b}=[30,12]^{T}$
${ }^{a}$ c. $\boldsymbol{c}=[3,2]^{T}$
$\boldsymbol{A}=\left[\begin{array}{ll}-3 & 2 \\ -4 & 9\end{array}\right] \quad \boldsymbol{b}=[6,36]^{T}$
d. $\boldsymbol{c}=[2,-3]^{T} \quad \boldsymbol{A}=\left[\begin{array}{rr}-1 & 1 \\ 0 & 1\end{array}\right] \quad \boldsymbol{b}=[0,5]^{T}$
e. $\boldsymbol{c}=\left[\begin{array}{ll}-4,11\end{array}\right]^{T} \quad \boldsymbol{A}=\left[\begin{array}{rr}-3 & 4 \\ -4 & 11\end{array}\right] \quad \boldsymbol{b}=[12,44]^{T}$
${ }^{a}$ f. $\boldsymbol{c}=[-3,4]^{T} \quad \boldsymbol{A}=\left[\begin{array}{rr}2 & 3 \\ -4 & -5\end{array}\right] \quad \boldsymbol{b}=[6,-20]^{T}$
g. $\boldsymbol{c}=\left[\begin{array}{ll}2,1\end{array}\right]^{T} \quad \boldsymbol{A}=\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right] \quad \boldsymbol{b}=[0,-2]^{T}$
${ }^{a}$ h. $\boldsymbol{c}=[3,1]^{T} \quad \boldsymbol{A}=\left[\begin{array}{ll}2 & 4 \\ 5 & 3\end{array}\right] \quad \boldsymbol{b}=[21,18]^{T}$
${ }^{a}$ 14. Solve the following linear programming problem by hand, using a graph for help:

$$
\left\{\begin{aligned}
\text { maximize: } & 4 x+4 y+z \\
\text { constraints: } & \left\{\begin{aligned}
3 x+2 y+z=12 \\
7 x+7 y+2 z \leqq 144 \\
7 x+5 y+2 z \leqq 80 \\
11 x+7 y+3 z \leqq 132 \\
x \geqq 0 \quad y \geqq 0
\end{aligned}\right.
\end{aligned}\right.
$$

Hint: Use the equation to eliminate z from all other expressions. Solve the resulting two-dimensional problem.
15. Put this linear programming problem into second primal form. You may want to make changes of variables. If so, include a dictionary relating new and old variables.

$$
\begin{cases}\text { minimize: } & \varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3} \\ \text { constraints: } & \begin{cases}|3 x+4 y+6| \leqq \varepsilon_{1} \\ |2 x-8 y-4| & \leqq \varepsilon_{2} \\ |-x-3 y+5| \leqq \varepsilon_{3} \\ \varepsilon_{1}>0 \quad \varepsilon_{2}>0 & \varepsilon_{3}>0 \quad x>0 \quad y>0\end{cases} \end{cases}
$$

Solve the resulting problem.
16. Consider the following linear programming problem:

$$
\begin{cases}\text { maximize: } & c_{1} x_{1}+c_{2} x_{2} \\ \text { constraints: } & \begin{cases}a_{1} x_{1}+a_{2} x_{2} \leqq b \\ x_{1} \geqq 0 & x_{2} \geqq 0\end{cases} \end{cases}
$$

In the special case in which all data are positive, show that the dual problem has the same extreme value as the original problem.
${ }^{a}$ 17. Suppose that a linear programming problem in first primal form has the property that $\boldsymbol{c}^{T} \boldsymbol{x}$ is not bounded on the feasible set. What conclusion can be drawn about the dual problem?
18. (Multiple choice) Which of these problems is formulated in the first primal form for a linear programming problem?
a. maximize $\boldsymbol{c}^{T} \boldsymbol{x}$ subject to $\boldsymbol{A} \boldsymbol{x} \leqq \boldsymbol{b}$
b. minimize $\boldsymbol{c}^{T} \boldsymbol{x}$ subject to $\boldsymbol{A} \boldsymbol{x} \leqq \boldsymbol{b}, \boldsymbol{x} \geqq 0$
c. maximize $\boldsymbol{c}^{T} \boldsymbol{x}$ subject to $\boldsymbol{A x}=\boldsymbol{b}, \boldsymbol{x} \geqq 0$
d. maximize $\boldsymbol{c}^{T} \boldsymbol{x}$ subject to $\boldsymbol{A} \boldsymbol{x} \leqq \boldsymbol{b}, \boldsymbol{x} \geqq 0$
e. None of these.

Computer Problems 17.1

${ }^{a}$ 1. A western shop wishes to purchase 300 felt and 200 straw cowboy hats. Bids have been received from three wholesalers. Texas Hatters has agreed to supply not more than 200 hats, Lone Star Hatters not more than 250, and Lariat Ranch Wear not more than 150. The owner of the shop has estimated that his profit per hat sold from Texas Hatters would be $\$ 3 /$ felt and $\$ 4 /$ straw, from Lone Star Hatters $\$ 3.80 /$ felt and $\$ 3.50 /$ straw, and from Lariat Ranch Wear $\$ 4 /$ felt and $\$ 3.60 /$ straw. Set up a linear programming problem to maximize the owner's profits. Solve by using a program from your software library.
2. The ABC Drug Company makes two types of liquid painkiller that have brand names Relieve (R) and Ease (E) and contain different mixtures of three basic drugs, A, B, and C, produced by the company. Each bottle of R requires $\frac{7}{9}$ unit of drug A, $\frac{1}{2}$ unit of drug B, and $\frac{3}{4}$ unit of drug C. Each bottle of E requires $\frac{4}{9}$ unit of drug A, $\frac{5}{2}$ unit of drug B, and $\frac{1}{4}$ unit of drug C. The company is able to produce each day only 5 units of drug A, 7 units of drug B, and 9 units of C. Moreover, Food and Drug Administration regulations stipulate that the number of bottles of R manufactured cannot exceed twice the number of bottles of E. The profit margin for each bottle of E and R is $\$ 7$ and $\$ 3$, respectively. Set up the linear programming problem in first primal form to determine the number of bottles of the two painkillers that the company should produce each day so as to maximize their profits. Solve by using available software.
${ }^{a}$ 3. Suppose that the university student government wishes to charter planes to transport at least 750 students to the bowl game. Two airlines, α and β, agree to supply aircraft for
the trip. Airline α has five aircraft available carrying 75 passengers each, and airline β has three aircraft available carrying 250 passengers each. The cost per aircraft is $\$ 900$ and $\$ 3250$ for the trip from airlines α and β, respectively. The student government wants to charter at most six aircraft. How many of each type should be chartered to minimize the cost of the airlift? How much should the student government charge to make $50 ¢$ profit per student? Solve by the graphical method, and verify by using a routine from your program library.
4. (Continuation) Rework the preceding computer problem in the following two possibly different ways:
a. The number of students going on the airlift is maximized.
b. The cost per student is minimized.
${ }^{a}$ 5. (Diet problem) A university dining hall wishes to provide at least 5 units of vitamin C and 3 units of vitamin E per serving. Three foods are available containing these vitamins. Food f_{1} contains 2.5 and 1.25 units per ounce of vitamins C and E , respectively, whereas food f_{2} contains just the opposite amounts. The third food f_{3} contains an equal amount of each vitamin at 1 unit per ounce. Food f_{1} costs $25 ¢$ per ounce, food f_{2} costs $56 ¢$ per ounce, and food f_{3} costs $10 ¢$ per ounce. The dietitian wishes to provide the meal at a minimum cost per serving that satisfies the minimum vitamin requirements. Set up this linear programming problem in second primal form. Solve with the aid of a code from your computer program library.
6. Use built-in routines in mathematical software systems such as Matlab, Maple, or Mathematica to solve linear programming problem with equation number below in first primal form, in second primal form, and in dual form:
a. (2)
b. (3)
c. (4)
d. (5)
e. (6)

17.2 Simplex Method

The principal algorithm that is used in solving linear programming problems is the simplex method. Here, enough of the background of this method is described that the reader can use available computer programs that incorporate it.

Consider a linear programming problem in second primal form:

$$
\begin{cases}\text { maximize: } & \boldsymbol{c}^{T} \boldsymbol{x} \\
\text { constraints: } & \left\{\begin{array}{l}
\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} \\
\boldsymbol{x} \geqq 0
\end{array}\right.\end{cases}
$$

It is assumed that \boldsymbol{c} and \boldsymbol{x} are n-component vectors, \boldsymbol{b} is an m-component vector, and \boldsymbol{A} is an $m \times n$ matrix. Also, it is assumed that $\boldsymbol{b} \geqq 0$ and that \boldsymbol{A} contains an $m \times m$ identity
matrix in its last m columns. As before, we define the set of feasible points as

$$
\boldsymbol{K}=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{A x}=\boldsymbol{b}, \boldsymbol{x} \geqq 0\right\}
$$

The points of \boldsymbol{K} are exactly the points that are competing to maximize $\boldsymbol{c}^{T} \boldsymbol{x}$.

Vertices in K and Linearly Independent Columns of A

The set \boldsymbol{K} is a polyhedral set in \mathbb{R}^{n}, and the algorithm to be described proceeds from vertex to vertex in \boldsymbol{K}, always increasing the value of $\boldsymbol{c}^{T} \boldsymbol{x}$ as it goes from one to another. Let us give a precise definition of vertex. A point \boldsymbol{x} in \boldsymbol{K} is called a vertex if it is impossible to express it as $\boldsymbol{x}=\frac{1}{2}(\boldsymbol{u}+\boldsymbol{v})$, with both \boldsymbol{u} and \boldsymbol{v} in \boldsymbol{K} and $\boldsymbol{u} \neq \boldsymbol{v}$. In other words, \boldsymbol{x} is not the midpoint of any line segment whose endpoints lie in \boldsymbol{K}.

We denote by $\boldsymbol{a}^{(1)}, \boldsymbol{a}^{(2)}, \ldots, \boldsymbol{a}^{(n)}$ the column vectors constituting the matrix \boldsymbol{A}. The following theorem relates the columns of \boldsymbol{A} to the vertices of \boldsymbol{K} :

THEOREM 1

THEOREM ON VERTICES AND COLUMN VECTORS

Let $\boldsymbol{x} \in \boldsymbol{K}$ and define $\mathcal{I}(\boldsymbol{x})=\left\{i: x_{i}>0\right\}$. Then the following are equivalent:

1. \boldsymbol{x} is a vertex of \boldsymbol{K}.
2. The set $\left\{\boldsymbol{a}^{(i)}: i \in \mathcal{I}(\boldsymbol{x})\right\}$ is linearly independent.

Proof If Statement 1 is false, then we can write $\boldsymbol{x}=\frac{1}{2}(\boldsymbol{u}+\boldsymbol{v})$, with $\boldsymbol{u} \in \boldsymbol{K}, \boldsymbol{v} \in \boldsymbol{K}$, and $\boldsymbol{u} \neq \boldsymbol{v}$. For every index i that is not in the set $\mathcal{I}(\boldsymbol{x})$, we have $x_{i}=0, u_{i} \geqq 0, v_{i} \geqq 0$, and $x_{i}=\frac{1}{2}\left(u_{i}+v_{i}\right)$. This forces u_{i} and v_{i} to be zero. Thus, all the nonzero components of \boldsymbol{u} and \boldsymbol{v} correspond to indices i in $\mathcal{I}(\boldsymbol{x})$. Since \boldsymbol{u} and \boldsymbol{v} belong to \boldsymbol{K},

$$
\boldsymbol{b}=\boldsymbol{A} \boldsymbol{u}=\sum_{i=1}^{n} u_{i} \boldsymbol{a}^{(i)}=\sum_{i \in \mathcal{I}(\boldsymbol{x})} u_{i} \boldsymbol{a}^{(i)}
$$

and

$$
\boldsymbol{b}=\boldsymbol{A} \boldsymbol{v}=\sum_{i=1}^{n} v_{i} \boldsymbol{a}^{(i)}=\sum_{i \in \mathcal{I}(\boldsymbol{x})} v_{i} \boldsymbol{a}^{(i)}
$$

Hence, we obtain

$$
\sum_{i \in \mathcal{I}(\boldsymbol{x})}\left(u_{i}-v_{i}\right) \boldsymbol{a}^{(i)}=0
$$

showing the linear dependence of the set $\left\{\boldsymbol{a}^{(i)}: i \in \mathcal{I}(\boldsymbol{x})\right\}$. Thus, Statement 2 is false. Consequently, Statement 2 implies Statement 1.

For the converse, assume that Statement 2 is false. From the linear dependence of column vectors $\boldsymbol{a}^{(i)}$ for $i \in \mathcal{I}(\boldsymbol{x})$, we have

$$
\sum_{i \in \mathcal{I}(\boldsymbol{x})} y_{i} \boldsymbol{a}^{(i)}=0 \quad \text { with } \quad \sum_{i \in \mathcal{I}(\boldsymbol{x})}\left|y_{i}\right| \neq 0
$$

for appropriate coefficients y_{i}. For each $i \notin \mathcal{I}(\boldsymbol{x})$, let $y_{i}=0$. Form the vector \boldsymbol{y} with components y_{i} for $i=1,2, \ldots, n$. Then, for any λ, we see that because $\boldsymbol{x} \in \boldsymbol{K}$,

$$
\boldsymbol{A}(\boldsymbol{x} \pm \lambda \boldsymbol{y})=\sum_{i=1}^{n}\left(x_{i} \pm \lambda y_{i}\right) \boldsymbol{a}^{(i)}=\sum_{i=1}^{n} x_{i} \boldsymbol{a}^{(i)} \pm \lambda \sum_{i \in \mathcal{I}(\boldsymbol{x})} y_{i} \boldsymbol{a}^{(i)}=\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}
$$

Now select the real number λ positive but so small that $\boldsymbol{x}+\lambda \boldsymbol{y} \geqq 0$ and $\boldsymbol{x}-\lambda \boldsymbol{y} \geqq 0$. [To see that it is possible, consider separately the components for $i \in \mathcal{I}(\boldsymbol{x})$ and $i \notin \mathcal{I}(\boldsymbol{x})$.] The resulting vectors, $\boldsymbol{u}=\boldsymbol{x}+\lambda \boldsymbol{y}$ and $\boldsymbol{v}=\boldsymbol{x}-\lambda \boldsymbol{y}$, belong to \boldsymbol{K}. They differ, and obviously, $\boldsymbol{x}=\frac{1}{2}(\boldsymbol{u}+\boldsymbol{v})$. Thus, \boldsymbol{x} is not a vertex of \boldsymbol{K}; that is, Statement 1 is false. So Statement 1 implies Statement 2.

Given a linear programming problem, there are three possibilities:

1. There are no feasible points; that is, the set \boldsymbol{K} is empty.
2. \boldsymbol{K} is not empty, and $\boldsymbol{c}^{T} \boldsymbol{x}$ is not bounded on \boldsymbol{K}.
3. \boldsymbol{K} is not empty, and $\boldsymbol{c}^{T} \boldsymbol{x}$ is bounded on \boldsymbol{K}.

It is true (but not obvious) that in the third case, there is a point \boldsymbol{x} in \boldsymbol{K} such that $\boldsymbol{c}^{T} \boldsymbol{x} \geqq \boldsymbol{c}^{T} \boldsymbol{y}$ for all \boldsymbol{y} in \boldsymbol{K}. We have assumed that our problem is in the second primal form so that possibility 1 cannot occur. Indeed, \boldsymbol{A} contains an $m \times m$ identity matrix and so has the form

$$
\boldsymbol{A}=\left[\begin{array}{cccccccc}
a_{11} & a_{12} & \cdots & a_{1 k} & 1 & 0 & \cdots & 0 \\
a_{21} & a_{22} & \cdots & a_{2 k} & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m k} & 0 & 0 & \cdots & 1
\end{array}\right]
$$

where $k=n-m$. Consequently, we can construct a feasible point \boldsymbol{x} easily by setting $x_{1}=x_{2}=\cdots=x_{k}=0$ and $x_{k+1}=b_{1}, x_{k+2}=b_{2}$, and so on. It is then clear that $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$. The inequality $\boldsymbol{x} \geqq 0$ follows from our initial assumption that $\boldsymbol{b} \geqq 0$.

Simplex Method

Next we present a brief outline of the simplex method for solving linear programming problems. It involves a sequence of exchanges so that the trial solution proceeds systematically from one vertex to another in \boldsymbol{K}. This procedure is stopped when the value of $\boldsymbol{c}^{T} \boldsymbol{x}$ is no longer increased as a result of the exchange.

The following is an outline of the simplex algorithm.

ALGORITHM 1 Simplex

Select a small positive value for ε. In each step, we have a set of m indices $\left\{k_{1}, k_{2}, \ldots, k_{m}\right\}$.

1. Put columns $\boldsymbol{a}^{\left(k_{1}\right)}, \boldsymbol{a}^{\left(k_{2}\right)}, \ldots, \boldsymbol{a}^{\left(k_{m}\right)}$ into \boldsymbol{B}, and solve $\boldsymbol{B} \boldsymbol{x}=\boldsymbol{b}$.
2. If $x_{i}>0$ for $1 \leqq i \leqq m$, continue. Otherwise, exit because the algorithm has failed.
3. Set $\boldsymbol{e}=\left[c_{k_{1}}, c_{k_{2}}, \ldots, c_{k_{m}}\right]^{T}$, and solve $\boldsymbol{B}^{T} \boldsymbol{y}=\boldsymbol{e}$.
4. Choose any s in $\{1,2, \ldots, n\}$ but not in $\left\{k_{1}, k_{2}, \ldots, k_{m}\right\}$ for which $c_{s}-\boldsymbol{y}^{T} \boldsymbol{a}^{(s)}$ is greatest.
5. If $c_{s}-\boldsymbol{y}^{T} \boldsymbol{a}^{(s)}<\varepsilon$, exit because \boldsymbol{x} is the solution.
6. Solve $\boldsymbol{B} \boldsymbol{z}=\boldsymbol{a}^{(s)}$.
7. If $z_{i} \leqq \varepsilon$ for $1 \leqq i \leqq m$, then exit because the objective function is unbounded on \boldsymbol{K}.
8. Among the ratios x_{i} / z_{i} that have $z_{i}>0$ for $1 \leqq i \leqq m$, let x_{r} / z_{r} be the smallest. In case of a tie, let r be the first occurrence.
9. Replace k_{r} by s, and go to step 1 .

A few remarks on this algorithm are in order. In the beginning, select the indices $k_{1}, k_{2}, \ldots, k_{m}$ such that $\boldsymbol{a}^{\left(k_{1}\right)}, \boldsymbol{a}^{\left(k_{2}\right)}, \ldots, \boldsymbol{a}^{\left(k_{m}\right)}$ form an $m \times m$ identity matrix. At step 5 , where we say that \boldsymbol{x} is a solution, we mean that the vector $\boldsymbol{v}=\left(v_{i}\right)$ given by $v_{k_{i}}=x_{i}$ for $1 \leqq i \leqq n$ and $v_{i}=0$ for $i \notin\left\{k_{1}, k_{2}, \ldots, k_{m}\right\}$ is the solution. A convenient choice for the tolerance ε that occurs in steps 5 and 7 might be 10^{-6}.

In any reasonable implementation of the simplex method, advantage must be taken of the fact that succeeding occurrences of step 1 are very similar. In fact, only one column of \boldsymbol{B} changes at a time. Similar remarks hold for steps 3 and 6.

We do not recommend that the reader attempt to program the simplex algorithm. Efficient codes, refined over many years of experience, are usually available in software libraries. Many of them can provide solutions to a given problem and to its dual with very little additional computing. Sometimes this feature can be exploited to decrease the execution time of a problem. To see why, consider a linear programming problem in first primal form:
(P) $\left\{\begin{array}{l}\text { maximize: } \\ \boldsymbol{c}^{T} \boldsymbol{x} \\ \text { constraints: }\left\{\begin{array}{l}\boldsymbol{A} \boldsymbol{x} \leqq \boldsymbol{b} \\ \boldsymbol{x} \geqq 0\end{array}\right.\end{array}\right.$

As usual, we assume that \boldsymbol{x} is an n vector and that \boldsymbol{A} is an $m \times n$ matrix. When the simplex algorithm is applied to this problem, it performs an iterative process on an $m \times m$ matrix denoted by \boldsymbol{B} in the preceding description. If the number of inequality constraints m is very large relative to n, then the dual problem may be easier to solve, since the \boldsymbol{B} matrices for it will be of dimension $n \times n$. Indeed, the dual problem is
(D) $\begin{cases}\text { minimize: } & \boldsymbol{b}^{T} \boldsymbol{y} \\ \text { constraints: } & \left\{\begin{array}{l}\boldsymbol{A}^{T} \boldsymbol{y} \geqq \boldsymbol{c} \\ \boldsymbol{y} \geqq 0\end{array}\right.\end{cases}$
and the number of inequality constraints here is n. An example of this technique appears in the next section.

Summary

(1) For the second primal form, the set of feasible points is

$$
\boldsymbol{K}=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{A x}=\boldsymbol{b}, \boldsymbol{x} \geqq 0\right\}
$$

which are the points of \boldsymbol{K} competing to maximize $\boldsymbol{c}^{T} \boldsymbol{x}$.
(2) For a linear programming problem, there are these possibilities: There are no feasible points, that is, the set \boldsymbol{K} is empty; \boldsymbol{K} is not empty, and $\boldsymbol{c}^{T} \boldsymbol{x}$ is not bounded on $\boldsymbol{K} ; \boldsymbol{K}$ is not empty, and $\boldsymbol{c}^{T} \boldsymbol{x}$ is bounded on \boldsymbol{K}.
(3) Denote by $\boldsymbol{a}^{(1)}, \boldsymbol{a}^{(2)}, \ldots, \boldsymbol{a}^{(n)}$ the column vectors constituting the matrix \boldsymbol{A}. Let $\boldsymbol{x} \in \boldsymbol{K}$ and define $\mathcal{I}(\boldsymbol{x})=\left\{i: x_{i}>0\right\}$. Then \boldsymbol{x} is a vertex of \boldsymbol{K} if and only if the set $\left\{\boldsymbol{a}^{(i)}: i \in \mathcal{I}(\boldsymbol{x})\right\}$ is linearly independent.
(4) The simplex method involves a sequence of exchanges so that the trial solution proceeds systematically from one vertex to another in the set of feasible points \boldsymbol{K}. This procedure is stopped when the value of $\boldsymbol{c}^{T} \boldsymbol{x}$ is no longer increased as a result of exchanges.

Problems 17.2

${ }^{a}$ 1. Show that the linear programming problem

$$
\left\{\begin{array}{l}
\text { maximize: } \boldsymbol{c}^{T} \boldsymbol{x} \\
\text { constraints: } \boldsymbol{A} \boldsymbol{x} \leqq \boldsymbol{b}
\end{array}\right.
$$

can be put into first primal form by increasing the number of variables by just one. Hint: Replace x_{j} by $y_{j}-y_{0}$.
${ }^{a}$ 2. Show that the set \boldsymbol{K} can have only a finite number of vertices.
3. Suppose that \boldsymbol{u} and \boldsymbol{v} are solution points for a linear programming problem and that $\boldsymbol{x}=\frac{1}{2}(\boldsymbol{u}+\boldsymbol{v})$. Show that \boldsymbol{x} is also a solution.
4. Using the simplex method as described, solve the numerical example in the text.
${ }^{a}$ 5. Using standard manipulations, put the dual problem (D) into first and second primal forms.
${ }^{a}$ 6. Show how a code for solving a linear programming problem in first primal form can be used to solve a system of n linear equations in n variables.
7. Using standard techniques, put the dual problem (D) into first primal form (P); then take the dual of it. What is the result?

Computer Problems 17.2

1. Select a linear programming code from your computing center library and use it to solve these problems:
a. $\left\{\begin{aligned} \text { minimize: } 8 x_{1}+6 x_{2}+6 x_{3}+9 x_{4} \\ \text { constraints: }\left\{\begin{aligned} x_{1}+2 x_{2}+x_{4} & \geqq 2 \\ 3 x_{1}+x_{2}+x_{4} & \geqq 4 \\ x_{3}+x_{4} & \geqq 1 \\ x_{1}+x_{3} & \geqq 1 \\ x_{1} \geqq 0 \quad x_{2} \geqq 0 \quad x_{3} & \geqq 0 \quad x_{4} \geqq 0\end{aligned}\right.\end{aligned}\right.$
${ }^{a} \mathbf{b} . \begin{cases}\text { minimize: } & 10 x_{1}-5 x_{2}-4 x_{3}+7 x_{4}+x_{5} \\ \text { constraints: } & \left\{\begin{array}{l}4 x_{1}-3 x_{2}-x_{3}+4 x_{4}+x_{5}=1 \\ -x_{1}+2 x_{2}+2 x_{3}+x_{4}+3 x_{5}=4 \\ x_{1} \geqq 0 \quad x_{2} \geqq 0 \quad x_{3} \geqq 0 \quad x_{4} \geqq 0 \quad x_{5} \geqq 0\end{array}\right.\end{cases}$
${ }^{a} \mathbf{c}$ c. $\left\{\begin{array}{l}\text { maximize: } \\ 2 x_{1}+4 x_{2}+3 x_{3} \\ \text { constraints: }\left\{\begin{array}{c}4 x_{1}+2 x_{2}+3 x_{3} \leqq 15 \\ 3 x_{1}+2 x_{2}+x_{3} \leqq 7 \\ x_{1}+x_{2}+2 x_{3} \leqq 6 \\ x_{1} \geqq 0 \quad x_{2} \geqq 0 \quad x_{3} \geqq 0\end{array}\right.\end{array}\right.$
2. (Student research project) Investigate recent developments in computational linear programming algorithms, especially by interior-point methods.

17.3 Approximate Solution of Inconsistent Linear Systems

Linear programming can be used for the approximate solution of systems of linear equations that are inconsistent. An $m \times n$ system of equations

$$
\sum_{j=1}^{n} a_{i j} x_{j}=b_{i} \quad(1 \leqq i \leqq m)
$$

is said to be inconsistent if there is no vector $\boldsymbol{x}=\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{T}$ that simultaneously satisfies all m equations in the system. For instance, the system

$$
\left\{\begin{align*}
2 x_{1}+3 x_{2} & =4 \tag{1}\\
x_{1}-x_{2} & =2 \\
x_{1}+2 x_{2} & =7
\end{align*}\right.
$$

is inconsistent, as can be seen by attempting to carry out the Gaussian elimination process.

ℓ_{1} Problem

Since no vector \boldsymbol{x} can solve an inconsistent system of equations, the residuals

$$
r_{i}=\sum_{j=1}^{n} a_{i j} x_{j}-b_{i} \quad(1 \leqq i \leqq m)
$$

cannot be made to vanish simultaneously. Hence, $\sum_{i=1}^{m}\left|r_{i}\right|>0$. Now it is natural to ask for an \boldsymbol{x} vector that renders the expression $\sum_{i=1}^{m}\left|r_{i}\right|$ as small as possible. This problem is called the ℓ_{1} problem for this system of equations. Other criteria, leading to different approximate solutions, might be to minimize $\sum_{i=1}^{m} r_{i}^{2}$ or $\max _{1 \leqq i \leqq m}\left|r_{i}\right|$. Chapter 12 discusses in detail the problem of minimizing $\sum_{i=1}^{m} r_{i}^{2}$.

The minimization of $\sum_{i=1}^{n}\left|r_{i}\right|$ by appropriate choice of the \boldsymbol{x} vector is a problem for which special algorithms have been designed (see Barrodale and Roberts [1974]). However, if one of these special programs is not available or if the problem is small in scope, linear programming can be used.

A simple, direct restatement of the problem is

If a linear programming code is at hand in which the variables are not required to be nonnegative, then it can be used on Problem (2). If the variables must be nonnegative, the following technique can be applied. Introduce a variable y_{n+1}, and write $x_{j}=y_{j}-y_{n+1}$. Then define $a_{i, n+1}=-\sum_{j=1}^{n} a_{i j}$. This step creates an additional column in the matrix \boldsymbol{A}. Now consider the linear programming problem

$$
\begin{cases}\text { maximize: } & -\sum_{i=1}^{m} \varepsilon_{i} \tag{3}\\ \text { constraints: } \begin{cases}\sum_{j=1}^{n+1} a_{i j} y_{j}-\varepsilon_{i} \leqq b_{i} & (1 \leqq i \leqq m) \\ -\sum_{j=1}^{n+1} a_{i j} y_{j}-\varepsilon_{i} \leqq-b_{i} & (1 \leqq i \leqq m) \\ y \geqq 0 \quad \varepsilon \geqq 0\end{cases} \end{cases}
$$

which is in first primal form with $m+n+1$ variables and $2 m$ inequality constraints.

It is not hard to verify that Problem (3) is equivalent to Problem (2). The main point is that

$$
\begin{aligned}
\sum_{j=1}^{n+1} a_{i j} y_{j} & =\sum_{j=1}^{n} a_{i j}\left(x_{j}+y_{n+1}\right)+a_{i, n+1} y_{n+1} \\
& =\sum_{j=1}^{n} a_{i j} x_{j}+y_{n+1} \sum_{j=1}^{n} a_{i j}+y_{n+1}\left(-\sum_{j=1}^{n} a_{i j}\right) \\
& =\sum_{j=1}^{n} a_{i j} x_{j}
\end{aligned}
$$

Another technique can be used to replace the $2 m$ inequality constraints in Problem (3) by a set of m equality constraints. We write

$$
\varepsilon_{i}=\left|r_{i}\right|=u_{i}+v_{i}
$$

where $u_{i}=r_{i}$ and $v_{i}=0$ if $r_{i} \geqq 0$ but $v_{i}=-r_{i}$ and $u_{i}=0$ if $r_{i}<0$. The resulting linear programming problem is

Using the preceding formulas, we have

$$
\begin{aligned}
r_{i} & =\sum_{j=1}^{n} a_{i j} x_{j}-b_{i}=\sum_{j=1}^{n} a_{i j}\left(y_{j}-y_{n+1}\right)-b_{i} \\
& =\sum_{j=1}^{n} a_{i j} y_{j}-y_{n+1} \sum_{j=1}^{n} a_{i j}-b_{i} \\
& =\sum_{j=1}^{n+1} a_{i j} y_{j}-b_{i}=u_{i}-v_{i}
\end{aligned}
$$

From it, we conclude that $r_{i}+v_{i}=u_{i} \geqq 0$. Now v_{i} and u_{i} should be as small as possible, consistent with this restriction, because we are attempting to minimize $\sum_{i=1}^{m}\left(u_{i}+v_{i}\right)$. So if $r_{i} \geqq 0$, we take $v_{i} \geqq 0$ and $u_{i}=r_{i}$, whereas if $r_{i}<0$, we take $v_{i}=-r_{i}$ and $u_{i}=0$. In either case, $\left|r_{i}\right|=u_{i}+v_{i}$. Thus, minimizing $\sum_{i=1}^{m}\left(u_{i}+v_{i}\right)$ is the same as minimizing $\sum_{i=1}^{m}\left|r_{i}\right|$.

The example of the inconsistent linear system given by (1) could be solved in the ℓ_{1} sense by solving the linear programming problem

$$
\begin{cases}\text { minimize: } & u_{1}+v_{1}+u_{2}+v_{2}+u_{3}+v_{3} \tag{4}\\
\text { constraints: } & \left\{\begin{array}{cr}
2 y_{1}+3 y_{2}-5 y_{3}-u_{1}+v_{1}=4 \\
y_{1}-y_{2} & -u_{2}+v_{2}=2 \\
y_{1}+2 y_{2}-3 y_{3}-u_{3}+v_{3}=7 \\
y_{1}, y_{2}, y_{3} \geqq 0 & u_{1}, u_{2}, u_{3} \geqq 0 \quad v_{1}, v_{2}, v_{3} \geqq 0
\end{array}\right.\end{cases}
$$

The solution is

$$
\begin{array}{lll}
u_{1}=0 & u_{2}=0 & u_{3}=0 \\
v_{1}=0 & v_{2}=0 & v_{3}=5 \\
y_{1}=2 & y_{2}=0 & y_{3}=0
\end{array}
$$

From it, we recover the ℓ_{1} solution of System (1) in the form

$$
\begin{array}{ll}
x_{1}=y_{1}-y_{3}=2 & r_{1}=u_{1}-v_{1}=0 \\
x_{2}=y_{2}-y_{3}=0 & r_{2}=u_{2}-v_{2}=0 \\
& r_{3}=u_{3}-v_{3}=-5
\end{array}
$$

We can use mathematical software systems such as Matlab, Maple, or Mathematica to solve this linear programming problem. For example, we obtain $u_{1}=v_{1}=u_{2}=v_{2}=u_{3}=$ $y_{2}=y_{3}=0, v_{3}=5$, and $y_{1}=2$, with 5 as the value of the objective function. For another system, we need to set the equality constraints. We obtain the solution corresponding to $y_{1}=y_{2}=y_{3}=684.2887, u_{1}=u_{2}=u_{3}=v_{1}=v_{2}=0$, and $v_{3}=5$ with 5 as the value of the objective function. The x vector is $x_{1}=2$ and $x_{2}=3.1494 \times 10^{-11}$. This solution is slightly different from the one previously obtained, owing to roundoff errors, but the minimum value for the objective function is the same and all the constraints are satisfied.

ℓ_{∞} Problem

Consider again a system of m linear equations in n unknowns:

$$
\sum_{j=1}^{n} a_{i j} x_{j}=b_{i} \quad(1 \leqq i \leqq m)
$$

If the system is inconsistent, we know that the residuals $r_{i}=\sum_{j=1}^{n} a_{i j} x_{j}-b_{i}$ cannot all be zero for any \boldsymbol{x} vector. So the quantity $\varepsilon=\max _{1 \leqq i \leqq m}\left|r_{i}\right|$ is positive. The problem of making ε a minimum is called the ℓ_{∞} problem for the system of equations. An equivalent linear programming problem is

$$
\left\{\begin{array}{cc}
\text { minimize: } & \varepsilon \\
\text { constraints: }\left\{\begin{array}{cc}
\sum_{j=1}^{n} a_{i j} x_{j}-\varepsilon \leqq b_{i} & (1 \leqq i \leqq m) \\
-\sum_{j=1}^{n} a_{i j} x_{j}-\varepsilon \leqq-b_{i} & (1 \leqq i \leqq m)
\end{array}\right.
\end{array}\right.
$$

If a linear programming code is available in which the variables need not be greater than or equal to zero, then it can be used to solve the ℓ_{∞} problem as formulated above. If the variables must be nonnegative, we first introduce a variable y_{n+1} so large that the quantities
$y_{j}=x_{j}+y_{n+1}$ are positive. Next, we solve the linear programming problem

$$
\begin{cases}\text { minimize: } & \varepsilon \tag{5}\\ \text { constraints: } & \begin{cases}\sum_{j=1}^{n+1} a_{i j} y_{j}-\varepsilon \leqq b_{i} & (1 \leqq i \leqq m) \\ -\sum_{j=1}^{n+1} a_{i j} y_{j}-\varepsilon \leqq-b_{i} & (1 \leqq i \leqq m) \\ \varepsilon \geqq 0 \quad y_{j} \leqq 0 & (1 \leqq j \leqq n+1)\end{cases} \end{cases}
$$

Here, we have again defined $a_{i, n+1}=-\sum_{j=1}^{n} a_{i j}$.
For our System (1), the solution that minimizes the quantity

$$
\max \left\{\left|2 x_{1}+3 x_{2}-4\right|,\left|x_{1}-x_{2}-2\right|,\left|x_{1}+2 x_{2}-7\right|\right\}
$$

is obtained from the linear programming problem

$$
\left\{\begin{align*}
\text { minimize: } & \varepsilon \tag{6}\\
\text { constraints: } & \left\{\begin{aligned}
& 2 y_{1}+3 y_{2}-5 y_{3}-\varepsilon \leqq 4 \\
& y_{1}-y_{2}-\varepsilon \leqq 2 \\
& y_{1}+2 y_{2}-3 y_{3}-\varepsilon \leqq 7 \\
&-2 y_{1}-3 y_{2}+5 y_{3}-\varepsilon \leqq-4 \\
&-y_{1}+y_{2}-\varepsilon \leqq-2 \\
&-y_{1}-2 y_{2}+3 y_{3}-\varepsilon \leqq-7 \\
& y_{1}, y_{2}, y_{3} \geqq 0 \quad \varepsilon \geqq 0
\end{aligned}\right.
\end{align*}\right.
$$

The solution is

$$
y_{1}=\frac{8}{9} \quad y_{2}=\frac{5}{3} \quad y_{3}=0 \quad \varepsilon=\frac{25}{9}
$$

From it, the ℓ_{∞} solution of (1) is recovered as follows:

$$
x_{1}=y_{1}-y_{3}=\frac{8}{9} \quad x_{2}=y_{2}-y_{3}-\frac{5}{3}
$$

We can use mathematical software systems such as Matlab, Maple, or Mathematica to solve the linear programming problem (6). For example, we obtain the solution $y_{1}=\frac{8}{9}$, $y_{2}=\frac{5}{3}, y_{3}=0$, and $\varepsilon=\frac{25}{9}$ from two of these systems. But for one of the mathematical systems, we obtain the solution corresponding to $y_{1}=1.0423 \times 10^{3}, y_{2}=1.0431 \times$ 10^{3}. $y_{3}=1.0414 \times 10^{3}$, and $\varepsilon=2.778$. We do obtain the same results as before $(0.8889,1.6667) \approx\left(\frac{8}{9}, \frac{5}{3}\right)$.

In problems like (6), m is often much larger than n. Thus, in accordance with remarks made in Section 17.2, it may be preferable to solve the dual problem because it would have $2 m$ variables but only $n+2$ inequality constraints. To illustrate, the dual of Problem (6) is

$$
\left\{\begin{array}{c}
\text { maximize: } 4 u_{1}+2 u_{2}+7 u_{3}-4 u_{4}-2 u_{5}-7 u_{6} \\
\text { constraints: }\left\{\begin{array}{rrr}
2 u_{1}+u_{2}+u_{3}-2 u_{4}-u_{5}-u_{6} \geqq & 0 \\
3 u_{1}-u_{2}+2 u_{3}-3 u_{4}+u_{5}-2 u_{6} \geqq & 0 \\
-5 u_{1}-3 u_{3}+5 u_{4}+3 u_{6} & \geqq & 0 \\
-u_{1}-u_{2}-u_{3}-u_{4}-u_{5}-u_{6} \geqq & -1 \\
u_{i} \geqq 0 & (1 \leqq i \leqq 6)
\end{array}\right.
\end{array}\right.
$$

The three types of approximate solution that have been discussed (for an overdetermined system of linear equations) are useful in different situations. Broadly speaking, an ℓ_{∞} solution is preferred when the data are known to be accurate. An ℓ_{2} solution is preferred when the data are contaminated with errors that are believed to conform to the normal probability distribution. The ℓ_{1} solution is often used when data are suspected of containing wild points-points that result from gross errors, such as the incorrect placement of a decimal point. Additional information can be found in Rice and White [1964]. The ℓ_{2} problem is discussed in Chapter 12 also.

Summary

(1) We consider an inconsistent system of m linear equations in n unknowns

$$
\sum_{j=1}^{n} a_{i j} x_{j}=b_{i} \quad(1 \leqq i \leqq m)
$$

For the residuals $r_{i}=\sum_{j=1}^{n} a_{i j} x_{j}-b_{i}$, the ℓ_{1} problem for this system is to minimize the expression $\sum_{i=1}^{m}\left|r_{i}\right|$. A direct restatement of the problem is

$$
\left\{\begin{aligned}
& \text { minimize: } \sum_{i=1}^{m} \varepsilon_{i} \\
& \text { constraints: } \begin{cases}\sum_{j=1}^{n} a_{i j} x_{j}-b_{i} \leqq \varepsilon_{i} \\
-\sum_{j=1}^{n} a_{i j} x_{j}+b_{i} \leqq \varepsilon_{i}\end{cases} \\
&(1 \leqq i \leqq m)
\end{aligned}\right.
$$

where $\varepsilon_{i}=\left|r_{i}\right|$. If the variables must be nonnegative, we introduce a variable y_{n+1} and write $x_{j}=y_{j}-y_{n+1}$. Define $a_{i, n+1}=-\sum_{j=1}^{n} a_{i j}$; an equivalent linear programming
problem is

$$
\begin{cases}\text { maximize: } & -\sum_{i=1}^{m} \varepsilon_{i} \\ \text { constraints: } \begin{cases}\sum_{j=1}^{n+1} a_{i j} y_{j}-\varepsilon_{i} \leqq b_{i} & (1 \leqq i \leqq m) \\ -\sum_{j=1}^{n+1} a_{i j} y_{j}-\varepsilon_{i} \leqq-b_{i} \\ y \geqq 0 \quad \varepsilon \geqq 0\end{cases} & (1 \leqq i \leqq m)\end{cases}
$$

which is in first primal form with $m+n+1$ variables and $2 m$ inequality constraints.
(2) Another technique is to replace the $2 m$ inequality constraints by a set of m equality constraints. We write $\varepsilon_{i}=\left|r_{i}\right|=u_{i}+v_{i}$, where $u_{i}=r_{i}$ and $v_{i}=0$ if $r_{i} \geqq 0$ but $v_{i}=-r_{i}$ and $u_{i}=0$ if $r_{i}<0$. The resulting linear programming problem is
(3) For an inconsistent system, the problem of making $\varepsilon=\max _{1 \leqq i \leqq m}\left|r_{i}\right|$ a minimum is the ℓ_{∞} problem for the system. An equivalent linear programming problem is

$$
\begin{cases}\text { minimize: } & \varepsilon \\
\text { constraints: }\left\{\begin{array}{cc}
\sum_{j=1}^{n} a_{i j} x_{j}-\varepsilon \leqq b_{i} & (1 \leqq i \leqq m) \\
-\sum_{j=1}^{n} a_{i j} x_{j}-\varepsilon \leqq-b_{i} & (1 \leqq i \leqq m)
\end{array}\right.\end{cases}
$$

If the variables must be nonnegative, we introduce a large variable y_{n+1} so that the quantities $y_{j}=x_{j}+y_{n+1}$ are positive and we have an equivalent linear programming problem:

$$
\begin{cases}\text { minimize: } & \varepsilon \\ \text { constraints: } \begin{cases}\sum_{j=1}^{n+1} a_{i j} y_{j}-\varepsilon \leqq b_{i} & (1 \leqq i \leqq m) \\ -\sum_{j=1}^{n+1} a_{i j} y_{j}-\varepsilon \leqq-b_{i} & (1 \leqq i \leqq m) \\ \varepsilon \geqq 0 \quad y_{j} \leqq 0 & (1 \leqq j \leqq n+1)\end{cases} \end{cases}
$$

where we defined $a_{i, n+1}=-\sum_{j=1}^{n} a_{i j}$.

Additional References

See Armstrong and Godfrey [1979], Barrodale and Phillips [1975], Barrodale and Roberts [1974], Bartels [1971], Bloomfield and Steiger [1983], Branham [1990], Cärtner [2006], Cooper and Steinberg [1974], Dantzi, Orden, and Wolfe [1963], Huard [1979], Nering and Tucker [1992], Orchard-Hays [1968], Rabinowitz [1968], Roos et al. [1997], Schrijver [1986], Wright [1997], Ye [1997], and Zhang [1995].

Problems 17.3

1. Consider the inconsistent linear system

$$
\left\{\begin{aligned}
5 x_{1}+2 x_{2} & =6 \\
x_{1}+x_{2}+x_{3} & =2 \\
7 x_{2}-5 x_{3} & =11 \\
6 x_{1}+9 x_{3} & =9
\end{aligned}\right.
$$

Write the following with nonnegative variables:
${ }^{a}$ a. The equivalent linear programming problem for solving the system in the ℓ_{1} sense.
${ }^{a}$ b. The equivalent linear programming problem for solving the system in the ℓ_{∞} sense.
2. (Continuation) Repeat the preceding problem for the system

$$
\left\{\begin{aligned}
3 x+y & =7 \\
x-y & =11 \\
x+6 y & =13 \\
-x+3 y & =-12
\end{aligned}\right.
$$

${ }^{a}$ 3. We want to find a polynomial p of degree n that approximates a function f as well as possible from below; that is, we want $0 \leqq f-p \leqq \varepsilon$ for minimum ε. Show how p could be obtained with reasonable precision by solving a linear programming problem.
${ }^{a} 4$. To solve the ℓ_{1} problem for the system of equations

$$
\left\{\begin{aligned}
x-y & =4 \\
2 x-3 y & =7 \\
x+y & =2
\end{aligned}\right.
$$

we can solve a linear programming problem. What is it?

Computer Problems 17.3

${ }^{a} \mathbf{1}$. Obtain numerical answers for Parts \mathbf{a} and \mathbf{b} of Problem 17.3.1.
2. (Continuation) Repeat for Problem 17.3.2.
${ }^{a}$ 3. Find a polynomial of degree 4 that represents the function e^{x} in the following sense: Select 20 equally spaced points x_{i} in interval $[0,1]$ and require the polynomial to minimize the expression $\max _{1 \leqq i \leqq 20}\left|e^{x_{i}}-p\left(x_{i}\right)\right|$. Hint: This is the same as solving 20 equations in five variables in the ℓ_{∞} sense. The i th equation is $A+B x_{i}+C x_{i}^{2}+D x_{i}^{3}+$ $E x_{i}^{4}=e^{x_{i}}$, and the unknowns are A, B, C, D, and E.
4. Use built-in routines in mathematical software systems such as Matlab, Maple, or Mathematica to solve the linear programming problem with the equation numbers below in first primal form, in second primal form, and the dual:
a. (4)
b. (6)

Advice on Good Programming Practices

Because the programming of numerical schemes is essential to understanding them, we offer here a few words of advice on good programming practices.

A. 1 Programming Suggestions

The suggestions and techniques given here should be considered in context. They are not intended to be complete, and some good programming suggestions have been omitted to keep the discussion brief. Our purpose is to encourage the reader to be attentive to considerations of efficiency, economy, readability, and roundoff errors. Of course, some of these suggestions and admonitions may vary depending on the particular programming language that is being used and features in the language.

Be Careful and Be Correct Strive to write programs carefully and correctly. This is of utmost importance.

Use Pseudocode Before beginning the coding, write out in complete detail the mathematical algorithm to be used in pseudocode such as that used in this text. The pseudocode serves as a bridge between the mathematics and the computer program. It need not be defined in a formal way, as is done for a computer language, but it should contain sufficient detail that the implementation is straightforward. When writing the pseudocode, use a style that is easy to read and understand. For maintainability, it should be easy for a person who is unfamiliar with the code to read it and understand what it does.

Check and Double-Check Check the code thoroughly for errors and omissions before beginning to edit on a computer terminal. Spend time checking the code before running it to avoid executing the program, showing the output, discovering an error, correcting the error, and repeating the process ad nauseam.*

[^11]Modern computing environments may allow the user to accomplish this process in only a few seconds, but this advice is still valid if for no other reason than that it is dangerously easy to write programs that may work on a simple test but not on a more complicated one. No function key or mouse can tell you what is wrong!

Use Test Cases After writing the pseudocode, check and trace through it using pencil-and-paper calculations on a typical yet simple example. Checking boundary cases, such as the values of the first and second iterations in a loop and the processing of the first and last elements in a data structure, will often reveal embarrassing errors. These same sample cases can be used as the first set of test cases on the computer.

Modularize Code Build a program in steps by writing and testing a series of segments (subprograms, procedures, or functions); that is, write self-contained subtasks as separate routines. Try to keep these program segments reasonably small, less than a page whenever possible, to make reading and debugging easier.

Generalize Slightly If the code can be written to handle a slightly more general situation, then in many cases, it is worth the extra effort to do so. A program that was written for only a particular set of numbers must be completely rewritten for another set. For example, only a few additional statements are required to write a program with an arbitrary step size compared with a program in which the step size is fixed numerically. However, one should be careful not to introduce too much generality into the code because it can make a simple programming task overly complicated.

Show Intermediate Results Print out or display intermediate results and diagnostic messages to assist in debugging and understanding the program's operation. Always echo-print the input data unless it is impractical to do so, such as with a large amount of data. Using the default read and print commands frees the programmer from errors associated with misalignment of data. Fancy output formats are not necessary, but some simple labeling of the output is recommended.

Include Warning Messages A robust program always warns the user of a situation that it is not designed to handle. In general, write programs so that they are easy to debug when the inevitable bug appears.

Use Meaningful Variable Names It is often helpful to assign meaningful names to the variables because they may have greater mnemonic value than single-letter variables. There is perennial confusion between the characters 0 (letter "oh") and 0 (number zero) and between 1 (letter "ell") and 1 (number one).

Declare All Variables All variables should be listed in type declarations in each program or program segment. Implicit type assignments can be ignored when one writes declaration statements that include all variables used. Historically, in Fortran, variables beginning with $\mathrm{I} / \mathrm{i}, \mathrm{J} / \mathrm{j}, \mathrm{K} / \mathrm{k}, \mathrm{L} / \mathrm{l}, \mathrm{M} / \mathrm{m}$, and N / n are integer variables, and ones beginning with other letters are floating-point real variables. It may be a good idea to adhere to this scheme so that one can immediately recognize the type of a variable without looking it up in the type
declarations. In this book, we present algorithms using pseudocode and therefore do not always follow this advice.

Include Comments Comments within a routine are helpful for revealing at some later time what the program does. Extensive comments are not necessary, but we recommend that you include a preface to each program or program segment explaining the purpose, the input and output variables, and the algorithm used and that you provide a few comments between major segments of the code. Indent each block of code a consistent number of spaces to improve readability. Inserting blank comment lines and blank spaces can greatly improve the readability of the code as well. To save space, we have not included any comments in the pseudocode in this book.

Use Clean Loops Never put unnecessary statements within loops. Move expressions and variables outside a loop from inside a loop if they do not depend on the loop or do not change. Also, indenting loops can add to the readability of the code, particularly for nested loops. Use a nonexecutable statement as the terminator of a loop so that the code may be altered easily.

Declare Nonchanging Constants Use a parameter statement to assign the values of key constants. Parameter values correspond to constants that do not change throughout the routine. Such parameter statements are easy to change when one wants to rerun the program with different values. Also, they clarify the role key constants play in the code and make the routines more readable and easier to understand.

Use Appropriate Data Structures Use data structures that are natural to the problem at hand. If the problem adapts more easily to a three-dimensional array than to several one-dimensional arrays, then a three-dimensional array should be used.

Use Arrays of All Types The elements of arrays, whether one-, two-, or higher-dimensional, are usually stored in consecutive words of memory. Since the compiler may map the value of an index for two- and higher-subscripted arrays into a single subscript value that is used as a pointer to determine the location of elements in storage, the use of two- and higherdimensional arrays can be considered a notational convenience for the user. However, any advantage in using only a one-dimensional array and performing complicated subscript calculation is slight. Such matters are best left to the compiler.

Use Built-in Functions In scientific programming languages, many built-in mathematical functions are available for common functions such as \sin, log, exp, arcsin, and so on. Also, numeric functions such as integer, real, complex, and imaginary are usually available for type conversion. One should utilize these and others as much as possible. Some of these intrinsic functions accept arguments of more than one type and return a result whose type may vary depending on the type of the argument used. Such functions are called generic functions, for they represent an entire family of related functions. Of course, care should be taken not to use the wrong argument type.

Use Program Libraries In preference to one that you might write yourself for a programming project, a preprogrammed routine from a program library should be used when
applicable. Such routines can be expected to be state-of-the-art software, well tested, and, of course, completely debugged.

Do Not Overoptimize Students should be primarily concerned with writing readable code that correctly computes the desired results. There are any number of tricks of the trade for making code run faster or more efficiently. Save them for use later on in your programming career. We are primarily concerned with understanding and testing various numerical methods. Do not sacrifice the clarity of a program in an effort to make the code run faster. Clarity of code may be preferable to optimization of code when the two criteria conflict.

Case Studies

We present some case studies that may be helpful.
Computing Sums When a long list of floating-point numbers is added in the computer, there will generally be less roundoff error if the numbers are added in order of increasing magnitude. (Roundoff errors are discussed in detail in Chapter 2.)

Mathematical Constants Some students are surprised to learn that in many programming languages, the computer does not automatically know the values of common mathematical constants such as π and e and must be explicitly told their values. Since it is easy to mistype a long sequence of digits in a mathematical constant, such as the real number π,

$$
p i \leftarrow 3.141592653589793
$$

the use of simple calculations involving mathematical functions is recommended. For example, the real numbers π and e can be easily and safely entered with nearly full machine precision by using standard intrinsic functions such as

$$
\begin{aligned}
& p i \leftarrow 4.0 \arctan (1.0) \\
& e \leftarrow \exp (1.0)
\end{aligned}
$$

Another reason for this advice is to avoid the problem that arises if one uses a short approximation such as $p i \leftarrow 3.14159$ on a computer with limited precision but later moves the code to another computer that has more precision. If you overlook changing this assignment statement, then all results that depend on this value will be less accurate than they should be.

Exponents In coding for the computer, exercise some care in writing statements that involve exponents. The general function x^{y} is computed on many computers as $\exp (y \ln x)$ whenever y is not an integer. Sometimes this is unnecessarily complicated and may contribute to roundoff errors. For example, it is preferable to write code with integer exponents such as 5 rather than 5.0. Similarly, using exponents such as $\frac{1}{2}$ or 0.5 is not recommended because the built-in function sqrt may be used.

There is rarely any need for a calculation such as $j \leftarrow(-1)^{k}$ because there are better ways of obtaining the same result. For example, in a loop, we can write $j \leftarrow 1$ before the loop and $j \leftarrow-j$ inside the loop.

Avoid Mixed Mode In general, one should avoid mixing real and integer expressions in the computer code. Mixed expressions are formulas in which variables and constants of
different types appear together. If the floating-point form of an integer variable is needed, use a function such as real. Similarly, a function such as integer is generally available for obtaining the integer part of a real variable. In other words, use the intrinsic type conversion functions whenever converting from complex to real, real to integer, or vice versa. For example, in floating-point calculations, m / n should be coded as real $(m) / \mathrm{real}(n)$ when m and n are integer variables so that it computes the correct real value of m / n. Similarly, $1 / m$ should be coded as $1.0 / \mathrm{real}(m)$ and $1 / 2$ as 0.5 and so on.

Precision In the usual mode of representing numbers in a computer, one word of storage is used for each number. This mode of representation is called single precision. In calculations that require greater precision (called double precision or extended precision), it is possible to allot two or more words of storage to each number. On a 32-bit computer, approximately seven decimal places of precision can be obtained in single precision, and approximately 17 decimal places of precision can be obtained in double precision. Double precision is usually more time-consuming than single precision because it may use software rather than hardware to carry out the arithmetic. However, if more accuracy is needed than single precision can provide, then double or extended precision should be used. This is particularly true on computers with limited precision, such as a 32-bit computer, on which roundoff errors can quickly accumulate in long computations and reduce the accuracy to only three or four decimal places! (This topic is discussed in Chapter 2.)

Usually, two words of memory are used to store the real and imaginary parts of a complex number. Complex variables and arrays must be explicitly declared as being of complex type. Expressions involving variables and constants of complex type are evaluated according to the normal rules of complex arithmetic. Intrinsic functions such as complex, real, and imaginary should be used to convert between real and complex types.

Memory Fetches When using loops, write the code so that fetches are made from adjacent words in memory. To illustrate, suppose we want to store values in a two-dimensional array $\left(a_{i j}\right)$ in which the elements of each column are stored in consecutive memory locations. Using i and j loops with the i th loop as the innermost one would process elements down the columns. For some programs and computer languages, this detail may be of only secondary concern. However, some computers have immediate access to only a portion or a few pages of memory at a time. In this case, it is advantageous to process the elements of an array so that they are taken from or stored in adjacent memory locations.

When to Avoid Arrays Although the mathematical description of an algorithm may indicate that a sequence of values is computed, thus seeming to imply the need for an array, it is often possible to avoid arrays. (This is especially true if only the final value of a sequence is required.) For example, the theoretical description of Newton's method (Chapter 3) reads

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

but the pseudocode can be written within a loop simply as

```
for }n=1\mathrm{ to }10\mathrm{ do
    x\leftarrowx-f(x)/\mp@subsup{f}{}{\prime}(x)
end for
```

where x is a real variable and function procedures for f and f^{\prime} have been written. Such an assignment statement automatically effects the replacement of the value of the old x with the new numerical value of $x-f(x) / f^{\prime}(x)$.

Limit Iterations In a repetitive algorithm, one should always limit the number of permissible steps by the use of a loop with a control variable. This will prevent endless cycling due to unforeseen problems (e.g., programming errors and roundoff errors). For example, in Newton's method above, one might write

```
d}\leftarrowf(x)/\mp@subsup{f}{}{\prime}(x
while }|d|>\frac{1}{2}\times1\mp@subsup{0}{}{-6}\mathrm{ do
    x\leftarrowx-d
    output }
    d}\leftarrowf(x)/\mp@subsup{f}{}{\prime}(x
end while
```

If the function involves some erratic behavior, there is a danger here in not limiting the number of repetitions. It is better to use a loop with a control variable:

```
for }n=1\mathrm{ to n_max do
    d}\leftarrowf(x)/\mp@subsup{f}{}{\prime}(x
    x\leftarrowx-d
    output }n,
    if }|d|\leqq\frac{1}{2}\times1\mp@subsup{0}{}{-6}\mathrm{ then exit loop
end for
```

where n and n_max are integer variables and the value of n_max is an upper bound on the number of desired repetitions. All others are real variables.

Floating-Point Equality The sequence of steps in a routine should not depend on whether two floating-point numbers are equal. Instead, reasonable tolerances should be permitted to allow for floating-point arithmetic roundoff errors. For example, a suitable branching statement for n decimal digits of accuracy might be

$$
\text { if }|x-y|<\varepsilon \text { then } \ldots \text { end if }
$$

provided that it is known that x and y have magnitude comparable to 1 . Here, x, y, and ε are real variables with $\varepsilon=\frac{1}{2} \times 10^{-n}$. This corresponds to requiring that the absolute error between x and y be less than ε. However, if x and y have very large or small orders of magnitude, then the relative error between x and y would be needed, as in the branching statement

$$
\text { if }|x-y|<\varepsilon \max \{|x|,|y|\} \text { then } \ldots \text { end if }
$$

Equal Floating-Point Steps In some situations, notably in solving differential equations (see Chapter 8), a variable t assumes a succession of values equally spaced a distance of h apart along the real line. One way of coding this is

```
\(t \leftarrow t_{0}\)
output \(0, t\)
for \(i=1\) to \(n\) do
    \(\vdots\)
    \(t \leftarrow t+h\)
    output \(i, t\)
end for
```

Here, i and n are integer variables, and t_{0}, t, and h are real variables. An alternative way is

```
for i=0 to }n\mathrm{ do
    \vdots
    t\leftarrowtor +real(i)h
    output i,t
end for
```

In the first pseudocode, n additions occur, each with possible roundoff error. In the second, this situation is avoided but at the added cost of n multiplications. Which is better depends on the particular situation at hand.

Function Evaluations When values of a function at arbitrary points are needed in a program, several ways of coding this are available. For example, suppose values of the function

$$
f(x)=2 x+\ln x-\sin x
$$

are needed. A simple approach is to use an assignment statement such as

$$
y \leftarrow 2 x+\ln (x)-\sin (x)
$$

at appropriate places within the program. Here, x and y are real variables. Equivalently, an internal function procedure corresponding to the pseudocode

$$
f(x) \leftarrow 2 x+\ln (x)-\sin (x)
$$

could be evaluated at 2.5 by

$$
y \leftarrow f(2.5)
$$

or whatever value of x is desired. Finally, a function subprogram can be used such as in the following pseudocode:

```
real function \(f(x)\)
real \(x\)
    \(f \leftarrow 2 x+\ln (x)-\sin (x)\)
end function \(f\)
```

Which implementation is best? It depends on the situation at hand. The assignment statement is simple and safe. An internal or external function procedure can be used to avoid
duplicating code. A separate external function subprogram is the best way to avoid difficulties that inadvertently occur when someone must insert code into another's program. In using program library routines, the user may be required to furnish an external function procedure to communicate function values to the library routine. If the external function procedure f is passed as an argument in another procedure, then a special interface must be used to designate it as an external function.

On Developing Mathematical Software

Fred Krogh [2003] has written a paper listing some of the things he has learned from a career at the Jet Propulsion Laboratory involving the development and writing of mathematical software used in application packages. Some of his helpful hints and random thoughts to remember in code development are as follows: Include internal output in order to see what your algorithm is doing; support debugging by including output at the interfaces; provide detailed error messages; fine-tune your code; provide understandable test cases; verify results with care; take advantage of your mistakes; keep units consistent; test the extremes; the algorithm matters; work on what does work; toss out what does not work; do not give up too soon on ideas for improving or debugging your code; your subconscious is a powerful tool, so learn to use it; test your assumptions; in the comments, keep a dictionary of variables in alphabetical order because it is quite helpful when looking at a code years after it was written; write the user documentation first; know what performance you should expect to get; do not pay too much, but just enough, attention to others; see setbacks as learning opportunities and as the staircase for keeping one's spirits up; when comparing codes, do not change their features or capabilities in order to make the comparison fair, since you may not fully understand the other person's code; keep action lists; categorize code features; organize things into groups; the organization of the code may be one of the most important decisions the developer makes; isolate the linear algebra parts of the code in an application package so that the user may make modifications to them; reverse communication is a helpful feature that allows users to leave the code and carry out matrixvector operations using their own data structures; save and restore variables when the user is allowed to leave the code and return; portability is more important than efficiency. This is just a random sampling of some of the items in this paper.

B Representation of Numbers in Different Bases

In this appendix, we review some basic concepts on number representation in different bases.

B. 1 Representation of Numbers in Different Bases

We begin with a discussion of general number representation but move quickly to bases 2 , 8 , and 16 , as they are the bases primarily used in computer arithmetic.

The familiar decimal notation for numbers uses the digits $0,1,2,3,4,5,6,7,8$, and 9 . When we write a whole number such as 37294 , the individual digits represent coefficients of powers of 10 as follows:

$$
\begin{aligned}
37294 & =4+90+200+7000+30000 \\
& =4 \times 10^{0}+9 \times 10^{1}+2 \times 10^{2}+7 \times 10^{3}+3 \times 10^{4}
\end{aligned}
$$

Thus, in general, a string of digits represents a number according to the formula

$$
a_{n} a_{n-1} \ldots a_{2} a_{1} a_{0}=a_{0} \times 10^{0}+a_{1} \times 10^{1}+\cdots+a_{n-1} \times 10^{n-1}+a_{n} \times 10^{n}
$$

This takes care of only the positive whole numbers. A number between 0 and 1 is represented by a string of digits to the right of a decimal point. For example, we see that

$$
\begin{aligned}
0.7215 & =\frac{7}{10}+\frac{2}{100}+\frac{1}{1000}+\frac{5}{10000} \\
& =7 \times 10^{-1}+2 \times 10^{-2}+1 \times 10^{-3}+5 \times 10^{-4}
\end{aligned}
$$

In general, we have the formula

$$
0 . b_{1} b_{2} b_{3} \ldots=b_{1} \times 10^{-1}+b_{2} \times 10^{-2}+b_{3} \times 10^{-3}+\cdots
$$

Note that there can be an infinite string of digits to the right of the decimal point; indeed, there must be an infinite string to represent some numbers. For example, we note that

$$
\begin{aligned}
\sqrt{2} & =1.41421356237309504880168872420969 \ldots \\
e & =2.71828182845904523536028747135266 \ldots \\
\pi & =3.14159265358979323846264338327950 \ldots \\
\ln 2 & =0.69314718055994530941723212145817 \ldots \\
\frac{1}{3} & =0.33333333333333333333333333333333 \ldots
\end{aligned}
$$

For a real number of the form

$$
\left(a_{n} a_{n-1} \ldots a_{1} a_{0} \cdot b_{1} b_{2} b_{3} \ldots\right)_{10}=\sum_{k=0}^{n} a_{k} 10^{k}+\sum_{k=1}^{\infty} b_{k} 10^{-k}
$$

the integer part is the first summation in the expansion and the fractional part is the second summation. If ambiguity can arise, a number represented in base β is signified by enclosing it in parentheses and adding a subscript β.

Base β Numbers

The foregoing discussion pertains to the usual representation of numbers with base 10 . Other bases are also used, especially in computers. For example, the binary system uses 2 as the base, the octal system uses 8 , and the hexadecimal system uses 16 .

In the octal representation of a number, the digits that are used are $0,1,2,3,4,5,6$, and 7. Thus, we see that

$$
\begin{aligned}
(21467)_{8} & =7+6 \times 8+4 \times 8^{2}+1 \times 8^{3}+2 \times 8^{4} \\
& =7+8(6+8(4+8(1+8(2)))) \\
& =9015
\end{aligned}
$$

A number between 0 and 1 , expressed in octal, is represented with combinations of 8^{-1}, 8^{-2}, and so on. For example, we have

$$
\begin{aligned}
(0.36207)_{8} & =3 \times 8^{-1}+6 \times 8^{-2}+2 \times 8^{-3}+0 \times 8^{-4}+7 \times 8^{-5} \\
& =8^{-5}\left(3 \times 8^{4}+6 \times 8^{3}+2 \times 8^{2}+7\right) \\
& \left.=8^{-5}\left(7+8^{2}(2+8(6+8(3)))\right)\right) \\
& =\frac{15495}{32768} \\
& =0.47286987 \ldots
\end{aligned}
$$

We shall see presently how to convert easily to decimal form without having to find a common denominator.

If we use another base, say, β, then numbers represented in the β-system look like this:

$$
\left(a_{n} a_{n-1} \ldots a_{1} a_{0} \cdot b_{1} b_{2} b_{3} \ldots\right)_{\beta}=\sum_{k=0}^{n} a_{k} \beta^{k}+\sum_{k=1}^{\infty} b_{k} \beta^{-k}
$$

The digits are $0,1, \ldots, \beta-2$, and $\beta-1$ in this representation. If $\beta>10$, it is necessary to introduce symbols for $10,11, \ldots, \beta-1$. The separator between the integer and fractional part is called the radix point, since decimal point is reserved for base-10 numbers.

Conversion of Integer Parts

We now formalize the process of converting a number from one base to another. It is advisable to consider separately the integer and fractional parts of a number. Consider, then, a positive integer N in the number system with base γ :

$$
N=\left(a_{n} a_{n-1} \ldots a_{1} a_{0}\right)_{\gamma}=\sum_{k=0}^{n} a_{k} \gamma^{k}
$$

Suppose that we wish to convert this to the number system with base β and that the calculations are to be performed in arithmetic with base β. Write N in its nested form:

$$
N=a_{0}+\gamma\left(a_{1}+\gamma\left(a_{2}+\cdots+\gamma\left(a_{n-1}+\gamma\left(a_{n}\right)\right) \cdots\right)\right)
$$

and then replace each of the numbers on the right by its representation in base β. Next, carry out the calculations in β-arithmetic. The replacement of the a_{k} 's and γ by equivalent base- β numbers requires a table showing how each of the numbers $0,1, \ldots, \gamma-1$ appears in the β-system. Moreover, a base- β multiplication table may be required.

To illustrate this procedure, consider the conversion of the decimal number 3781 to binary form. Using the decimal binary equivalences and longhand multiplication in base 2, we have

$$
\begin{aligned}
(3781)_{10} & =1+10(8+10(7+10(3))) \\
& =(1)_{2}+(1010)_{2}\left((1000)_{2}+(1010)_{2}\left((111)_{2}+(1010)_{2}(11)_{2}\right)\right) \\
& =(111011000101)_{2}
\end{aligned}
$$

This arithmetic calculation in binary is easy for a computer that operates in binary but tedious for humans.

Another procedure should be used for hand calculations. Write down an equation containing the digits $c_{0}, c_{1}, \ldots, c_{m}$ that we seek:

$$
N=\left(c_{m} c_{m-1} \ldots c_{1} c_{0}\right)_{\beta}=c_{0}+\beta\left(c_{1}+\beta\left(c_{2}+\cdots+\beta\left(c_{m}\right) \cdots\right)\right)
$$

Next, observe that if N is divided by β, then the remainder in this division is c_{0}, and the quotient is

$$
c_{1}+\beta\left(c_{2}+\cdots+\beta\left(c_{m}\right) \cdots\right)
$$

If this number is divided by β, the remainder is c_{1}, and so on. Thus, we divide repeatedly by β, saving remainders $c_{0}, c_{1}, \ldots, c_{m}$ and quotients.

EXAMPLE 1 Convert the decimal number 3781 to binary form using the division algorithm.
Solution As was indicated above, we divide repeatedly by 2 , saving the remainders along the way. Here is the work:

$$
\begin{array}{rl}
\begin{array}{r}
\text { Quotients }
\end{array} & \text { Remainders } \\
2 \lcm{3781} & \\
2 \lcm{1890} & 1=c_{0} \quad \downarrow \\
2 \lcm{945} & 0=c_{1} \\
2 \lcm{472} & 1=c_{2} \\
2 \lcm{236} & 0=c_{3} \\
2 \lcm{118} & 0=c_{4} \\
2 \lcm{59} & 0=c_{5} \\
2 \lcm{29} & 1 \\
2 \lcm{14} & 1=c_{6} \\
2 \lcm{7} & 0=c_{8} \\
2 \lcm{3} & 1
\end{array}
$$

Here, the symbol \downarrow is used to remind us that the digits c_{i} are obtained beginning with the digit next to the binary point. Thus, we have

$$
(3781 .)_{10}=(111011000 \text { 101. })_{2}
$$

and not the other way around: $(101000110111 .)_{2}=(2615)_{10}$.
EXAMPLE 2 Convert the number $N=(111011000101)_{2}$ to decimal form by nested multiplication.
Solution

$$
\begin{aligned}
N= & 1 \times 2^{0}+0 \times 2^{1}+1 \times 2^{2}+0 \times 2^{3}+0 \times 2^{4}+0 \times 2^{5} \\
& +1 \times 2^{6}+1 \times 2^{7}+0 \times 2^{8}+1 \times 2^{9}+1 \times 2^{10}+1 \times 2^{11} \\
= & 1+2(0+2(1+2(0+2(0+2(0+2(1+2(1+2(0 \\
& +2(1+2(1+2(1))))))))))) \\
= & 3781
\end{aligned}
$$

The nested multiplication with repeated multiplication and addition can be carried out on a hand-held calculator more easily than can the previous form with exponentiation.

Another conversion problem exists in going from an integer in base γ to an integer in base β when using calculations in base γ. As before, the unknown coefficients in the equation

$$
N=c_{0}+c_{1} \beta+c_{2} \beta^{2}+\cdots+c_{m} \beta^{m}
$$

are determined by a process of successive division, and this arithmetic is carried out in the γ-system. At the end, the numbers c_{k} are in base γ, and a table of $\gamma-\beta$ equivalents is used.

For example, we can convert a binary integer into decimal form by repeated division by $(1010)_{2}$ [which equals $(10)_{10}$], carrying out the operations in binary. A table of binarydecimal equivalents is used at the final step. However, since binary division is easy only for computers, we shall develop alternative procedures presently.

Conversion of Fractional Parts

We can convert a fractional number such as $(0.372)_{10}$ to binary by using a direct yet naive approach as follows:

$$
\begin{aligned}
(0.372)_{10} & =3 \times 10^{-1}+7 \times 10^{-2}+2 \times 10^{-3} \\
& =\frac{1}{10}\left(3+\frac{1}{10}\left(7+\frac{1}{10}(2)\right)\right) \\
& =\frac{1}{(1010)_{2}}\left((011)_{2}+\frac{1}{(1010)_{2}}\left((111)_{2}+\frac{1}{(1010)_{2}}(010)_{2}\right)\right)
\end{aligned}
$$

Dividing in binary arithmetic is not straightforward, so we look for easier ways of doing this conversion.

Suppose that x is in the range $0<x<1$ and that the digits c_{k} in the representation

$$
x=\sum_{k=1}^{\infty} c_{k} \beta^{-k}=\left(0 . c_{1} c_{2} c_{3} \ldots\right)_{\beta}
$$

are to be determined. Observe that

$$
\beta x=\left(c_{1} \cdot c_{2} c_{3} c_{4} \ldots\right)_{\beta}
$$

because it is necessary to shift the radix point only when multiplying by base β. Thus, the unknown digit c_{1} can be described as the integer part of βx. It is denoted by $\mathcal{I}(\beta x)$. The fractional part, $\left(0 . c_{2} c_{3} c_{4} \ldots\right)_{\beta}$, is denoted by $\mathcal{F}(\beta x)$. The process is repeated in the following pattern:

$$
\begin{array}{ll}
d_{0}=x & \\
d_{1}=\mathcal{F}\left(\beta d_{0}\right) & c_{1}=\mathcal{I}\left(\beta d_{0}\right) \\
d_{2}=\mathcal{F}\left(\beta d_{1}\right) & c_{2}=\mathcal{I}\left(\beta d_{1}\right)
\end{array}
$$

etc.
In this algorithm, the arithmetic is carried out in the decimal system.
EXAMPLE 3 Use the preceding algorithm to convert the decimal number $x=(0.372)_{10}$ to binary form.
Solution The algorithm consists in repeatedly multiplying by 2 and removing the integer parts. Here is the work:

$$
\begin{aligned}
& \\
& \downarrow \quad \begin{array}{r}
0.372 \\
c_{1}
\end{array}=\frac{2}{0.744} \\
& c_{2}=\frac{2}{1.488} \\
& c_{3}=\frac{2}{0.976} \\
& c_{4}=\frac{2}{1.952} \\
& c_{5}=\frac{2}{1.904} \\
& c_{6}=\frac{2}{1.808}
\end{aligned}
$$

etc.
Thus, we have $(0.372)_{10}=(0.010111 \ldots)_{2}$.

Base Conversion $10 \leftrightarrow \mathbf{8} \leftrightarrow \mathbf{2}$

Most computers use the binary system (base 2) for their internal representation of numbers. The octal system (base 8) is particularly useful in converting from the decimal system (base 10) to the binary system and vice versa. With base 8 , the positional values of the numbers are $8^{0}=1,8^{1}=8,8^{2}=64,8^{3}=512,8^{4}=4096$, and so on. Thus, for example, we have

$$
\begin{aligned}
(26031)_{8} & =2 \times 8^{4}+6 \times 8^{3}+0 \times 8^{2}+3 \times 8+1 \\
& =((((2) 8+6) 8+0) 8+3) 8+1 \\
& =11289
\end{aligned}
$$

and

$$
\begin{aligned}
(7152.46)_{8} & =7 \times 8^{3}+1 \times 8^{2}+5 \times 8+2+4 \times 8^{-1}+6 \times 8^{-2} \\
& =(((7) 8+1) 8+5) 8+2+8^{-2}[(4) 8+6] \\
& =3690+\frac{38}{64} \\
& =3690.59375
\end{aligned}
$$

When numbers are converted between decimal and binary form by hand, it is convenient to use octal representation as an intermediate step. In the octal system, the base is 8 , and, of course, the digits 8 and 9 are not used. Conversion between octal and decimal proceeds according to the principles already stated. Conversion between octal and binary is especially simple. Groups of three binary digits can be translated directly to octal according to the following table:

Binary	000	001	010	011	100	101	110	111
Octal	0	1	2	3	4	5	6	7

This grouping starts at the binary point and proceeds in both directions. Thus, we have

$$
(101101001.110010100)_{2}=(551.624)_{8}
$$

To justify this convenient sleight of hand, we consider, for instance, a fraction expressed in binary form:

$$
\begin{aligned}
x & =\left(0 . b_{1} b_{2} b_{3} b_{4} b_{5} b_{6} \cdots\right)_{2} \\
& =b_{1} 2^{-1}+b_{2} 2^{-2}+b_{3} 2^{-3}+b_{4} 2^{-4}+b_{5} 2^{-5}+b_{6} 2^{-6}+\cdots \\
& =\left(4 b_{1}+2 b_{2}+b_{3}\right) 8^{-1}+\left(4 b_{4}+2 b_{5}+b_{6}\right) 8^{-2}+\cdots
\end{aligned}
$$

In the last line of this equation, the parentheses enclose numbers from the set $\{0,1,2,3,4,5$, $6,7\}$ because the b_{i} 's are either 0 or 1 . Hence, this must be the octal representation of x.

Conversion of an octal number to binary can be done in a similar manner but in reverse order. It is easy! Just replace each octal digit with the corresponding three binary digits. Thus, for example,

$$
(5362.74)_{8}=(101011110010.111100)_{2}
$$

EXAMPLE 4 What is $(2576.35546875)_{10}$ in octal and binary forms?
Solution We convert the original decimal number first to octal and then to binary. For the integer part, we repeatedly divide by 8 :
8) 2576

8 3220
$8 \lcm{40} 2$
8) 50

05
Thus, we have

$$
\text { 2576. }=(5020 .)_{8}=(101000010000 .)_{2}
$$

using the rules for grouping binary digits. For the fractional part, we repeatedly multiply by 8

0.35546875
2].84375000
6.75000000
6.00000000

so that

$$
0.35546875=(0.266)_{8}=(0.010110110)_{2}
$$

Finally, we obtain the result

$$
2576.35546875=(101000010000.010110110)_{2}
$$

Although this approach is longer for this example, we feel that it is easier, in general and less likely to lead to error because one is working with single-digit numbers most of the time.

Base 16

Some computers whose word lengths are multiples of 4 use the hexadecimal system (base 16) in which A, B, C, D, E, and F represent $10,11,12,13,14$, and 15 , respectively, as given in the following table of equivalences:

Hexadecimal	0	1	2	3	4	5	6	7
Binary	0000	0001	0010	0011	0100	0101	0110	0111

Hexadecimal	8	9	A	B	C	D	E	F
Binary	1000	1001	1010	1011	1100	1101	1110	1111

Conversion between binary numbers and hexadecimal numbers is particularly easy. We need only regroup the binary digits from groups of three to groups of four. For example, we have

$$
(010101110101101)_{2}=(0010101110101101)_{2}=(2 \mathrm{BAD})_{16}
$$

and

$$
\begin{aligned}
(111101011110010.110010011110)_{2} & =(101011110010.110010011110)_{2} \\
& =(7 \mathrm{AF} 2 . \mathrm{C} 9 \mathrm{E})_{16}
\end{aligned}
$$

More Examples

Continuing with more examples, let us convert $(0.276)_{8},(0 . C 8)_{16}$, and (492) $)_{10}$ into different number systems. We show one way for each number and invite the reader to work out the details for other ways and to verify the answers by converting them back into the original base.

$$
\begin{aligned}
(0.276)_{8} & =2 \times 8^{-1}+7 \times 8^{-2}+6 \times 8^{-3} \\
& =8^{-3}[((2) 8+7) 8+6] \\
& =(0.37109375)_{10} \\
(0 . \mathrm{C} 8)_{16} & =(0.110010)_{2} \\
& =(0.62)_{8} \\
& =6 \times 8^{-1}+2 \times 8^{-2} \\
& =8^{-2}[(6) 8+2] \\
& =(0.78125)_{10}
\end{aligned}
$$

$$
\begin{aligned}
(492)_{10} & =(754)_{8} \\
& =(111101100)_{2} \\
& =(1 \mathrm{EC})_{16}
\end{aligned}
$$

because

$$
\begin{array}{r}
8 \lcm{492} \\
\begin{array}{|c}
8 \lcm{61} \\
0 \\
7
\end{array} \\
i
\end{array}
$$

Summary

(1) It might seem that there are several different procedures for converting between number systems. Actually, there are only two basic techniques. The first procedure for converting the number $(N)_{\gamma}$ to base β can be outlined as follows:

- Express $(N)_{\gamma}$ in nested form using powers of γ.
- Replace each digit by the corresponding base- β numbers.
- Carry out the indicated arithmetic in base β.

This outline holds whether N is an integer or a fraction. The second procedure is either the divide-by- β and remainder-quotient-split process for N an integer or the multiply-by- β and integer-fraction-split process for N a fraction. The first procedure is preferred when $\gamma<\beta$ and the second when $\gamma>\beta$. Of course, the $10 \leftrightarrow 8 \leftrightarrow 2 \leftrightarrow 16$ base conversion procedure should be used whenever possible because it is the easiest way to convert numbers between the decimal, octal, binary, or hexadecimal systems.

Problems B. 1

1. Find the binary representation and check by reconverting to decimal representation.
${ }^{a}$ a. $e \approx(2.718)_{10}$
b. $\frac{7}{8}$
c. $(592)_{10}$
2. Convert the following decimal numbers to octal numbers.
a. 27.1
b. 12.34
c. 3.14
d. 23.58
e. 75.232
f. 57.321
${ }^{a}$ 3. Convert to hexadecimal, to octal, and then to decimal.
${ }^{a}$ a. $(110111001.101011 \text { 101 })_{2}$
b. $(1001100101.01101)_{2}$
${ }^{a}$ 4. Convert the following numbers:
a. $(100101101)_{2}=(\quad)_{8}=(\quad)_{10}$
b. $(0.782)_{10}=(\quad)_{8}=(\quad)_{2}$
${ }^{a}$ c. $(47)_{10}=(\quad)_{8}=(\quad)_{2}$
d. $(0.47)_{10}=(\quad)_{8}=(\quad)_{2}$
```
\({ }^{a}\) e. \((51)_{10}=(\quad)_{8}=(\quad)_{2}\)
    f. \((0.694)_{10}=(\quad)_{8}=(\quad)_{2}\)
\({ }^{a}\) g. \((110011.1110101101101)_{2}=(\quad)_{8}=(\quad)_{10}\)
h. \((361.4)_{8}=(\quad)_{2}=(\quad)_{10}\)
```

5. Convert (45653.127664) 8 to binary and to decimal.
${ }^{a}$ 6. Convert $(0.4)_{10}$ first to octal and then to binary. Check by converting directly to binary.
6. Prove that the decimal number $\frac{1}{5}$ cannot be represented by a finite expansion in the binary system.
7. Do you expect your computer to calculate $3 \times \frac{1}{3}$ with infinite precision? What about $2 \times \frac{1}{2}$ or $10 \times \frac{1}{10}$?
${ }^{a} 9$. Explain the algorithm for converting an integer in base 10 to one in base 2 , assuming that the calculations will be performed in binary arithmetic. Illustrate by converting $(479)_{10}$ to binary.
8. Justify mathematically the conversion between binary and hexadecimal numbers by regrouping.
9. Justify for integers the rule given for the conversion between octal and binary numbers.
${ }^{a}$ 12. Prove that a real number has a finite representation in the binary number system if and only if it is of the form $\pm m / 2^{n}$, where n and m are positive integers.
10. Prove that any number that has a finite representation in the binary system must have a finite representation in the decimal system.
11. Some countries measure temperature in Fahrenheit (F), while other countries use Celsius (C). Similarly, for distance, some use miles and others use kilometers. As a frequent traveler, you may be in need of a quick approximate conversion scheme that you can do in your head.
a. Fahrenheit and Celsius are related by the equation $F=32+(9 / 5) C$. Verify the following simple conversion scheme for going from Celsius to Fahrenheit: A rough approximation is to double the Celsius temperature and add 32 . To refine your approximation, shift the decimal place to the left in the doubled number ($2 C$) and subtract it from the approximation obtained previously: $F=[(2 C)+32]-(2 C) / 10$.
b. Determine a simple scheme to convert from Fahrenheit to Celsius.
c. Determine a simple scheme to convert from miles to kilometers.
d. Determine a simple scheme to convert from kilometers to miles.
12. Convert fractions such as $\frac{1}{3}$ and $\frac{1}{11}$ into their binary represention.
13. (Mayan arithmetic) The Maya civilization of Central America (2600 B.C. to 1200 A.D.) understood the concept of zero hundreds of years before many other civilizations. For their calculations, the vigesimal (base 20) system was used, not the decimal (base 10) system. So instead of $1,10,100,1000,10000$, they used $1,20,400,8000,16000$. They used a dot for 1 and a bar for 5 , and zero was represented by the shell symbol. For
example, the calculations $11131+7520=18651$ and $11131-7520=3611$ was as follows:

Here, as an aid, some of our numbers are included; on the left, they indicate the powers used, and above, they are the numbers represented by the columns.

Do these calculations using Mayan symbols and arithmetic:
a. $92819+56313=149132, \quad 92819-56313=36506$
b. $3296+853=4149, \quad 3296-853=2443$
c. $2273+729=1544, \quad 2273-729=1544$
d. Investigate how the Mayans might have done multiplication and division in their number system. Work out some simple examples.
17. (Babylonian arithmetic) Babylonians of ancient Mesopotania (now Iraq) used a sexagesimal (base 60) positional number system with a decimal (base 10) system within it. The Babylonians based their number system on only two symbols! The influence of Babylonian arithmetic is still with us today. An hour consists of 60 minutes and is divided into 60 seconds, and a circle is measured in divisions of 360 degrees. Numbers are frequently called digits, from the Latin word for "finger." The base-10 and base-20 systems most likely arose from the fact that ten fingers and ten toes could be used in counting. Investigate the early history of numbers and doing aritmetic calculations in different number systems.

Computer Problems B. 1

1. Read into your computer $x=1.1$ (base 10), and print it out using several different formats. Explain the results.
2. Show that $e^{\pi \sqrt{163}}$ is incredibly close to being the 18-digit integer 2625374126407 68744. Hint: More than 30 decimal digits will be needed to see any difference.
3. Write and test a routine for converting integers into octal and binary forms.
4. (Continuation) Write and test a routine for converting decimal fractions into octal and binary forms.
5. (Continuation) Using the two routines of the preceding problems, write and test a program that reads in decimal numbers and prints out the decimal, octal, and binary representations of these numbers.
6. See how many binary digits your computer has for $(0.1)_{10}$. See the introductory remarks at the beginning of this chapter.
7. Some mathematical software systems have commands for converting numbers between binary, decimal, hex, octal, and vice versa. Explore these commands using various numerical values. Also, see whether there are commands for determining the precision (the number of significant decimal digits in a number) and the accuracy (the number of significant decimal digits to the right of the decimal point in a number).
8. Write a computer program to verify the conclusions in evaluating $f(x)=x-\sin x$ for various values of x near 1.9 , say, over the interval $[0.1,2.5]$ with increments of 0.1 . For these values, compute the approximate value of f, the true calculated value, and the absolute error between them. Single-precision and double-precision computations may be necessary.

Additional Details on IEEE Floating-Point Arithmetic

In this appendix, we summarize some additional features in IEEE standard floating-point arithmetic. (See Overton [2001] for additional details.)

C. 1 More on IEEE Standard Floating-Point Arithmetic

In the early 1980s, a working committee of the Institute for Electrical and Electronics Engineers (IEEE) established a standard floating-point arithmetic system for computers that is now known as the IEEE floating-point standard. Previously, manufacturers of different computers each developed their own internal floating-point number systems. This led to inconsistencies in numerical results in moving code from machine to machine, for example, in porting source code from an IBM computer to a Cray machine. Some important requirements for all machines adopting the IEEE floating-point standard include the following:

- Correctly rounded arithmetic
- Consistent representation of floating-point numbers across machines
- Consistent and sensible treatment of exceptional situations

Suppose that we are using a 32-bit computer with IEEE standard floating-point arithmetic. There are exactly 23 bits of precision in the fraction field in a single-precision normalized number. By counting the hidden bit, this means that there are 24 bits in the significand and the unit roundoff error is $u=2^{-24}$. In single precision, the machine epsilon is $\varepsilon_{\text {single }}=2^{-23}$ because $1+2^{-23}$ is the first single-precision number larger than 1 . Since $2^{-23} \approx 1.19 \times 10^{-7}$, we can expect only approximately six accurate decimal digits in the output. This accuracy may be reduced further by errors of various types, such as roundoff errors in the arithmetic, truncation errors in the formulas used, and so on.

For example, when computing the single-precision approximation to π, we obtain six accurate digits: 3.14159 . Converting and printing the 24 -bit binary number result in an actual decimal number with more than six nonzero digits, but only the first six digits are considered accurate approximations to π.

The first double-precision number larger than 1 is $1+2^{-52}$. So the double-precision machine epsilon is $\varepsilon_{\text {double }}=2^{-52}$. Since $2^{-52} \approx 2.22 \times 10^{-16}$, there are only approximately 15 accurate decimal digits in the output in the absence of errors. The fraction field has exactly 52 bits of precision, and this results in 53 bits in the significand when the hidden bit is counted.

For example, when approximating π in double precision, we obtain 15 accurate digits: 3.1415926535 8979. As in the case with single precision, converting and printing the 54-bit binary significand results in more than 15 digits, but only the first 15 digits are accurate approximations to π.

There are some useful special numbers in the IEEE standard. Instead of terminating with an overflow when dividing a nonzero number by 0 , the machine representation for ∞ is stored, which is the mathematically sensible thing to do. Because of the hidden bit representation, a special technique for storing zero is necessary. Note that all zeros in the fraction field (mantissa) represent the significand 1.0 rather than 0.0 . Moreover, there are two different representations for the same number zero, namely, +0 and -0 . On the other hand, there are two different representations for infinity that correspond to two quite different numbers, $+\infty$ and $-\infty$. NaN stands for Not a Number and is an error pattern rather than a number.

Is it possible to represent numbers smaller than the smallest normalized floating-point number 2^{-126} in IEEE standard floating-point format? Yes! If the exponent field contains a bit string of all zeros and the fraction field contains a nonzero bit string, then this representation is called a subnormal number. Subnormal numbers cannot be normalized because this would result in an exponent that does not fit into the exponent field. These subnormal numbers are less accurate than normal numbers because they have less room in the fraction field for nonzero bits.

By using various system inquiry functions (such as those in Table C. 1 from Fortran 90), we can determine some of the characteristics of the floating-point number system on a typical PC with 32-bit IEEE standard floating-point arithmetic. Table C. 2 contains the results. In most cases, simple programs can also be written to determine these values.

In Table C.3, we show the relationship between the exponent field and the possible single-precision 32 -bit floating-points numbers corresponding to it. In this table, all lines except the first and the last are normalized floating-point numbers. The first line shows that zero is represented by +0 when all bits $b_{i}=0$, and by -0 when all bits are zero except $b_{1}=1$. The last line shows that $+\infty$ and $-\infty$ have bit strings of all ones in the exponent field except for possibly the sign bit together with all zeros in the mantissa field.

TABLE C. 1 Some Numeric Inquiry Functions in Fortran 90

EPSILON (X)	Machine epsilon (number almost negligible compared to 1)
TINY (X)	Smallest positive number
HUGE (X)	Largest number
PRECISION (X)	Decimal precision (number of significant decimal digits in output)

TABLE C. 2 Results with IEEE Standard Floating-Point on 32-Bit Machine

	X Single Precision	X Double Precision
EPSILON (X)	$1.192 \times 10^{-7} \approx 2^{-23}$	$2.220 \times 10^{-16} \approx 2^{-52}$
TINY (X)	$1.175 \times 10^{-38} \approx 2^{-126}$	$2.225 \times 10^{-308} \approx\left(2-2^{-23}\right) \times 2^{127}$
HUGE (X)	$3.403 \times 10^{38} \approx 2^{128}$	$1.798 \times 10^{308} \approx 2^{1024}$
PRECISION (X)	6	15

TABLE C. 3 Single-Precision 32-Bit Word $b_{1} b_{2} b_{3} b_{4} \cdots b_{9} b_{10} b_{11} \cdots b_{32}$ with Sign Bit $b_{1}=0$ for + and $b_{1}=1$ for - .

$\left(b_{2} b_{3} \ldots b_{9}\right)_{2}$ Exponent Field	Numerical Representation			
$(00000000)_{2}=(0)_{10}$	$\begin{cases} \pm 0, & \text { if } b_{10}=b_{11}=\cdots=b_{32}=0 \\ \text { subnormal, otherwise }\end{cases}$			
$(00000001)_{2}=(1)_{10}$	$\pm\left(1 . b_{10} b_{11} b_{12} \cdots b_{32}\right)_{2} \times 2^{-126}$	$\}$	$(00000010)_{2}=(2)_{10}$	$\pm\left(1 . b_{10} b_{11} b_{12} \cdots b_{32}\right)_{2} \times 2^{-125}$
:---	:---			
$(00000011)_{2}=(3)_{10}$	$\pm\left(1 . b_{10} b_{11} b_{12} \cdots b_{32}\right)_{2} \times 2^{-124}$			
$(00000100)_{2}=(4)_{10}$	$\pm\left(1 . b_{10} b_{11} b_{12} \cdots b_{32}\right)_{2} \times 2^{-123}$			
\vdots	\vdots			
$(01111101)_{2}=(125)_{10}$	$\pm\left(1 . b_{10} b_{11} b_{12} \cdots b_{32}\right)_{2} \times 2^{-2}$			
$(0111111)_{2}=(126)_{10}$	$\pm\left(1 . b_{10} b_{11} b_{12} \cdots b_{32}\right)_{2} \times 2^{-1}$			
$(01111111)_{2}=(127)_{10}$	$\pm\left(1 . b_{10} b_{11} b_{12} \cdots b_{32}\right)_{2} \times 2^{0}$			
$(10000000)_{2}=(128)_{10}$	$\pm\left(1 . b_{10} b_{11} b_{12} \cdots b_{32}\right)_{2} \times 2^{1}$			
$(10000001)_{2}=(129)_{10}$	$\pm\left(1 . b_{10} b_{11} b_{12} \cdots b_{32}\right)_{2} \times 2^{2}$			
\vdots	\vdots			
$(11111011)_{2}=(251)_{10}$	$\pm\left(1 . b_{10} b_{11} b_{12} \cdots b_{32}\right)_{2} \times 2^{124}$			
$(11111100)_{2}=(252)_{10}$	$\pm\left(1 . b_{10} b_{11} b_{12} \cdots b_{32}\right)_{2} \times 2^{125}$			
$(1111101)_{2}=(253)_{10}$	$\pm\left(1 . b_{10} b_{11} b_{12} \cdots b_{32}\right)_{2} \times 2^{126}$			
$(11111110)_{2}=(254)_{10}$	$\pm\left(1 . b_{10} b_{11} b_{12} \cdots b_{32}\right)_{2} \times 2^{127}$			

In the IEEE floating-point standard, the round to nearest or correctly rounded value of the real number x, denoted round (x), is defined as follows. First, let x_{+}be the closest floating-point number greater than x, and let x_{-}be the closest one less than x. If x is a floating-point number, then round $(x)=x$. Otherwise, the value of $\operatorname{round}(x)$ depends on the rounding mode selected:

- Round to nearest: $\operatorname{round}(x)$ is either x_{-}or x_{+}, whichever is nearer to x. (If there is a tie, choose the one with the least significant bit equal to 0 .)
- Round toward 0: round (x) is either x_{-}or x_{+}, whichever is between 0 and x.
- Round toward $-\infty /$ round down: $\operatorname{round}(x)=x_{-}$.
- Round toward $+\infty$ /round up: $\operatorname{round}(x)=x_{+}$.

Round to nearest is almost always used, since it is the most useful and gives the floating-point number closest to x.

Linear Algebra Concepts and Notation

In this appendix, we review some basic concepts and standard notation used in linear algebra.

D. 1 Elementary Concepts

The two concepts from linear algebra that we are most concerned with are vectors and matrices because of their usefulness in compressing complicated expressions into a compact notation. The vectors and matrices in this text are most often real, since they consist of real numbers. These concepts easily generalize to complex vectors and matrices.

Vectors

A vector $\boldsymbol{x} \in \mathbb{R}^{n}$ can be thought of as a one-dimensional array of numbers and is written as

$$
\boldsymbol{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

where x_{i} is called the i th element, entry, or component. An alternative notation that is useful in pseudocodes is $\boldsymbol{x}=\left(x_{i}\right)_{n}$. Sometimes the vector \boldsymbol{x} displayed above is said to be a column vector to distinguish it from a row vector \boldsymbol{y} written as

$$
\boldsymbol{y}=\left[y_{1}, y_{2}, \ldots, y_{n}\right]
$$

For example, here are some vectors:

$$
\left[\begin{array}{r}
\frac{1}{5} \\
3 \\
-\frac{5}{6} \\
\frac{2}{7}
\end{array}\right] \quad\left[\begin{array}{llll}
\pi, & e, & 5,-4
\end{array}\right] \quad\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{3}
\end{array}\right]
$$

To save space, a column vector \boldsymbol{x} can be written as a row vector such as

$$
\boldsymbol{x}=\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{T} \quad \text { or } \quad \boldsymbol{x}^{T}=\left[x_{1}, x_{2}, \ldots, x_{n}\right]
$$

by adding a T (for transpose) to indicate that we are interchanging or transposing a row or column vector. As an example, we have

$$
\left[\begin{array}{llll}
1 & 2 & 3 & 4
\end{array}\right]^{T}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]
$$

Many operations involving vectors are component-by-component operations. For vectors \boldsymbol{x} and \boldsymbol{y}

$$
\boldsymbol{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \quad \boldsymbol{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]
$$

the following definitions apply.
Equality $\quad \boldsymbol{x}=\boldsymbol{y}$ if and only if $x_{i}=y_{i}$ for all $i(1 \leqq i \leqq n)$
Inequality $\quad \boldsymbol{x}<\boldsymbol{y}$ if and only if $x_{i}<y_{i}$ for all $i(1 \leqq i \leqq n)$
Addition/Subtraction

$$
\boldsymbol{x} \pm \boldsymbol{y}=\left[\begin{array}{c}
x_{1} \pm y_{1} \\
x_{2} \pm y_{2} \\
\vdots \\
x_{n} \pm y_{n}
\end{array}\right]
$$

Scalar Product

$$
\alpha \boldsymbol{x}=\left[\begin{array}{c}
\alpha x_{1} \\
\alpha x_{2} \\
\vdots \\
\alpha x_{n}
\end{array}\right] \quad \text { for } \alpha \text { a constant or scalar }
$$

Here is an example:

$$
\left[\begin{array}{l}
2 \\
4 \\
6 \\
8
\end{array}\right]=2\left[\begin{array}{l}
0 \\
2 \\
0 \\
4
\end{array}\right]+\left[\begin{array}{l}
2 \\
0 \\
6 \\
0
\end{array}\right]
$$

For m vectors $\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \ldots, \boldsymbol{x}^{(m)}$ and m scalars $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$, we define a linear combination as

$$
\sum_{i=1}^{m} \alpha_{i} \boldsymbol{x}^{(i)}=\alpha_{1} \boldsymbol{x}^{(1)}+\alpha_{2} \boldsymbol{x}^{(2)}+\cdots+\alpha_{m} \boldsymbol{x}^{(m)}=\left[\begin{array}{c}
\sum_{i=1}^{m} \alpha_{i} x_{1}^{(i)} \\
\sum_{i=1}^{m} \alpha_{i} x_{2}^{(i)} \\
\vdots \\
\sum_{i=1}^{m} \alpha_{i} x_{n}^{(i)}
\end{array}\right]
$$

Special vectors are the standard unit vectors:

$$
\boldsymbol{e}^{(1)}=\left[\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right] \quad \boldsymbol{e}^{(2)}=\left[\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right] \quad \ldots \quad \boldsymbol{e}^{(n)}=\left[\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
1
\end{array}\right]
$$

Clearly,

$$
\sum_{i=1}^{n} \alpha_{i} \boldsymbol{e}^{(i)}=\left[\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{n}
\end{array}\right]
$$

Hence, any vector \boldsymbol{x} can be written as a linear combination of the standard unit vectors

$$
\boldsymbol{x}=x_{1} \boldsymbol{e}^{(1)}+x_{2} \boldsymbol{e}^{(2)}+\cdots+x_{n} \boldsymbol{e}^{(n)}=\sum_{i=1}^{n} x_{i} \boldsymbol{e}^{(i)}
$$

As an example, notice that

$$
\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]+2\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]+3\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]+4\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

The dot product or inner product of vectors \boldsymbol{x} and \boldsymbol{y} is the number

$$
\boldsymbol{x}^{T} \boldsymbol{y}=\left[x_{1}, x_{2}, \ldots, x_{n}\right]\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]=\sum_{i=1}^{n} x_{i} y_{i}
$$

As an example, we see that

$$
[1,1,1,1]\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]=4
$$

Matrices

A matrix is a two-dimensional array of numbers that can be written as

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 m} \\
a_{21} & a_{22} & \cdots & a_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n m}
\end{array}\right]
$$

where $a_{i j}$ is called the element or entry in the i th row and j th column. An alternative notation is $\boldsymbol{A}=\left(a_{i j}\right)_{n \times m}$. A column vector is also an $n \times 1$ matrix and a row vector is also
a $1 \times m$ matrix. For example, here are three matrices:

$$
\left[\begin{array}{rrr}
\frac{1}{5} & \frac{2}{7} & -1 \\
3 & 2 & \frac{1}{8} \\
-\frac{5}{6} & \frac{2}{5} & 3
\end{array}\right] \quad\left[\begin{array}{llll}
1 & 6 & \frac{9}{8} & -5
\end{array}\right] \quad\left[\begin{array}{rr}
\frac{11}{2} & \frac{4}{9} \\
\frac{2}{3} & -\frac{7}{8} \\
\pi & e \\
\frac{1}{\pi} & \frac{1}{e}
\end{array}\right]
$$

The entries in \boldsymbol{A} can be grouped into column vectors:

$$
\boldsymbol{A}=\left[\left[\begin{array}{c}
a_{11} \\
a_{21} \\
\vdots \\
a_{n 1}
\end{array}\right]\left[\begin{array}{c}
a_{12} \\
a_{22} \\
\vdots \\
a_{n 2}
\end{array}\right] \ldots\left[\begin{array}{c}
a_{1 m} \\
a_{2 m} \\
\vdots \\
a_{n m}
\end{array}\right]\right]=\left[\begin{array}{llll}
\boldsymbol{a}^{(1)} & \boldsymbol{a}^{(2)} & \cdots & \boldsymbol{a}^{(m)}
\end{array}\right]
$$

where $\boldsymbol{a}^{(j)}$ is the j th column vector. Also, \boldsymbol{A} can be grouped into row vectors:

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
{\left[a_{11}\right.} & a_{12} & \cdots & a_{1 m}
\end{array}\right]\left[\begin{array}{cccc}
a_{21} & a_{22} & \cdots & a_{2 m}
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{A}^{(1)} \\
\\
\boldsymbol{A}^{(2)} \\
\vdots \\
a_{n 1}
\end{array} a_{n 2} \quad \cdots \quad a_{n m}\right][]
$$

where $\boldsymbol{A}^{(i)}$ is the i th row vector. Notice that

$$
\left.\left.\left[\begin{array}{rrrr}
1 & 5 & 9 & 13 \\
2 & 6 & 10 & 14 \\
3 & 7 & 11 & 15 \\
4 & 8 & 12 & 16
\end{array}\right]=\left[\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]\left[\begin{array}{l}
5 \\
6 \\
7 \\
8
\end{array}\right]\left[\begin{array}{r}
9 \\
10 \\
11 \\
12
\end{array}\right]\left[\begin{array}{l}
13 \\
14 \\
15 \\
16
\end{array}\right]\right]=\left[\begin{array}{rrrr}
{[1} & 5 & 9 & 13
\end{array}\right] \begin{array}{lll}
{[2} & 6 & 10 \\
14
\end{array}\right]\left[\begin{array}{lll}
3 & 7 & 11 \\
15
\end{array}\right]\right]\left[\begin{array}{llll}
4 & 8 & 12 & 16
\end{array}\right]
$$

An $n \times n$ matrix of special importance is the identity matrix, denoted by \boldsymbol{I}, composed of all 0 's except that the main diagonal consists of 1 's:

$$
\boldsymbol{I}=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right]=\left[\begin{array}{llll}
\boldsymbol{e}^{(1)} & \boldsymbol{e}^{(2)} & \cdots & \boldsymbol{e}^{(n)}
\end{array}\right]
$$

A matrix of this same general form with entries d_{i} on the main diagonal is called a diagonal matrix and is written as

$$
\boldsymbol{D}=\left[\begin{array}{llll}
d_{1} & & & \\
& d_{2} & & \\
& & \ddots & \\
& & & d_{n}
\end{array}\right]=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)
$$

where the blank space indicates 0 entries. A tridiagonal matrix is a square matrix of the form

$$
\boldsymbol{T}=\left[\begin{array}{cccccc}
d_{1} & c_{1} & & & & \\
a_{1} & d_{2} & c_{2} & & & \\
& a_{2} & d_{3} & c_{3} & & \\
& & \ddots & \ddots & \ddots & \\
& & & a_{n-2} & d_{n-1} & c_{n-1} \\
& & & & a_{n-1} & d_{n}
\end{array}\right]
$$

where the diagonal entries $\left\{a_{i}\right\},\left\{d_{i}\right\}$, and $\left\{c_{i}\right\}$ are called the subdiagonal, main diagonal, and superdiagonal, respectively.

For the general $n \times n$ matrix $\boldsymbol{A}=\left(a_{i j}\right), \boldsymbol{A}$ is a diagonal matrix if $a_{i j}=0$ whenever $i \neq j$, and \boldsymbol{A} is a tridiagonal matrix if $a_{i j}=0$ whenever $|i-j| \geqq 2$. The matrix \boldsymbol{A} is a lower triangular matrix whenever $a_{i j}=0$ for all $i<j$ and is an upper triangular matrix whenever $a_{i j}=0$ for all $i>j$. Examples of identity, diagonal, tridiagonal, lower triangular, and upper triangular matrices, respectively, are as follows:

$$
\left.\left.\begin{array}{c}
{\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]}
\end{array} \begin{array}{llll}
3 & 0 & 0 & 0 \\
0 & 5 & 0 & 0 \\
0 & 0 & 7 & 0 \\
0 & 0 & 0 & 9
\end{array}\right] \quad\left[\begin{array}{lllll}
5 & 3 & 0 & 0 & 0 \\
2 & 5 & 3 & 0 & 0 \\
0 & 2 & 9 & 2 & 0 \\
0 & 0 & 3 & 7 & 2 \\
0 & 0 & 0 & 3 & 7
\end{array}\right]\right),\left[\begin{array}{rrrr}
6 & 0 & 0 & 0 \\
3 & 6 & 0 & 0 \\
4 & -2 & 7 & 0 \\
5 & -3 & 9 & 21
\end{array}\right] \quad\left[\begin{array}{rrrr}
1 & -1 & 2 & 1 \\
0 & 5 & -5 & 1 \\
0 & 0 & 9 & -3 \\
0 & 0 & 0 & 2
\end{array}\right],
$$

As with vectors, many operations involving matrices correspond to component operations. For matrices \boldsymbol{A} and \boldsymbol{B},

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 m} \\
a_{21} & a_{22} & \cdots & a_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n m}
\end{array}\right] \quad \boldsymbol{B}=\left[\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 m} \\
b_{21} & b_{22} & \cdots & b_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n 1} & b_{n 2} & \cdots & b_{n m}
\end{array}\right]
$$

the following definitions apply:
Equality $\quad \boldsymbol{A}=\boldsymbol{B}$ if and only if $a_{i j}=b_{i j}$ for all $i(1 \leqq i \leqq n)$ and all $j(1 \leqq j \leqq m)$
Inequality $\quad \boldsymbol{A}<\boldsymbol{B}$ if and only if $a_{i j}<b_{i j}$ for all $i(1 \leqq i \leqq n)$ and all $j(1 \leqq j \leqq m)$
Addition/Subtraction

$$
\boldsymbol{A} \pm \boldsymbol{B}=\left[\begin{array}{cccc}
a_{11} \pm b_{11} & a_{12} \pm b_{12} & \cdots & a_{1 m} \pm b_{1 m} \\
a_{21} \pm b_{21} & a_{22} \pm b_{22} & \cdots & a_{2 m} \pm b_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} \pm b_{n 1} & a_{n 2} \pm b_{n 2} & \cdots & a_{n m} \pm b_{n m}
\end{array}\right]
$$

Scalar Product

$$
\alpha \boldsymbol{A}=\left[\begin{array}{cccc}
\alpha a_{11} & \alpha a_{12} & \cdots & \alpha a_{1 m} \\
\alpha a_{21} & \alpha a_{22} & \cdots & \alpha a_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
\alpha a_{n 1} & \alpha a_{n 2} & \cdots & \alpha a_{n m}
\end{array}\right] \quad \text { for } \alpha \text { a constant }
$$

As an example, we have

$$
\left[\begin{array}{rrr}
\frac{1}{5} & \frac{7}{5} & -1 \\
-3 & 2 & -8 \\
\frac{6}{5} & \frac{2}{5} & -3
\end{array}\right]=\frac{1}{5}\left[\begin{array}{rrr}
1 & 7 & 0 \\
0 & 10 & 0 \\
6 & 2 & 0
\end{array}\right]-\left[\begin{array}{lll}
0 & 0 & 1 \\
3 & 0 & 8 \\
0 & 0 & 3
\end{array}\right]
$$

Matrix-Vector Product

The product of an $n \times m$ matrix \boldsymbol{A} and an $m \times 1$ vector \boldsymbol{b} is of special interest. Considering the matrix \boldsymbol{A} in terms of its columns, we have

$$
\begin{aligned}
\boldsymbol{A} \boldsymbol{b} & =\left[\begin{array}{llll}
\boldsymbol{a}^{(1)} & \boldsymbol{a}^{(2)} & \cdots & \boldsymbol{a}^{(m)}
\end{array}\right]\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right] \\
& =b_{1} \boldsymbol{a}^{(1)}+b_{2} \boldsymbol{a}^{(2)}+\cdots+b_{m} \boldsymbol{a}^{(m)} \\
& =\sum_{i=1}^{m} b_{i} \boldsymbol{a}^{(i)}
\end{aligned}
$$

Thus, $\boldsymbol{A} \boldsymbol{b}$ is a vector and can be thought of as a linear combination of the columns of \boldsymbol{A} with coefficients the entries of \boldsymbol{b}. Considering matrix \boldsymbol{A} in terms of its rows, we have

$$
\boldsymbol{A} \boldsymbol{b}=\left[\begin{array}{c}
\boldsymbol{A}^{(1)} \\
\boldsymbol{A}^{(2)} \\
\vdots \\
\boldsymbol{A}^{(n)}
\end{array}\right] \boldsymbol{b}=\left[\begin{array}{c}
\boldsymbol{A}^{(1)} \boldsymbol{b} \\
\boldsymbol{A}^{(2)} \boldsymbol{b} \\
\vdots \\
\boldsymbol{A}^{(n)} \boldsymbol{b}
\end{array}\right]
$$

Thus, the j th element of $\boldsymbol{A} \boldsymbol{b}$ can be viewed as the dot product of the j th row of \boldsymbol{A} and the vector \boldsymbol{b}.

Matrix Product

The product of the matrix $\boldsymbol{A}=\left(a_{i j}\right)_{n \times m}$ and the matrix $\boldsymbol{B}=\left(b_{i j}\right)_{m \times r}$ is the matrix $\boldsymbol{C}=$ $\left(c_{i j}\right)_{n \times r}$ such that

$$
A B=C
$$

where

$$
c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i m} b_{m j}=\sum_{k=1}^{m} a_{i k} b_{k j} \quad(1 \leqq i \leqq n, 1 \leqq j \leqq r)
$$

The element $c_{i j}$ is the dot product of the i th row vector of \boldsymbol{A}

$$
\boldsymbol{A}^{(i)}=\left[a_{i 1}, a_{i 2}, \ldots, a_{i m}\right]
$$

and the j th column vector of \boldsymbol{B}

$$
\boldsymbol{b}^{(j)}=\left[\begin{array}{c}
b_{1 j} \\
b_{2 j} \\
\vdots \\
b_{m j}
\end{array}\right]
$$

that is,

$$
c_{i j}=\boldsymbol{A}^{(i)} \boldsymbol{b}^{(j)}
$$

Similarly, the matrix product $\boldsymbol{A B}$ can be thought of in two different ways. We can write either

$$
\begin{align*}
\boldsymbol{A} \boldsymbol{B} & =\boldsymbol{A}\left[\begin{array}{llll}
\boldsymbol{b}^{(1)} & \boldsymbol{b}^{(2)} & \cdots & \boldsymbol{b}^{(r)}
\end{array}\right] \tag{1}\\
& =\left[\begin{array}{llll}
\boldsymbol{A} \boldsymbol{b}^{(1)} & \boldsymbol{A} \boldsymbol{b}^{(2)} & \cdots & \boldsymbol{A} \boldsymbol{b}^{(r)}
\end{array}\right] \\
& =\boldsymbol{C}
\end{align*}
$$

or

$$
\boldsymbol{A} \boldsymbol{B}=\left[\begin{array}{c}
\boldsymbol{A}^{(1)} \tag{2}\\
\boldsymbol{A}^{(2)} \\
\vdots \\
\boldsymbol{A}^{(n)}
\end{array}\right] \boldsymbol{B}=\left[\begin{array}{c}
\boldsymbol{A}^{(1)} \boldsymbol{B} \\
\boldsymbol{A}^{(2)} \boldsymbol{B} \\
\vdots \\
\boldsymbol{A}^{(n)} \boldsymbol{B}
\end{array}\right]=\boldsymbol{C}
$$

Equation (1) implies that the j th column of $\boldsymbol{C}=\boldsymbol{A} \boldsymbol{B}$ is

$$
\boldsymbol{c}^{(j)}=\boldsymbol{A} \boldsymbol{b}^{(j)}
$$

That is, each column of \boldsymbol{C} is the result of postmultiplying \boldsymbol{A} by the j th column of \boldsymbol{B}. In other words, each column of \boldsymbol{C} can be obtained by taking inner products of a column of \boldsymbol{B} with all rows of \boldsymbol{A} :

$$
\boldsymbol{c}^{(j)}=\boldsymbol{A} \boldsymbol{b}^{(j)}=\left[\begin{array}{c}
\longleftarrow \\
\vdots \\
\longleftarrow
\end{array}\right]\left[\begin{array}{c}
b_{1 j} \\
b_{2 j} \\
\vdots \\
b_{m j}
\end{array}\right]=\left[\begin{array}{c}
c_{1 j} \\
c_{2 j} \\
\vdots \\
c_{n j}
\end{array}\right]
$$

The long left-arrow means an inner product is formed across the elements in the row-that is, $c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}$. Equation (2) implies that the i th row of the result \boldsymbol{C} of multiplying \boldsymbol{A} times \boldsymbol{B} is

$$
\boldsymbol{C}^{(i)}=\boldsymbol{A}^{(i)} \boldsymbol{B}
$$

That is, each row of \boldsymbol{C} is the result of premultiplying \boldsymbol{B} by the i th row of \boldsymbol{A}. In other words, each row of \boldsymbol{C} can be obtained by taking inner products of a row of \boldsymbol{A} with all columns of \boldsymbol{B} :

$$
\begin{aligned}
\boldsymbol{C}^{(i)}=\boldsymbol{A}^{(i)} \boldsymbol{B} & =\left[\begin{array}{llll}
a_{i 1} & a_{i 2} & \cdots & a_{i m}
\end{array}\right]\left[\begin{array}{llll}
\uparrow & \uparrow & \cdots & \uparrow
\end{array}\right] \\
& =\left[\begin{array}{llll}
c_{i 1} & c_{i 2} & \cdots & c_{i r}
\end{array}\right]
\end{aligned}
$$

The long up-arrow means an inner product is formed from the elements in the column-that is, $c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}$.

As an example, we can determine the matrix product columnwise as

$$
\left[\begin{array}{rrr}
3 & 1 & 7 \\
2 & 4 & -5 \\
1 & -3 & 2
\end{array}\right]\left[\begin{array}{rrr}
-1 & -3 & 2 \\
1 & 1 & 1 \\
-3 & -2 & 1
\end{array}\right]=\left[\begin{array}{lll}
\boldsymbol{c}^{(1)} & \boldsymbol{c}^{(2)} & \boldsymbol{c}^{(3)}
\end{array}\right]
$$

where

$$
\begin{aligned}
& \boldsymbol{c}^{(1)}=\left[\begin{array}{rrr}
3 & 1 & 7 \\
2 & 4 & -5 \\
1 & -3 & 2
\end{array}\right]\left[\begin{array}{r}
-1 \\
1 \\
-3
\end{array}\right]=\left[\begin{array}{r}
-23 \\
17 \\
-10
\end{array}\right] \\
& \boldsymbol{c}^{(2)}=\left[\begin{array}{rrr}
3 & 1 & 7 \\
2 & 4 & -5 \\
1 & -3 & 2
\end{array}\right]\left[\begin{array}{r}
-3 \\
1 \\
-2
\end{array}\right]=\left[\begin{array}{r}
-22 \\
8 \\
-10
\end{array}\right] \\
& \boldsymbol{c}^{(3)}=\left[\begin{array}{rrr}
3 & 1 & 7 \\
2 & 4 & -5 \\
1 & -3 & 2
\end{array}\right]\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{r}
14 \\
3 \\
1
\end{array}\right]
\end{aligned}
$$

or we can determine it rowwise as

$$
\left[\begin{array}{rrr}
3 & 1 & 7 \\
2 & 4 & -5 \\
1 & -3 & 2
\end{array}\right]\left[\begin{array}{rrr}
-1 & -3 & 2 \\
1 & 1 & 1 \\
-3 & -2 & 1
\end{array}\right]=\left[\begin{array}{l}
\boldsymbol{C}^{(1)} \\
\boldsymbol{C}^{(2)} \\
\boldsymbol{C}^{(3)}
\end{array}\right]
$$

where

$$
\begin{align*}
& \boldsymbol{C}^{(1)}=\left[\begin{array}{lll}
3 & 1 & 7
\end{array}\right]\left[\begin{array}{rrr}
-1 & -3 & 2 \\
1 & 1 & 1 \\
-3 & -2 & 1
\end{array}\right]=\left[\begin{array}{lll}
-23 & -22 & 1
\end{array}\right. \\
& \boldsymbol{C}^{(2)}=\left[\begin{array}{lll}
2 & 4 & -5
\end{array}\right]\left[\begin{array}{rrr}
-1 & -3 & 2 \\
1 & 1 & 1 \\
-3 & -2 & 1
\end{array}\right]=\left[\begin{array}{lll}
17 & 8 & 3
\end{array}\right] \\
& \boldsymbol{C}^{(3)}=\left[\begin{array}{lll}
1 & -3 & 2
\end{array}\right]\left[\begin{array}{rrr}
-1 & -3 & 2 \\
1 & 1 & 1 \\
-3 & -2 & 1
\end{array}\right]=\left[\begin{array}{ll}
-10 & -10
\end{array}\right.
\end{align*}
$$

Other Concepts

The transpose of the $n \times m$ matrix \boldsymbol{A}, denoted \boldsymbol{A}^{T}, is obtained by interchanging the rows and columns of $\boldsymbol{A}=\left(a_{i j}\right)_{n \times m}$:

$$
\boldsymbol{A}^{T}=\left[\begin{array}{c}
\boldsymbol{A}^{(1)} \\
\boldsymbol{A}^{(2)} \\
\vdots \\
\boldsymbol{A}^{(n)}
\end{array}\right]^{T}=\left[\begin{array}{llll}
\boldsymbol{A}^{(1)^{T}} & \boldsymbol{A}^{(2)^{T}} & \cdots & \boldsymbol{A}^{(n)^{T}}
\end{array}\right]
$$

or

$$
\boldsymbol{A}^{T}=\left[\begin{array}{llll}
\boldsymbol{a}^{(1)} & \boldsymbol{a}^{(2)} & \cdots & \boldsymbol{a}^{(m)}
\end{array}\right]^{T}=\left[\begin{array}{c}
\boldsymbol{a}^{(1)^{T}} \\
\boldsymbol{a}^{(2)^{T}} \\
\vdots \\
\boldsymbol{a}^{(m)^{T}}
\end{array}\right]
$$

Hence, \boldsymbol{A}^{T} is the $m \times n$ matrix:

$$
\boldsymbol{A}^{T}=\left[\begin{array}{cccc}
a_{11} & a_{21} & \cdots & a_{n 1} \\
a_{12} & a_{22} & \cdots & a_{n 2} \\
\vdots & \vdots & & \vdots \\
a_{1 m} & a_{2 m} & \cdots & a_{n m}
\end{array}\right]=\left(a_{j i}\right)_{m \times n}
$$

As an example, we have

$$
\left[\begin{array}{rrr}
2 & 4 & 9 \\
5 & 7 & 3 \\
10 & 6 & 2
\end{array}\right]^{T}=\left[\begin{array}{rrr}
2 & 5 & 10 \\
4 & 7 & 6 \\
9 & 3 & 2
\end{array}\right]
$$

An $n \times n$ matrix \boldsymbol{A} is symmetric if $a_{i j}=a_{j i}$ for all $i(1 \leqq i \leqq n)$ and all $j(1 \leqq j \leqq n)$. In other words, \boldsymbol{A} is symmetric if $\boldsymbol{A}=\boldsymbol{A}^{T}$.

Some useful properties for matrices of compatible sizes are as follows:

PROPERTIES Elementary Consequences of the Definitions

1. $\boldsymbol{A} \boldsymbol{B} \neq \boldsymbol{B} \boldsymbol{A}$ (in general)
2. $A I=I A=A$
3. $A 0=0 A=0$
4. $\left(\boldsymbol{A}^{T}\right)^{T}=\boldsymbol{A}$
5. $(\boldsymbol{A}+\boldsymbol{B})^{T}=\boldsymbol{A}^{T}+\boldsymbol{B}^{T}$
6. $(\boldsymbol{A B})^{T}=\boldsymbol{B}^{T} \boldsymbol{A}^{T}$

If \boldsymbol{A} and \boldsymbol{B} are square matrices that satisfy $\boldsymbol{A} \boldsymbol{B}=\boldsymbol{B} \boldsymbol{A}=\boldsymbol{I}$, then \boldsymbol{B} is said to be the inverse of \boldsymbol{A}, which is denoted \boldsymbol{A}^{-1}.

To illustrate Property 1 , form the following products, and observe that matrix multiplication is not commutative:

$$
\begin{aligned}
& {\left[\begin{array}{rrr}
3 & 1 & 7 \\
2 & 4 & -5 \\
1 & -3 & 2
\end{array}\right]\left[\begin{array}{rrr}
-1 & -3 & 2 \\
1 & 1 & 1 \\
-3 & -2 & 1
\end{array}\right]} \\
& {\left[\begin{array}{rrr}
-1 & -3 & 2 \\
1 & 1 & 1 \\
-3 & -2 & 1
\end{array}\right]\left[\begin{array}{rrr}
3 & 1 & 7 \\
2 & 4 & -5 \\
1 & -3 & 2
\end{array}\right]}
\end{aligned}
$$

Also, verify that $\boldsymbol{A} \boldsymbol{A}^{-1}=\boldsymbol{A}^{-1} \boldsymbol{A}=\boldsymbol{I}$ for

$$
\boldsymbol{A}=\left[\begin{array}{rrr}
1 & 1 & 1 \\
-1 & 3 & 2 \\
2 & 1 & 1
\end{array}\right]
$$

and

$$
\boldsymbol{A}^{-1}=\left[\begin{array}{rrr}
-1 & 0 & 1 \\
-5 & 1 & 3 \\
7 & -1 & -4
\end{array}\right]
$$

As our final set of examples, we have the product of a matrix times a vector and of two matrices:

$$
\begin{aligned}
{\left[\begin{array}{rrr}
3 & 2 & -1 \\
5 & 3 & 2 \\
-1 & 1 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] } & =\left[\begin{array}{rrr}
3 x_{1} & + & 2 x_{2} \\
5 x_{1} & + & 3 x_{3} \\
-x_{1} & + & x_{2}
\end{array}-2 x_{3}\right. \\
{\left[\begin{array}{rrr}
1 & 0 & 0 \\
-\frac{5}{3} & 1 & 0 \\
-8 & 5 & 1
\end{array}\right]\left[\begin{array}{rrr}
3 & 2 & -1 \\
5 & 3 & 2 \\
-1 & 1 & -3
\end{array}\right] } & =\left[\begin{array}{rrr}
3 & 2 & -1 \\
0 & -\frac{1}{3} & \frac{11}{3} \\
0 & 0 & 15
\end{array}\right]
\end{aligned}
$$

The reader should verify them and note how they relate to solving the following problem using naive Gaussian elimination (see Section 7.1):

$$
\left\{\begin{aligned}
3 x_{1}+2 x_{2}-x_{3} & =7 \\
5 x_{1}+3 x_{2}+2 x_{3} & =4 \\
-x_{1}+x_{2}-3 x_{3} & =-1
\end{aligned}\right.
$$

As well, compute the products shown and relate them to this problem:

$$
\begin{gathered}
{\left[\begin{array}{rrr}
1 & 0 & 0 \\
-\frac{5}{8} & 1 & 0 \\
-8 & 5 & 1
\end{array}\right]\left[\begin{array}{r}
7 \\
4 \\
-1
\end{array}\right]} \\
{\left[\begin{array}{rrr}
\frac{1}{3} & 2 & -\frac{7}{15} \\
0 & -3 & \frac{11}{15} \\
0 & 0 & \frac{1}{15}
\end{array}\right]\left[\begin{array}{rrr}
3 & 2 & -1 \\
0 & -\frac{1}{3} & \frac{11}{3} \\
0 & 0 & 15
\end{array}\right]} \\
{\left[\begin{array}{rrr}
\frac{1}{3} & 2 & -\frac{7}{15} \\
0 & -3 & \frac{11}{15} \\
0 & 0 & \frac{1}{15}
\end{array}\right]\left[\begin{array}{r}
7 \\
-\frac{23}{3} \\
-37
\end{array}\right]}
\end{gathered}
$$

Cramer's Rule

The solution of a 2×2 linear system of the form

$$
\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
f \\
g
\end{array}\right]
$$

is given by

$$
\begin{aligned}
& x=\frac{1}{D} \operatorname{Det}\left[\begin{array}{ll}
f & c \\
g & d
\end{array}\right]=\frac{1}{D}(f d-g c) \\
& y=\frac{1}{D} \operatorname{Det}\left[\begin{array}{ll}
a & f \\
b & g
\end{array}\right]=\frac{1}{D}(a g-b f)
\end{aligned}
$$

where

$$
D=\operatorname{Det}\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right]=a d-b c \neq 0
$$

D. 2 Abstract Vector Spaces

The vectors that have been considered so far in this appendix are members of a particular vector space \mathbb{R}^{n}. There is a general concept of an abstract vector space that will include \mathbb{R}^{n} as a particular case. An abstract vector space (a linear space) is a quadruple ($X, F,+, *$), where X is a set of elements called vectors, F is a field, + is an operation, and $*$ is an operation. There are ten axioms to be satisfied, and all of them are familiar to any reader who has worked with the special case of \mathbb{R}^{n}. First, let's fix the field to be \mathbb{R}. (The other field that is often needed is \mathbb{C}, but fields other than these two are rarely used in this situation.)

aXIOMS FOR A VECTOR SPACE

1. If \boldsymbol{x} and \boldsymbol{y} belong to X, then $\boldsymbol{x}+\boldsymbol{y}$ also belongs to X.
2. For \boldsymbol{x} and \boldsymbol{y} in $X, \boldsymbol{x}+\boldsymbol{y}=\boldsymbol{y}+\boldsymbol{x}$.
3. For $\boldsymbol{x}, \boldsymbol{y}$, and \boldsymbol{z} in $X,(\boldsymbol{x}+\boldsymbol{y})+\boldsymbol{z}=\boldsymbol{x}+(\boldsymbol{y}+\boldsymbol{z})$.
4. The set X contains a special element $\mathbf{0}$ such that $\boldsymbol{x}+\mathbf{0}=\boldsymbol{x}$ for all \boldsymbol{x} in X.
5. For each \boldsymbol{x}, there is an element $-\boldsymbol{x}$ with the property that $\boldsymbol{x}+(-\boldsymbol{x})=\mathbf{0}$.
6. If $a \in \mathbb{R}$, then for each \boldsymbol{x} in $X, a \boldsymbol{x} \in X$. ($a \boldsymbol{x}$ means $a * \boldsymbol{x}$.)
7. If $a \in \mathbb{R}$ and $\boldsymbol{x}, \boldsymbol{y} \in X$, then $a(\boldsymbol{x}+\boldsymbol{y})=a \boldsymbol{x}+a \boldsymbol{y}$.
8. If $a, b \in \mathbb{R}$ and $\boldsymbol{x} \in X$, then $(a+b) \boldsymbol{x}=a \boldsymbol{x}+b \boldsymbol{x}$.
9. If $a, b \in \mathbb{R}$ and $\boldsymbol{x} \in X$, then $a(b \boldsymbol{x})=(a b) \boldsymbol{x}$.
10. For $\boldsymbol{x} \in X, 1 \boldsymbol{x}=\boldsymbol{x}$.

From these axioms, one can prove many additional properties, such as the following:

PROPERTIES Immediate Consequences of the Axioms

1. The zero element, $\mathbf{0}$, of X is unique.
2. $0 \boldsymbol{x}=\mathbf{0}$ and $a \mathbf{0}=\mathbf{0}$ for $a \in \mathbb{R}$. (Notice the different zeros here!)
3. For each \boldsymbol{x} in X, the element $-\boldsymbol{x}$ in Axiom $\mathbf{5}$ is unique.
4. For each \boldsymbol{x} in $X,(-1) \boldsymbol{x}=-\boldsymbol{x}$.
5. If $a \boldsymbol{x}=\mathbf{0}$ and $a \neq 0$, then $\boldsymbol{x}=\mathbf{0}$.

A good example of a vector space (other than \mathbb{R}^{n}) is the set of all polynomials. We know that the sum of two polynomials is another polynomial and that a scalar multiple of a polynomial is a polynomial. All other axioms for a vector space are quickly verified. The zero element is the polynomial that we define by the equation $\mathbf{0}(t)=0$ for all real values of t.

Subspaces

If U is a subset of the vector space X and if U is a vector space also (with the same definitions of + and $*$ as used in X), then we call U a subspace of X. In checking to determine whether a given subset U is a subspace, one need only verify Axioms 1 and 6. Indeed, once that has been done, Axiom 6 and Property 4 above yield $-\boldsymbol{u} \in U$ when $\boldsymbol{u} \in U$. Then Axiom 1 yields $\mathbf{0}=\boldsymbol{u}+(-\boldsymbol{u}) \in \mathbf{U}$. The remaining axioms are true for U simply because $U \subset X$.

Linear Independence

A finite ordered set of points $\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n}\right\}$ in a vector space is said to be linearly dependent if there is a nontrivial equation of the form

$$
\sum_{i=1}^{n} a_{i} \boldsymbol{x}_{i}=\mathbf{0}
$$

The term nontrivial means that not all the coefficients a_{i} are zero. For example, if $n=3$ and $\boldsymbol{x}_{1}=3 \boldsymbol{x}_{2}-\boldsymbol{x}_{3}$, then the ordered set $\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{3}\right\}$ is linearly dependent. If $n=3$ and $\boldsymbol{x}_{3}=\boldsymbol{x}_{1}$, which is permitted in an ordered set, then $\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{3}\right\}$ is linearly dependent. Note that if these were interpreted as plain sets, we would have $\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{1}\right\}=\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right\}$, because in describing a plain set the repeated entry can be dropped without changing the set! This explains the necessity of dealing with ordered sets or indexed sets in defining linear dependence. (The difficulty arises only for indexed sets in which two elements are equal but bear different indices.) A finite set consisting of n (distinct) elements $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n}$ is linearly independent if the equation

$$
\sum_{i=1}^{n} a_{i} \boldsymbol{x}_{i}=\mathbf{0}
$$

is true only when all the coefficients a_{i} are zero. An arbitrary set, possibly infinite, is linearly independent if every finite subset of that set is linearly independent.

To illustrate linear independence, consider the three polynomials $\boldsymbol{p}_{1}(t)=t^{3}-2 t$, $\boldsymbol{p}_{2}(t)=t^{2}+4$, and $\boldsymbol{p}_{3}(t)=2 t^{2}+t$. Is the set $\left\{\boldsymbol{p}_{1}, \boldsymbol{p}_{2}, \boldsymbol{p}_{3}\right\}$ linearly independent? To find out, suppose that $a_{1} \boldsymbol{p}_{1}+a_{2} \boldsymbol{p}_{2}+a_{3} \boldsymbol{p}_{3}=0$. Then for all t,

$$
a_{1}\left(t^{3}-2 t\right)+a_{2}\left(t^{2}+4\right)+a_{3}\left(2 t^{2}+t\right)=0
$$

Collecting terms, we have

$$
a_{3} t^{3}+\left(a_{2}+2 a_{3}\right) t^{2}+\left(-2 a_{1}+a_{3}\right) t+4 a_{2}=0 \quad(t \in \mathbb{R})
$$

Since a cubic polynomial can have at most three roots (if it is not zero), the coefficients of each power of t in the preceding equation must be zero:

$$
a_{3}=a_{2}+2 a_{3}=-2 a_{1}+a_{3}=4 a_{2}=0
$$

Hence, all a_{i} must be zero. The set is linearly independent.

THEOREM ON LINEAR DEPENDENCE

A finite, ordered, set $\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n}\right\}$, with $n \geqq 2$, is linearly dependent if and only if some element of the set, say, \boldsymbol{x}_{k}, is a linear combination of its predecessors in the set:

$$
\boldsymbol{x}_{k}=\sum_{i=1}^{k-1} a_{i} \boldsymbol{x}_{i}
$$

Bases

A basis for a vector space is a maximal linearly independent set in the vector space. Maximal means that no vector can be added to the set without spoiling the linear independence. For example, a basis for the space of all polynomials is given by the functions $\boldsymbol{u}_{i}(t)=t^{i}$ for $i=0,1,2, \ldots$. To see that this is a maximal linearly independent set, suppose we add to the set any polynomial \boldsymbol{p}. Let the degree of \boldsymbol{p} be n. Then the set $\left\{\boldsymbol{u}_{0}, \boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{n}, \boldsymbol{p}\right\}$ is linearly dependent. Indeed, one element (namely, \boldsymbol{p}) is a linear combination of its predecessors in the set, and the above theorem applies.

If a vector space X has a finite basis, $\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{\mathrm{n}}\right\}$, then every basis for X has n elements. This number is called the dimension of X, and we say that X is finite-dimensional. Each \boldsymbol{x} in X has a unique representation $\boldsymbol{x}=\sum_{i=1}^{n} a_{i} \boldsymbol{u}_{i}$. The existence of this representation is a consequence of the maximality, and the uniqueness is a consequence of the linear independence of the basis.

Linear Transformations

If X and Y are vector spaces and if L is a mapping of X into Y such that

$$
L(a \boldsymbol{u}+b \boldsymbol{v})=a L(\boldsymbol{u})+b L(\boldsymbol{v})
$$

for all scalars a and b and for all vectors \boldsymbol{u} and \boldsymbol{v} in X, then we say that L is linear. Many familiar operations that are studied in mathematics are linear. For example, differentiation is a linear operator:

$$
(f+\boldsymbol{g})^{\prime}=\boldsymbol{f}^{\prime}+\boldsymbol{g}^{\prime} \quad(a \boldsymbol{f})^{\prime}=a \boldsymbol{f}^{\prime}
$$

The Laplace transform is linear, and so is the map $\boldsymbol{f} \mapsto \int_{1}^{b} \boldsymbol{f}(t) d t$.
If the space X is finite-dimensional and if we select a basis $\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{n}\right\}$ for X, then a linear map $L: X \rightarrow Y$ is completely known if the n vectors $L \boldsymbol{u}_{1}, L \boldsymbol{u}_{2}, \ldots, L \boldsymbol{u}_{n}$ are known. Indeed, any vector \boldsymbol{x} in X is representable in terms of the basis, $\boldsymbol{x}=\sum_{j=1}^{n} c_{j} \boldsymbol{u}_{j}$, and from this, we get $L \boldsymbol{x}=\sum_{j=1}^{n} c_{j} L \boldsymbol{u}_{j}$. Going further, suppose that Y is also finite-dimensional. Select a basis for Y, say, $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{m}\right\}$. Then each image $L \boldsymbol{u}_{j}$ is expressible in terms of the basis selected for Y, and we have, for suitable coefficients $a_{i j}$,

$$
L \boldsymbol{u}_{j}=\sum_{i=1}^{m} a_{i j} \boldsymbol{v}_{i}
$$

From this, it follows that

$$
L \boldsymbol{x}=L\left(\sum_{j=1}^{n} c_{j} \boldsymbol{u}_{j}\right)=\sum_{j=1}^{n} c_{j} L \boldsymbol{u}_{j}=\sum_{j=1}^{n} c_{j} \sum_{i=1}^{m} a_{i j} \boldsymbol{v}_{i}
$$

In this way, a matrix $\boldsymbol{A}=\left(a_{i j}\right)$ is associated with L, but only after the choice of bases in X and Y has been made.

The special case in which $Y=X$ and the same basis is used in both roles leads to these equations:

$$
\begin{aligned}
\boldsymbol{x} & =\sum_{j=1}^{n} c_{j} \boldsymbol{u}_{j} \\
L \boldsymbol{u}_{j} & =\sum_{i=1}^{n} a_{i j} \boldsymbol{u}_{i} \\
L \boldsymbol{x} & =\sum_{j=1}^{n} c_{j} \sum_{i=1}^{n} a_{i j} \boldsymbol{u}_{i}
\end{aligned}
$$

Eigenvalues and Eigenvectors

Let \boldsymbol{A} be an $n \times n$ matrix. If \boldsymbol{x} is a nonzero vector with the property that $\boldsymbol{A} \boldsymbol{x}$ is a scalar multiple of \boldsymbol{x}, then we call \boldsymbol{x} an eigenvector of \boldsymbol{A}. When this occurs, the equation

$$
A x=\lambda x
$$

is satisfied for some scalar λ (which may be zero). The scalar λ is then called an eigenvalue of \boldsymbol{A}. Since we have a nonzero solution of the equation $\boldsymbol{A x}-\lambda \boldsymbol{x}=\mathbf{0}$, the matrix $\boldsymbol{A}-\lambda \boldsymbol{I}$ must be singular. Hence, its determinant is zero. The equation

$$
\operatorname{Det}(\boldsymbol{A}-\lambda \boldsymbol{I})=0
$$

is called the characteristic equation of \boldsymbol{A}. As a function of λ, the left side of this equation is a polynomial of degree n, which has exactly n roots if we count each root with its multiplicity.

Change of Basis and Similarity

If L is a linear transformation taking an n-dimensional vector space into itself, then, having selected a basis $\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{n}\right\}$, we can assign a matrix \boldsymbol{A} to L. Thus, we have

$$
L \boldsymbol{u}_{j}=\sum_{i=1}^{n} \boldsymbol{A}_{i j} \boldsymbol{u}_{i}
$$

If another basis for X is chosen, say, $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$, then another matrix, \boldsymbol{B}, arises in the same way, and we have

$$
L \boldsymbol{v}_{j}=\sum_{i=1}^{n} \boldsymbol{B}_{i j} \boldsymbol{v}_{i}
$$

What is the relationship between \boldsymbol{A} and \boldsymbol{B} ? Define the matrix \boldsymbol{P} by the equation

$$
\boldsymbol{u}_{k}=\sum_{i=1}^{n} \boldsymbol{P}_{i k} \boldsymbol{v}_{i} \quad 1 \leqq k \leqq n
$$

Then

$$
\boldsymbol{B}=\boldsymbol{P} \boldsymbol{A} \boldsymbol{P}^{-1}
$$

To prove this, we must establish that

$$
\boldsymbol{L} \boldsymbol{v}_{j}=\sum_{i=1}^{n}\left(\boldsymbol{P} \boldsymbol{A} \boldsymbol{P}^{-1}\right)_{i j} \boldsymbol{v}_{i}
$$

The equations already recorded above justify the steps in the following calculation:

$$
\begin{aligned}
\sum_{i=1}^{n}\left(\boldsymbol{P} \boldsymbol{A} \boldsymbol{P}^{-1}\right)_{i j} \boldsymbol{v}_{i} & =\sum_{i=1}^{n} \sum_{k=1}^{n} \sum_{r=1}^{n} \boldsymbol{P}_{i k} \boldsymbol{A}_{k r} \boldsymbol{P}_{r j}^{-1} \boldsymbol{v}_{i} \\
& =\sum_{k=1}^{n} \sum_{r=1}^{n} \boldsymbol{A}_{k r} \boldsymbol{P}_{r j}^{-1} \boldsymbol{u}_{k} \\
& =\sum_{r=1}^{n} \boldsymbol{P}_{r j}^{-1} L \boldsymbol{u}_{r} \\
& =L\left(\sum_{r=1}^{n} \boldsymbol{P}_{r j}^{-1} \boldsymbol{u}_{r}\right) \\
& =L\left(\sum_{r=1}^{n} \sum_{i=1}^{n} \boldsymbol{P}_{r j}^{-1} \boldsymbol{P}_{i r} \boldsymbol{v}_{i}\right) \\
& =L\left(\sum_{i=1}^{n} \boldsymbol{I}_{i j} \boldsymbol{v}_{i}\right)=\boldsymbol{L} \boldsymbol{v}_{j}
\end{aligned}
$$

Orthogonal Matrices and Spectral Theorem

A matrix \boldsymbol{Q} is said to be orthogonal if

$$
\boldsymbol{Q} \boldsymbol{Q}^{T}=\boldsymbol{Q}^{T} \boldsymbol{Q}=\boldsymbol{I}
$$

This forces \boldsymbol{Q} to be square and nonsingular. Furthermore,

$$
Q^{-1}=Q^{T}
$$

With this concept available, we can state one of the principal theorems of linear algebra: the spectral theorem for symmetric matrices.

SPECTRAL THEOREM FOR SYMMETRIC MATRICES

If \boldsymbol{A} is a symmetric real matrix, then there exists an orthogonal matrix \boldsymbol{Q} such that $\boldsymbol{Q}^{T} \boldsymbol{A} \boldsymbol{Q}$ is a diagonal matrix.

The equation

$$
\boldsymbol{Q}^{T} \boldsymbol{A} \boldsymbol{Q}=\boldsymbol{D}
$$

is equivalent to

$$
A Q=Q D
$$

If \boldsymbol{D} is diagonal, the columns \boldsymbol{v}_{i} of \boldsymbol{Q} obey the equation

$$
\boldsymbol{A} \boldsymbol{v}_{i}=d_{i i} \boldsymbol{v}_{i}
$$

In other words, the columns of \boldsymbol{Q} form an orthonormal system of eigenvectors of \boldsymbol{A}, and the diagonal elements of \boldsymbol{D} are the eigenvalues of \boldsymbol{A}.

Norms

A vector norm on a vector space X is a real-valued function on X, written $\boldsymbol{x} \mapsto\|\boldsymbol{x}\|$ and having these three properties:

PROPERTIES Properties of Vector Norms

1. $\|\boldsymbol{x}\|>0$ for all nonzero vectors \boldsymbol{x}.
2. $\|a \boldsymbol{x}\|=|a|\|\boldsymbol{x}\|$ for all vectors \boldsymbol{x} and all scalars a.
3. $\|\boldsymbol{x}+\boldsymbol{y}\| \leqq\|\boldsymbol{x}\|+\|\boldsymbol{y}\|$ for all vectors \boldsymbol{x} and \boldsymbol{y}.

On \mathbb{R}^{n}, the simplest vector norms are

$$
\begin{aligned}
\|\boldsymbol{x}\|_{1} & =\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{n}\right| & & \left(\ell_{1} \text {-vector norm }\right) \\
\|\boldsymbol{x}\|_{2} & =\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}} & & \left(\text { Euclidean } / \ell_{2} \text {-vector norm }\right) \\
\|\boldsymbol{x}\|_{\infty} & =\max \left\{\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{n}\right|\right\} & & \left(\ell_{\infty} \text {-vector norm }\right)
\end{aligned}
$$

Here, x_{i} denotes the i th component of the vector. Any norm can be thought of as assigning a length to each vector. It is the Euclidean norm that corresponds directly to our usual concept of length, but other norms are sometimes much more convenient for our purposes. For example, if we know that $\|\boldsymbol{x}-\boldsymbol{y}\|_{\infty}<10^{-8}$, then we know that each component of \boldsymbol{x} differs from the corresponding component of \boldsymbol{y} by at most 10^{-8} and that the converse is also true. When we solve a system of linear equations $\boldsymbol{A x}=\boldsymbol{b}$ numerically, we shall want to know (among other things) how big the residual vector is. That is conveniently measured by $\|\boldsymbol{A x}-\boldsymbol{b}\|$, where some norm has been specified.

For $n \times n$ matrices, we can also have matrix norms, subject to the following requirements:

PROPERTIES Properties of Matrix Norms

1. $\|\boldsymbol{A}\|>0$ if $\boldsymbol{A} \neq 0$
2. $\|\alpha \boldsymbol{A}\|=|\alpha|\|\boldsymbol{A}\|$
3. $\|\boldsymbol{A}+\boldsymbol{B}\| \leqq\|\boldsymbol{A}\|+\|\boldsymbol{B}\| \quad$ (triangular inequality)
for matrices $\boldsymbol{A}, \boldsymbol{B}$ and scalars α.

We usually prefer matrix norms that are related to a vector norm. When a vector norm has been specified on \mathbb{R}^{n}, there is a standard way of introducing a related matrix norm for $n \times n$ matrices, namely,

$$
\|\boldsymbol{A}\|=\sup \left\{\|\boldsymbol{A} \boldsymbol{x}\|: \boldsymbol{x} \in \mathbb{R}^{n}, \quad\|\boldsymbol{x}\| \leqq 1\right\}
$$

We say that this matrix norm is the subordinate norm to the given vector norm or the norm induced by the given vector norm. The close relationship between the two is useful,
because it leads to the following inequality, which is true for all vectors \boldsymbol{x} :

$$
\|A x\| \leqq\|\boldsymbol{A}\|\|x\|
$$

The matrix norms subordinate to the vector norms discussed above are, respectively,

$$
\begin{aligned}
\|\boldsymbol{A}\|_{1} & =\max _{1 \leqq j \leqq n} \sum_{i=1}^{n}\left|a_{i j}\right| & & \left(\boldsymbol{\ell}_{1} \text {-matrix norm }\right) \\
\|\boldsymbol{A}\|_{2} & =\max _{1 \leqq k \leqq n} \sigma_{k} & & \left(\text { Spectral } / \boldsymbol{\ell}_{2} \text {-matrix norm }\right) \\
\|\boldsymbol{A}\|_{\infty} & =\max _{1 \leqq i \leqq n} \sum_{j=1}^{n}\left|a_{i j}\right| & & \left(\boldsymbol{\ell}_{\infty} \text {-matrix norm }\right)
\end{aligned}
$$

Here, σ_{k} are the singular values of \boldsymbol{A}. (Refer to Section 8.2 for definitions.) Note from above that the matrix norm subordinate to the Euclidean vector norm is not what most students think that it should be, namely,

$$
\|\boldsymbol{A}\|_{\mathrm{F}}=\left\{\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j}^{2}\right\}^{1 / 2} \quad(\text { Frobenius norm })
$$

This is indeed a matrix norm; however, it is not the one induced by the Euclidean vector norm.

Gram-Schmidt Process

The projection operator is defined to be

$$
\operatorname{proj}_{y} x=\frac{\langle\boldsymbol{x}, \boldsymbol{y}\rangle}{\langle\boldsymbol{y}, \boldsymbol{y}\rangle} y
$$

that projects the vector \boldsymbol{x} orthogonally onto the vector \boldsymbol{y}. The Gram-Schmidt process can be written as

$$
\begin{array}{ll}
z_{1}=\boldsymbol{v}_{1}, & \boldsymbol{q}_{1}=\frac{z_{1}}{\left\|z_{1}\right\|} \\
z_{2}=\boldsymbol{v}_{2}-\operatorname{proj}_{z_{1}} \boldsymbol{v}_{2}, & \boldsymbol{q}_{2}=\frac{z_{2}}{\left\|\boldsymbol{z}_{2}\right\|} \\
z_{3}=\boldsymbol{v}_{3}-\operatorname{proj}_{z_{1}} \boldsymbol{v}_{3}-\operatorname{proj}_{z_{2}} \boldsymbol{v}_{3}, & \boldsymbol{q}_{3}=\frac{z_{3}}{\left\|\boldsymbol{z}_{3}\right\|}
\end{array}
$$

In general, the k step is

$$
z_{k}=\boldsymbol{v}_{k}-\sum_{j=1}^{k-1} \operatorname{proj}_{\boldsymbol{v}_{j}} \boldsymbol{v}_{k}, \quad \boldsymbol{q}_{k}=\frac{\boldsymbol{Z}_{k}}{\left\|\boldsymbol{z}_{k}\right\|}
$$

Here $\left\{z_{1}, \boldsymbol{z}_{2}, z_{3}, \ldots, \boldsymbol{z}_{k}\right\}$ is an orthogonal set and $\left\{\boldsymbol{q}_{1}, \boldsymbol{q}_{2}, \boldsymbol{q}_{3}, \ldots, \boldsymbol{q}_{k}\right\}$ is an orthonormal set. When implemented on a computer, the Gram-Schmidt process is numerically unstable because the vectors z_{k} may not be exactly orthogonal due to roundoff errors. By a minor modification, the Gram-Schmidt process can be stabilized. Instead of computing the vectors \boldsymbol{u}_{k} as above, it can be computed a term at a time. A computer algorithm for the modified Gram-Schmidt process

$$
\begin{aligned}
& \text { for } j=1 \text { to } k \\
& \quad \text { for } i=1 \text { to } j-1 \\
& \quad s \leftarrow\left\langle\boldsymbol{v}_{j}, \boldsymbol{v}_{i}\right\rangle \\
& \quad \boldsymbol{v}_{j} \leftarrow \boldsymbol{v}_{j}-s \boldsymbol{v}_{i} \\
& \text { end for } \\
& \boldsymbol{v}_{i} \leftarrow \boldsymbol{v}_{j} /\left\|\boldsymbol{v}_{j}\right\| \\
& \text { end for }
\end{aligned}
$$

Here the vectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k}$ are replaced with orthonormal vectors that span the same subspace. The i-loop removes components in the \boldsymbol{v}_{i} direction followed by normalization of the vector. In exact arithmetic, this computation gives the same results as the original form above. However, it produces smaller errors in finite-precision computer arithmetic.

EXAMPLE 1 Consider the vectors $\boldsymbol{v}_{1}=(1, \varepsilon, 0,0), \boldsymbol{v}_{1}=(1,0, \varepsilon, 0)$, and $\boldsymbol{v}_{1}=(1,0,0, \varepsilon)$. Assume ε is a small number. Carry out the standard Gram-Schmidt procedure and the modified GramSchmidt procedure. Check the orthogonality conditions of the resulting vectors.

Solution Using the classical Gram-Schmidt process, we obtain $\boldsymbol{u}_{1}=(1, \varepsilon, 0,0), \boldsymbol{u}_{2}=$ $(0,-1,1,0) / \sqrt{2}$, and $\boldsymbol{u}_{3}=(0,-1,0,1) / \sqrt{2}$. Using the modified Gram-Schmidt process, we find $z_{1}=(1, \varepsilon, 0,0), z_{2}=(0,-1,1,0) / \sqrt{2}$, and $z_{3}=(0,-1,-1,2) / \sqrt{6}$. Checking orthogonality, we find $\left\langle\boldsymbol{u}_{2}, \boldsymbol{u}_{3}\right\rangle=\frac{1}{2}$ and $\left\langle z_{2}, z_{3}\right\rangle=0$.

Answers for Selected Problems*

Problems 1.1

2. $x=\frac{6032}{9990} ; \quad x=\frac{6032}{10010}$
3. 6×10^{-5}
4. Two other ways: $p i \leftarrow 2.0 \arcsin (1.0)$ or $p i \leftarrow 2.0 \arccos (0.0)$

5a. sum $\leftarrow 0$
for $i=1$ to n do
for $j=1$ to n do
sum $\leftarrow \operatorname{sum}+a_{i j}$
end for
end for
5d. sum $\leftarrow 0.0$
for $i=1$ to n do
sum \leftarrow sum $+a_{i i}$
end for
for $j=2$ to n do
for $i=j$ to n do
$\operatorname{sum} \leftarrow \operatorname{sum}+a_{i, i-j+1}+a_{i-j+1, i}$
end for
end for
6. n multiplications and n additions/subtractions

8a. for $i=1$ to 5 do
$x \leftarrow x \cdot x$
end for
$p \leftarrow x$
8c. $z \leftarrow x+2$
$p \leftarrow z^{3}\left(6+z^{4}\left(9+z^{8}\left(3-z^{10}\right)\right)\right)$
10. $z \leftarrow a_{n} / b_{n}$
for $i=1$ to $n-1$ do
$z \leftarrow a_{n-i}\left(z+1 / b_{n-i}\right)$
end for

[^12]11b. $z \leftarrow 1$
$v \leftarrow 1$
for $i=1$ to $n-1$ do
$v \leftarrow v x$

$$
z \leftarrow v z+1
$$

end for
$z \leftarrow v x z$
12b. $v=\sum_{i=0}^{n} a_{i} x^{i}$
12e. $v=a_{n} x^{n}+x \sum_{i=1}^{n} a_{n-i} x^{n-i}$
13. $z=1+\sum_{i=2}^{n} \prod_{j=2}^{i} b_{j}$
14. $n(n+1) / 2$

15b. for $j=1$ to n do
for $i=1$ to n do

$$
a_{i j} \leftarrow 1.0 / \operatorname{real}(i+j-1)
$$

end for
end for

Computer Problems 1.1

4. $\exp (1.0) \approx 2.71828182846$
5. Computation deviates from theory when $a_{1}=10^{-12}, 10^{-8}, 10^{-4}, 10^{20}$, for example.
6. x may underflow and be set to zero. 12. 40 different spellings

20a. The computation m / n may result in truncation so that $x \neq y$.

Problems 1.2

4a. First derivative $+\infty$ at 0 .
4b. First derivative not continuous.
4e. Function $-\infty$ at 0 .
5. $\cosh x=\sum_{k=0}^{\infty} \frac{x^{2 k}}{(2 k)!} ; \quad \cosh 0.7 \approx 1.25517$

6a. $e^{\cos x}=e\left(1-\frac{x^{2}}{2}+\cdots\right)$
6b. $\sin (\cos x)=(\sin 1)-(\cos 1)\left(\frac{x^{2}}{2}\right)+\cdots$
7. $m=2$
8. At least 18 terms
9. Yes. By using this formula, we avoid the series for e^{-x} and use the one for e^{x}.
11. $\ln (1-x)=-\sum_{k=1}^{\infty} \frac{x^{k}}{k} ; \quad \ln \left(\frac{1+x}{1-x}\right)=2 \sum_{k=1}^{\infty} \frac{x^{2 k-1}}{(2 k-1)}$
12. $x=\frac{1}{3}, \quad \ln 2=0.69313$ (four terms); At least 10 terms.

15a. $\sin x+\cos x=1+x-\frac{x^{2}}{2}-\frac{x^{3}}{6}+\cdots ; \quad \sin (0.001)+\cos (0.001) \approx 1.00099949983$
15b. $(\sin x)(\cos x)=x-\frac{2}{3} x^{3}+\frac{2}{15} x^{5}-\frac{4}{315} x^{7}+\cdots ; \quad \sin (0.0006) \cos (0.0006) \approx 0.000599999857$
16. $\ln (e+x)=1+\sum_{n=1}^{\infty}(-1)^{n-1} \frac{1}{n}\left(\frac{x}{e}\right)^{n}$
17. At least seven terms.
18. At least 100 terms.
20. $-\frac{5}{8} h^{4}$
23. $\frac{1}{8}\left(x-\frac{17}{4}\right)$
24. $s \leftarrow 0$
for $i=2$ to n do
$s \leftarrow s+\log (i)$
output i, s
end for
28. $\left|\cos x-\left(1-\frac{x^{2}}{2}\right)\right|<\frac{1}{16 \times 24}=\frac{1}{384}$
32. Maclaurin series: $f(x)=3+7 x-1.33 x^{2}+19.2 x^{4}$;

$$
f(x)=318.88+(x-2) 616.08+\frac{(x-2)^{2}}{2!} 918.94+\frac{(x-2)^{3}}{3!} 921.6+\frac{(x-2)^{4}}{4!} 460.8
$$

35. 400 terms.
36. $\cos \left(\frac{\pi}{3}+h\right)=\frac{1}{2} \sum_{k=0}^{\infty}(-1)^{k} \frac{h^{2 k}}{(2 k)!}+\frac{\sqrt{3}}{2} \sum_{k=1}^{\infty}(-1)^{k} \frac{h^{2 k-1}}{(2 k-1)!} ; \quad \cos \left(60.001^{\circ}\right) \approx 0.49998488$
37. $\sin \left(45.0005^{\circ}\right) \approx 0.70711295$
38. $f(x-h)=(x-h)^{m}=x^{m}-m h x^{m-1}+m(m-1) \frac{h^{2}}{2!} x^{m-2}+\cdots$
39. $n=16$ or $n=17 \quad$ 50b. $\lim _{x \rightarrow 0} \frac{\arctan x}{x}=1$

50c. $\lim _{x \rightarrow \pi} \frac{\cos x+1}{\sin x}=0$ 51. At least 38 terms.
52. $\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}}\left[x-\frac{x^{3}}{3}+\frac{x^{5}}{5(2!)}-\frac{x^{7}}{7(3!)}+\cdots\right] ; \quad \operatorname{erf}(1) \approx 0.8382$
53. 10^{10}
54. 10^{5}

Computer Problems 1.2

1.

	$c=1$	$c=10^{8}$
x_{1}	0	-1
x_{2}	-10^{8}	-10^{8}

14. g converges faster (in five iterations)
15. $\lambda_{50}=12586269025$
16. $\alpha_{50}=28143753123$

Problems 2.1

1c. $[\text { B5 000000 }]_{16}$
2d. [3FA 0000000000000] ${ }_{16}$; [BFA 0000000000000] ${ }_{16}$
4d. [3E7 00000] $]_{16,}$ [3FCE 0000000000000$]_{16}$
5d. $-\infty$
8a. -3.131968×10^{6}
8d. 9.992892×10^{6}
8g. -3.39×10^{3}
11c. $m=-1,0,1$. Nonnegative machine numbers: $0, \frac{1}{8}, \frac{1}{4}, \frac{3}{8}, \frac{1}{2}, \frac{3}{4}, 1, \frac{3}{2}$
15.
17. 1.00005 ; 1.0
18. $|x|<5 \times 10^{-5}$
19. β^{1-n}
21. $\approx 3 \times 2^{-25}$
25. $\approx 3 \times 2^{-24}$
26. $\approx 2^{-22}$
30. $\approx n \times 2^{-24} ; n=1000, \approx 2^{-14}$
37. $\frac{1}{2} \times 10^{-12}$ rounding; 10^{-12} chopping
38. 9%
39. The relative error cannot exceed 5×2^{-24}.
42. $\left(\left(q-2^{-25}\right) 2^{m},\left(q+2^{-25}\right) 2^{m}\right)$

Problems 2.2

$\begin{array}{ll}\text { 4. } y=\frac{\cos ^{2} x}{1+\sin x} & \text { 6. } f(x)=-\frac{1}{2} x^{3}-\frac{1}{2} x^{4} ; \quad f(0.0125) \approx-9.888 \times 10^{-7}\end{array}$
8. $f(x)=\frac{1}{\sqrt{1+x^{2}}+1}+3-1.7 x^{2} ; \quad f(0)=3.5$
10. $f(x)=\frac{1}{\sqrt{x^{2}+1}+x}$
11. $f(x)=\left\{\begin{array}{cl}\ln \left(x+\sqrt{x^{2}+1}\right) & x>0 \\ 0 & x=0 \\ -\ln \left(-x+\sqrt{x^{2}+1}\right) & x<0\end{array}\right.$
13. $z=\frac{x^{4}}{\sqrt{x^{4}+4}+2}$
16. $f(x) \approx 1-x+\frac{x^{2}}{3}-\frac{x^{3}}{6} ; \quad f(0.008) \approx 0.992020915$
20. $\arctan x-x \approx x^{3}\left(-\frac{1}{3}+x^{2}\left(\frac{1}{5}+x^{2}\left(-\frac{1}{7}\right)\right)\right)$
22. $\left(e^{2 x}-1\right) / 2 x \approx 1+x(1+(x / 3)(2+x)) \quad$ 24a. Near $\pi / 2$, sine curve is relatively flat.

26b. $\ln x-1=\ln (x / e) \quad$ 26d. $x^{-2}\left(\sin x-e^{x}+1\right) \approx-\frac{1}{2}-\frac{x}{3}$ when $x \rightarrow 0$
28. $|x|<\sqrt{6 \varepsilon}$, where ε machine precision
29. $x_{1} \approx 10^{5}, \quad x_{2} \approx 10^{-5}$
30. Not much. Expect to compute $b^{2}-4 a c$ in double precision.

Computer Problems 2.2

1. No solution; $(0,0) ;(0,0) ;$ Any solution; (-1., 0.); (-0.10208 42383, -4.89791 57617); (4.00000 00001, 4.0009 99999); (-0.10208 42383, -4.8979157617); (1.000000000, 1.00000 0000E34); (1.99683 77223, 2.0031622777)
2.

x	Series	n
0	1.0	1
1	2.7182818285	10
-1	0.3678794412	10
0.5	1.6487212707	8
-0.123	0.8842636626	5
-25.5	$8.4234637545 \times 10^{-12}$	25
-1776	0	25
3.14159	23.1406312270	17

14. $|x|<10^{-15}$
15. $\rho_{50}=2.85987$

Problems 3.1

1. $0.61906 ; 1.51213$
2. $\left\{-\frac{\pi}{4}-\delta, 0, \frac{\pi}{4}+\varepsilon, \frac{3 \pi}{4}+\varepsilon, \frac{5 \pi}{4}+\varepsilon, \ldots\right\}$, where $\delta \approx 0.2$ and ε starts at approximately 0.4 and decreases.
3. $\left\{0, \pm \frac{\pi}{2}, \pm \pi, \pm \frac{3 \pi}{2}, \pm 2 \pi, \ldots\right\} \quad$ 10. $x=0$
4. If the original interval is of width h, then after, say, k steps, we have reduced the interval containing the root to width $h 2^{-k}$. From then on, we add one bit at each step. About three steps are needed for each decimal digit.
5. 20 steps $\mathbf{1 8 b}$. This could be false because if r is close to b_{n} then $r-a_{n} \approx b_{n}-a_{n}=2^{-n}\left(b_{0}-a_{0}\right)$.

18d. This is true because $0 \leqq r-a_{n}$ (obvious) and $r-a_{n} \leqq b_{n}-a_{n}=2^{-n}\left(b_{0}-a_{0}\right)$.
19a. False in some cases.
19e. True.
21. $n \geqq 23$.
23. No; No.

Computer Problems 3.1

10. $1,2,3,3-2 i, 3+2 i, 5+5 i, 5-5 i, 16$
11. 2.365

Problems 3.2

3. $x_{n+1}=\frac{1}{2}\left[x_{n}+1 /\left(R x_{n}\right)\right]$
4. 0.79 ; 1.6
5. $y=\frac{\sqrt{2}}{2} x+\frac{\sqrt{2}}{2}\left(1-\frac{\pi}{4}\right)$
6. π
7. $x_{n+1}=2 x_{n} /\left(x_{n}^{2} R+1\right) ;-0.49985$
12a. Yes, $-\sqrt[3]{R} . \quad$ 13a. $x_{n+1}=\frac{1}{3}\left(2 x_{n}+R / x_{n}^{2}\right)$

13c. $x_{n+1}=x_{n}\left(x_{n}^{3}+2 R\right) /\left(2 x_{n}^{3}+R\right)$
13e. $x_{n+1}=\frac{x_{n}}{3 R}\left(4 R-x_{n}^{3}\right) \quad$ 13g. $x_{n+1}=\frac{R}{x_{n}^{2}}\left(2 x_{n}^{6}+1\right) /\left(2 R x_{n}^{3}+1\right)$
15. $x_{1}=\frac{1}{2}$
17. $x_{n+1}=-\frac{1}{2}$
19. $\left|x_{0}\right|<\sqrt{3}$
21. Newton's method cycles if $x_{0} \neq 0$.
22. $x \leftarrow R$
for $n=1$ to $n _$max do

$$
x \leftarrow\left(2 x+R x^{2}\right) / 3
$$

end for
27. $x_{n+1}=\left[(m-1) x_{n}^{m}+R\right] /\left(m x_{n}^{m-1}\right) ; \quad x_{n+1}=x_{n}\left[(m+1) R-x_{n}^{m}\right] /(m R)$
29. Diverges.
31. $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right) f^{\prime}\left(x_{n}\right)}{\left[f^{\prime}\left(x_{n}\right)\right]^{2}-f\left(x_{n}\right) f^{\prime \prime}\left(x_{n}\right)}$
32. $x_{n+1}=x_{n}-\frac{f^{\prime}\left(x_{n}\right)}{f^{\prime \prime}\left(x_{n}\right)}+\frac{\sqrt{\left[f^{\prime}\left(x_{n}\right)\right]^{2}-2 f\left(x_{n}\right) f^{\prime \prime}\left(x_{n}\right)}}{f^{\prime \prime}\left(x_{n}\right)}$
35. $e_{n+1}=e_{n}^{2}\left[\frac{\frac{f^{(m+1)}\left(\eta_{n}\right)}{m!}-\frac{f^{(m+1)}\left(\xi_{n}\right)}{(m+1)(m-1)!}}{\frac{f^{(m)}(r)}{(m-1)!}+\frac{e_{n} f^{(m+1)}\left(\eta_{n}\right)}{m!}}\right]$
36. $e_{n+1}=\frac{1}{2} e_{n}^{2} \frac{f^{\prime \prime}}{g}$
37. $\left|g^{\prime}(r)\right|<1$ if $0<\omega<2$
41. 4th order

Computer Problems 3.2

4. 0.3279677853318183622377546
5. 2.094551481542326591482386540579
6. 1.8392867552
7. 0.47033169
10a. 1.89549 42670340
10b. 1.9926668631307
10c. 0.51097342938857 10d. 2.5828014730552 14. $3.13108 ; 3.15145$ (two nearby roots)

Problems 3.3

1. 2.7385
2. $-\frac{3}{2}$
3. $\ln 2$
4. $x_{n+1}=x_{n}-\frac{x_{n}^{2}-R}{x_{n}+x_{n-1}}$
5. $e_{n+1}=\left[1-\left(\frac{x_{n}-x_{0}}{f\left(x_{n}\right)-f\left(x_{0}\right)}\right) f^{\prime}\left(\xi_{n}\right)\right] e_{n} \quad$ 13a. Linear convergence
13c. Quadratic convergence
6. Show $\left|\xi-x_{n+1}\right| \leqq c\left|\xi-x_{n}\right|$.
7. $\sqrt{2}$
8. $x=4.510187$

Computer Problems 3.3

1. -0.45896 ;
3.73308
6a. 1.53209
6b. 1.23618
2. 1.368808107821373
3. 20.804854

Problems 4.1

1. $p_{3}(x)=7-2 x+x^{3} \quad$ 3. $\ell_{2}(x)=-(x-4)\left(x^{2}-1\right) / 8$

7a. $p_{3}(x)=2+(x+1)(-3+(x-1)(2+(x-3)(-11 / 24)))$
8. $p_{4}(x)=-1+(x-1)\left(\frac{2}{3}+(x-2)\left(\frac{1}{8}+(x-2.5)\left(\frac{3}{4}+(x-3) \frac{11}{6}\right)\right)\right)$

9a.	0	1				
	1	9		3		
	2	23	14		1	
	4	93		12	1	0
	6	259				

9b. $f(4.2)=104.49$
12. $q(x)=x^{4}-x^{3}+x^{2}-x+1-\frac{31}{120}(x+2)(x+1)(x)(x-1)(x-2)$

13a. $x^{3}-3 x^{2}+2 x-1$
14. $p(x)=x-2.5$
16. $\alpha_{0}=\frac{1}{2}$
18. $2+x(-1+(x-1)(1-(x-3) x))$
19. $p_{4}(x)=-1+2(x+2)-(x+2)(x+1)+(x+2)(x+1) x ; \quad p_{2}(x)=1+2(x+1) x$
22. $p(x)=0.76(x-1.73)(x-1.82)(x-5.22)(x-8.26)$
25. 1.5727; No advantage
27. $p(x)=-\frac{3}{5} x^{3}-\frac{2}{5} x^{2}+1$
28. $0.38099 ; 0.077848$
39. $0.85527 ; 0.87006$
40. Divisions: $\frac{1}{2^{n}}(n-1)$; additions/subtractions: $n(n-1)$
42. zero
45. False, only unique for polynomial p of degree $\leqq n-1$.

Computer Problems 4.1

1. $p(x)=2+46(x-1)+89(x-1)(x-2)+6(x-1)(x-2)(x-3)+4(x-1)(x-2)(x-3)(x+4)$

Problems 4.2

1. $f\left[x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right]=0$
2. 1.25×10^{-5}
3. Errors: 8.1×10^{-6},
6.1×10^{-6}
4. 497 table entries
5. $4.105 \times 10^{-14}(\mathrm{Thm} \mathrm{1}), 1.1905 \times 10^{-23}$ (Thm 2)
6. 2.6×10^{-6}
7. $n \geqq 7$
8. $\prod_{i=0}^{n-1}\left|x-x_{i}\right| \leqq \frac{h^{n}(2 n)!}{2^{2 n} n!}$
9. Yes.

Problems 4.3

1. $-h f^{\prime \prime}(\xi)$
2. Error term $=-h f^{\prime \prime}(\xi)$ for $\xi \in(0,2 h)$
3. No such formula exists.
4. The point ξ for the first Taylor series is such that $\xi \in(x, x+h)$, while the second is $\xi \in(x-h, x)$. Clearly, they are not the same.
8a. $-\frac{2}{3} h^{2} f^{\prime \prime \prime}(\xi) \quad$ 9a. $-\frac{h^{2}}{4} f^{(5)}(\xi) \quad$ 9b. $-\frac{h^{2}}{6} f^{(6)}(\xi)$
5. $\alpha=1$, error term $=-\frac{h^{2}}{6} f^{\prime \prime \prime}(\xi) ; \quad \alpha \neq 1$, error term $=-(\alpha-1) \frac{h}{2} f^{\prime \prime}(\xi)$
6. Error term $=-\frac{h^{2}}{6}\left[f^{\prime \prime \prime}\left(\xi_{1}\right)+\frac{1}{2} f^{(4)}\left(\xi_{2}\right)\right]$ for some $\xi_{i} \in(x-h, x+h)$. 13. $p^{\prime}\left(\frac{x_{0}+x_{1}}{2}\right)=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}$
7. $L \approx 2 \varphi\left(\frac{h}{2}\right)-\varphi(h)$
8. $L \approx\left\{\left[\varphi\left(\frac{h}{2}\right)\right]^{2}-\varphi(h) \varphi\left(\frac{h}{3}\right)\right\} /\left\{2 \varphi\left(\frac{h}{2}\right)-\varphi(h)-\varphi\left(\frac{h}{3}\right)\right\}$

Computer Problems 4.3

3. 0.2021158503

Problems 5.1

1. $\frac{7}{18}$
2. 0.00010000250006
3. $n \geqq 56738$
4. $U-L=\frac{1}{n}[f(1)-f(0)]$
5. $L(f ; P) \leqq M(f ; P) \leqq U(f ; P)$

Computer Problems 5.1

2. 0.94598385 ;
0.94723395
3. 4.84422

Problems 5.2

1. ≈ 0.70833
2. $T(f ; P)=0.775 ; \int_{0}^{1} \frac{d x}{x^{2}+1} \approx 0.7854$; Error $=0.0104$
3. $h |$| | 2 | 1 | $1 / 2$ |
| ---: | ---: | ---: | ---: |
| $1 / 4$ | | | |
| L | 0 | 0 | $1 / 2$ |
| $3 / 4$ | | | |
| U | 2 | 2 | $3 / 2$ |
| $5 / 4$ | | | |
| T | 2 | 1 | 1 |
4. $n \geqq 1607439$; too small
5. $T=\frac{1}{n^{3}}\left[\frac{1}{6}(n-1)(2 n-1) n\right]+\frac{1}{2 n}$
$\begin{array}{lll}\text { 12. } 0.000025 & \text { 13. } T(f ; P) \approx 4.37132 & \text { 14. } T(f ; P) \approx 0.43056\end{array}$
6. \mid error term $\mid \leqq 0.3104$
7. $T(f ; P)=7.125$; No, they can not be computed from the given data.
17a. $=-\frac{(b-a) h}{2} f^{\prime}(\xi)$ for some $\xi \in(a, b)$.
17b. $=-\frac{(b-a) h^{2}}{6} f^{\prime \prime}(\xi)$ for some $\xi \in(a, b)$.
18a. $\frac{1}{24} h^{3} f^{\prime \prime}(\xi)$
18b. $\frac{1}{24} \sum_{i=1}^{n} h_{i}^{3} f^{\prime \prime}\left(\xi_{i}\right)$
18c. $\frac{b-a}{24} h^{2} f^{\prime \prime}(\xi)$
8. $f(x)=x^{n}(n>3)$ on $[0,1]$, with partition $\{0,1\}$
9. $L \leqq \int_{a}^{b} f(x) d x \leqq T \leqq U$
10. $n \geqq 1155$
11. $-(b-a) h f^{\prime}(\xi) / 2$
12. $\int_{a}^{b} f(x) d x=h \sum_{i=0}^{2^{n}} f(a+i h)+E$ where $E=\frac{1}{2}(b-a) h f^{\prime}(\xi)$ for $\xi \in(a, b)$

Computer Problems 5.2

2a. 2
2b. 1.71828
2c. 0.43882

Problems 5.3

1. 13
2. $-\frac{136}{15}$
3. 4.267
4. Not well.
5. $R(1,1)=\frac{h}{3}\{f(-h)+4 f(0)+f(h)\} \quad$ Simpson's rule 10. $1+2^{m-1}$
6. $R(2,2)=\frac{2 h}{45}[7 f(a)+32 f(a+h)+12 f(a+2 h)+32 f(a+3 h)+7 f(b)]$
7. $X=(27 v-u) / 26$
8. $Z=\frac{4096}{2835} f\left(\frac{h}{8}\right)-\frac{1344}{2835} f\left(\frac{h}{4}\right)+\frac{84}{2835} f\left(\frac{h}{2}\right)-\frac{1}{2835} f(h)$
9. $x_{n+1}+n^{3}\left(x_{n+1}-x_{n}\right) /\left(3 n^{2}+3 n+1\right)$
10. $|I-R(n, m)|=\mathcal{O}\left(h^{2 m}\right)$ as $h \rightarrow 0$
11. $R(n+1, m+1)=R(n+1, m)+[R(n+1, m)-R(n, m)] /\left(8^{m}-1\right)$
12. Show $\int_{a}^{b} f(x) d x-R(n, 0) \approx c 4^{-(n+1)}$.
13. Let $m=1$ and let $n \rightarrow \infty$ in Formula (2).
14. $E=A_{2 m}(2 \pi)\left(\frac{2 \pi}{4}\right)^{2 m}\left[\pm 4^{2 m} \cos (4 \xi)\right] \pm(2 \pi)^{2 m+1} 4^{2 m+1} A_{2 m} \cos (4 \xi)$

Computer Problems 5.3

1. $R(7,7)=0.499969819$
2. $R(5,0)=1.813799364$
3. $\frac{2}{9}=0.22222 \ldots$
4. 0.62135732
5. $R(7,7)=0.765197687$

Problems 6.1

$\begin{array}{lll}\text { 1. } \frac{\pi}{4} & \text { 2a. } h<0.03 \text { or } n>33.97 & \text { 2b. } h<0.15 \text { or } n>7.5 .\end{array}$
3a. 7.1667
3b. 7.0833
3c. 7.0777
4. $\int_{1}^{2} \frac{d x}{x}=0.6933$; Bound is 5.2×10^{-4}.
7. $\int_{a}^{b} f(x) d x=\frac{16}{15} S_{2(n-1)}-\frac{1}{15} S_{n-1}$
8. $-\frac{3}{80} h^{5} f^{(4)}(\xi)$

Problems 6.2

$\begin{array}{lll}\text { 1. } \approx 0.91949 & \text { 4a. } x= \pm \sqrt{\frac{1}{3}} & \text { 4b. } x= \pm 0.861136, \quad \pm 0.339981\end{array}$
5. $\alpha=\gamma=\frac{4}{3}, \quad \beta=-\frac{2}{3} \quad$ 6. $A=(b-a), \quad B=\frac{1}{2}(b-a)^{2}$
7. $\frac{5 h}{12} f(a)+\frac{2 h}{3} f(a+h)-\frac{h}{12} f(a+2 h) \quad$ 9. $\alpha=\sqrt{\frac{5}{7}}, \quad a=c=\frac{7}{25}, \quad b=\frac{8}{75}$
10. $w_{1}=w_{2}=\frac{h}{2}, \quad w_{3}=w_{4}=-\frac{h^{3}}{24} \quad$ 11. $A=2 h, \quad B=0 ; \quad C=\frac{h^{3}}{3}$
12. $A=\frac{8}{3}, \quad B=-\frac{4}{3}, \quad C=\frac{8}{3} \quad$ Yes. Exact for polynomials of degree $\leqq 3$.
13. $A=\frac{h}{3}, \quad D=0, \quad C=\frac{h}{3}, \quad B=\frac{4}{3} h$
14. True for $n \leqq 3$

Computer Problems 6.2

2a. 1.4183
8a. 2.034805318577
8b. 0.892979511569
8c. 0.43398771

Problems 7.1

1. Homogeneous: $\alpha=0$, zero solution; $\alpha= \pm 1$, infinite number of solutions
2. For $\alpha \approx 1$, erroneous answer is produced.

3a. No solution
3b. Infinite number of solutions
4. $\left\{\begin{array}{l}x_{1}=-697.3 \\ x_{2}=343.9\end{array}\left\{\begin{array}{l}x_{1}=-720.79976 \\ x_{2}=356.28760\end{array}\right.\right.$
5. $r=\left[\begin{array}{l}-0.001343 \\ -0.001572\end{array}\right], \widehat{r}=\left[\begin{array}{r}-0.0000001 \\ 0.0000000\end{array}\right], e=\left[\begin{array}{l}-0.001 \\ -0.001\end{array}\right], \widehat{e}=\left[\begin{array}{r}-0.659 \\ 0.913\end{array}\right]$
6a. $x_{2}=1, x_{1}=0$
6b. $x_{2}=1, x_{1}=1$
6c. Let $b_{1}=b_{2}=1$. Then $x_{2}=1, x_{1}=0$, which is exact.
7a. $x_{1}=2, \quad x_{2}=1, \quad x_{3}=0$
7b. $x_{1}=x_{2}=x_{3}=1$

7c. $x_{1} \approx-7.233, \quad x_{2} \approx 1.133, \quad x_{3} \approx 2.433, \quad x_{4}=4.5$

Computer Problems 7.1

6. $z=[2 i, i, i, i]^{T}, \lambda=1+5 i ; \quad z=[1,2,1,1]^{T}, \lambda=2+6 i ; \quad z=[-i,-i, 0,-i]^{T}, \lambda=-3-7 i$; $z=[1,1,1,0]^{T}, \lambda=-4-8 i$
7a. $\left(3.75,90^{\circ}\right)$
(3.27, -65.7$\left.{ }^{\circ}\right) ; \quad\left(0.775,172.9^{\circ}\right)$
7b. $\left(2.5,-90^{\circ}\right) ; \quad\left(2.08,56.3^{\circ}\right) ; \quad\left(1.55,-60.2^{\circ}\right)$

Problems 7.2

1. $\left[\begin{array}{rrrr}1 / 2 & 5 / 2 & -4 & -1 \\ 1 / 4 & -1 / 2 & -5 / 19 & -62 / 19 \\ 3 / 4 & 9 / 10 & 38 / 5 & 9 / 10 \\ 4 & 1 & 0 & 4\end{array}\right]$ 2. $\boldsymbol{x}=[1 / 3,3,1 / 3]^{T}$
2. $\left[\begin{array}{rrrr}1 & 0 & 3 & 0 \\ 0 & 1 & 3 & -1 \\ 3 & -3 & 0 & 6 \\ 0 & 2 & 4 & -6\end{array}\right] \Rightarrow\left[\begin{array}{rrrr}0 & 1 & 3 & -2 \\ 0 & 1 & 3 & -1 \\ 3 & -3 & 0 & 6 \\ 0 & 2 & 4 & -6\end{array}\right] \Rightarrow\left[\begin{array}{rrrr}0 & 1 & 3 & -2 \\ 0 & 0 & 0 & 1 \\ 3 & -3 & 0 & 6 \\ 0 & 0 & -2 & -2\end{array}\right]$
3. $\left[\begin{array}{rrrr}1 / 4 & 5 / 2 & 7 / 4 & 1 / 2 \\ \underline{4} & 2 & 1 & 2 \\ \underline{1 / 2} & \underline{0} & 5 / 9 & 17 / 9 \\ \underline{1 / 4} & \underline{3 / 5} & \underline{27 / 10} & 1 / 5\end{array}\right]$
4. $\ell=(1,3,2)$, the second pivot row is the third row.
5. $x_{3}=-1, \quad x_{2}=1, \quad x_{1}=0$
6. $x_{4}=-1, \quad x_{3}=0, \quad x_{2}=2, \quad x_{1}=1$

13b. $x_{3}=1, \quad x_{2}=1, \quad x_{1}=1$
13d. $x_{1} \approx 4.267, \quad x_{2} \approx-4.133, \quad x_{3} \approx-2.467$
17. $n(n+1)$
18. $\left[\frac{29}{10}\left(n^{2}-1\right)+\frac{7}{30} n(n-1)(2 n-1)\right] 10^{-6}$ seconds
19.

n	10	10^{2}	10^{3}	10^{4}
Time	$\frac{1}{3} \times 10^{-3} \mathrm{sec}$	$\frac{1}{3} \mathrm{sec}$	5.56 min	3.86 days
Cost	0.005ϕ	5ϕ	$\$ 46.30$	$\$ 46,296.30$

21. Solve these: $U^{T} y=b, L^{T} x=y \quad$ 23a. $x_{1}=\frac{5}{9}, \quad x_{2}=\frac{2}{9}, \quad x_{3}=\frac{1}{9} \times 10^{-9}$

Computer Problems 7.2

2. $[3.4606,1.5610,-2.9342,-0.4301]^{T} \quad$ 3. $[6.7831,3.5914,-6.4451,-1.5179]^{T}$
3. $2 \leqq n \leqq 10, x_{i} \approx 1$ for all i; for large n, many $x_{i} \neq 1$
4. $b_{i}=n^{2}+2(i-1)$
5. $x_{2}=1, \quad x_{i}=0, \quad$ for $i \neq 2$

Problems 7.3

2a. $5 n-4$
3. $n+2 n k-k(k+1)$
6. Yes, it does.
7. $\boldsymbol{D}^{-1} \boldsymbol{A} \boldsymbol{D}=$ tridiagonal $\left[\pm \sqrt{a_{i-1} c_{i-1}}, \quad d_{i}, \quad \pm \sqrt{a_{i} c_{i}}\right]$

Computer Problems 7.3

3. $\left\{\begin{array}{l}d_{i} \leftarrow d_{i}-1 / d_{i-1} \\ b_{i} \leftarrow b_{i}-b_{i-1} / d_{i-1}\end{array} \quad(2 \leqq i \leqq n) \quad\left\{\begin{array}{l}x_{n} \leftarrow b_{n} \\ x_{i} \leftarrow\left(b_{i}-x_{i+1}\right) / x_{i} \quad(n-1 \geqq j \geqq 1)\end{array}\right.\right.$
4. $\left\{\begin{array}{l}x_{1}=1 \\ x_{i}=1-\left(4 x_{i-1}\right)^{-1} \quad(2 \leqq i \leqq 100)\end{array}\right.$

11a. $\left\{\begin{array}{l}x_{1} \leftarrow b_{1} / a_{11} \\ x_{i} \leftarrow\left(b_{i}-\sum_{j=1}^{n-1} a_{i j} x_{j}\right) / a_{i i} \quad(2 \leqq i \leqq n)\end{array}\right.$
12. $\left\{\begin{aligned} c_{i} & \leftarrow c_{i} / d_{i} \\ b_{i} & \leftarrow b_{i} / d_{i} \\ d_{i+1} & \leftarrow d_{i+1}-a_{i+1} c_{i} \\ b_{i+1} & \leftarrow b_{i+1}-a_{i+1} b_{i} \quad(1 \leqq i \leqq n-1)\end{aligned}\right.$
$\left\{\begin{array}{l}b_{n} \leftarrow b_{n} / d_{n} \\ b_{i} \leftarrow b_{i}-c_{i} b_{i+1} \quad(1=n-1, \ldots, 1)\end{array}\right.$

Problems 8.1

1a. $L=\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 / 3 & -3 & 1\end{array}\right], \quad U=\left[\begin{array}{rrr}3 & 0 & 3 \\ 0 & -1 & 3 \\ 0 & 0 & 8\end{array}\right] \quad$ 2a. $M=\left[\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -3 & 1 & 0 \\ -5 & 0 & -2 & 1\end{array}\right] \quad U=\left[\begin{array}{llll}1 & 0 & 0 & 2 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
3a. $\boldsymbol{M}=\left[\begin{array}{rrrrr}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & -2 & 1 & 0 & 0 \\ 0 & 0 & -2 & 1 & 0 \\ -4 & 0 & 0 & 0 & 1\end{array}\right] \quad \boldsymbol{U}=\left[\begin{array}{rrrrr}25 & 0 & 0 & 0 & 1 \\ 0 & 27 & 4 & 3 & 2 \\ 0 & 0 & 50 & -6 & -4 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 20\end{array}\right]$
4b. $\boldsymbol{A}=\left[\begin{array}{lll}3 & 2 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 1\end{array}\right]$
5a. $\boldsymbol{M}=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -x / b & 1 & 0 \\ -w / a & (x y) /(b c) & -y / c & 1\end{array}\right] \quad \boldsymbol{U}=\left[\begin{array}{llll}a & 0 & 0 & z \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & d-(w z) / a\end{array}\right]$
5b. $\boldsymbol{L}^{\prime}=\left[\begin{array}{cccc}a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & x & c & 0 \\ 0 & 0 & y & d-(w z) / a\end{array}\right] \quad \boldsymbol{U}^{\prime}=\left[\begin{array}{cccc}1 & 0 & 0 & z / a \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
6a. $\boldsymbol{L}=\left[\begin{array}{rrrr}1 & 0 & 0 & 0 \\ -1 / 4 & 1 & 0 & 0 \\ -1 / 4 & -1 / 15 & 1 & 0 \\ 0 & -4 / 15 & -2 / 7 & 1\end{array}\right] \quad \boldsymbol{U}=\left[\begin{array}{rrrr}4 & -1 & -1 & 0 \\ 0 & 15 / 4 & -1 / 4 & -1 \\ 0 & 0 & 56 / 15 & -16 / 15 \\ 0 & 0 & 0 & 24 / 7\end{array}\right]$
6b. $D=\left[\begin{array}{rrrr}4 & 0 & 0 & 0 \\ 0 & 15 / 4 & 0 & 0 \\ 0 & 0 & 56 / 15 & 0 \\ 0 & 0 & 0 & 24 / 7\end{array}\right] \quad U^{\prime}=\left[\begin{array}{rrrr}1 & -1 / 4 & -1 / 4 & 0 \\ 0 & 1 & -1 / 15 & -4 / 15 \\ 0 & 0 & 1 & -2 / 7 \\ 0 & 0 & 0 & 1\end{array}\right]$
6c. $L^{\prime}=\left[\begin{array}{rrrr}4 & 0 & 0 & 0 \\ -1 & 15 / 4 & 0 & 0 \\ -1 & -1 / 4 & 56 / 15 & 0 \\ 0 & -1 & -16 / 15 & 24 / 7\end{array}\right]$
6d. $L^{\prime \prime}=\left[\begin{array}{rrrr}2 & 0 & 0 & 0 \\ -1 / 2 & (1 / 2) \sqrt{15} & 0 & 0 \\ -1 / 2 & -1 /(2 \sqrt{15}) & 2 \sqrt{14 / 15} & 0 \\ 0 & -2 /(\sqrt{15}) & -(4 / 7) \sqrt{14 / 15} & 2 \sqrt{6 / 7}\end{array}\right]$
6e. 192
8. $\boldsymbol{U}=\left[\begin{array}{rrrr}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & -8\end{array}\right] \quad \boldsymbol{L}=\left[\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ -1 & 1 & 1 & 0 \\ 1 & -1 & 1 & 1\end{array}\right]$

9a. $\boldsymbol{L}=\left[\begin{array}{rrr}1 & 0 & 0 \\ 1 & 1 & 0 \\ 3 & -1 & 1\end{array}\right] \quad \boldsymbol{D}=\left[\begin{array}{rrr}2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 3\end{array}\right] \quad \boldsymbol{U}^{\prime}=\left[\begin{array}{rrr}1 & -1 / 2 & 1 \\ 0 & 1 & -1 / 2 \\ 0 & 0 & 1\end{array}\right]$
9b. $\boldsymbol{x}=[-1,2,1]^{T}$

10a. $\boldsymbol{L}=\left[\begin{array}{rrr}1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 3 & 1\end{array}\right], \quad \boldsymbol{D}=\left[\begin{array}{rrr}-2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right], \quad \boldsymbol{U}^{\prime}=\left[\begin{array}{rrr}1 & -1 / 2 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$
10b. $\boldsymbol{x}=[-1,1,1]^{T}$
12. $\boldsymbol{A}^{-1}=\frac{1}{15}\left[\begin{array}{rrr}11 & -5 & -7 \\ -13 & 10 & 11 \\ -8 & 5 & 1\end{array}\right]$

14a. $\left[\begin{array}{llll}\ell_{11} & \ell_{11} u_{12} & 0 & 0 \\ \ell_{21} & \ell_{21} u_{12}+\ell_{22} & \ell_{22} u_{23} & 0 \\ 0 & \ell_{32} & \ell_{32} u_{23}+\ell_{33} & \ell_{33} u_{34} \\ 0 & 0 & \ell_{43} & \ell_{43} u_{34}+\ell_{44}\end{array}\right]$
16a. $\mathcal{X}^{-1}=\left[\begin{array}{rrrr}1 & 0 & 0 & -1 \\ 1 & 1 & -1 & 1 \\ -1 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1\end{array}\right]$
16b. $\mathcal{X}^{-1}=\left[\begin{array}{rrrr}0 & -1 & -1 & 1 \\ -1 & 0 & -1 & 1 \\ -1 & -1 & 0 & 1 \\ 1 & 1 & 1 & -1\end{array}\right]$

Computer Problems 8.1

3. Case 4: $\quad p_{5}(\boldsymbol{A})=\left[\begin{array}{rrrr}536 & -668 & 458 & -186 \\ -668 & 994 & -854 & 458 \\ 458 & -854 & 994 & -668 \\ -186 & 458 & -668 & 536\end{array}\right]$

Problems 8.2

3. d.
4. e.
5. b.

Problems 8.3

9. c.
10. d.

Computer Problems 8.3

11. Eigenvalues/eigenvectors: $1,(-1,1,0,0) ; 2,(0,0,-1,1) ; 5,(-1,1,2,2)$

Problems 8.4

1. a.

Problems 9.1

1. Yes
2. In Problem 9.1.5, the bracketed expression is $f^{\prime}\left(\xi_{1}\right)-f^{\prime}\left(\xi_{2}\right)$ and in magnitude does not exceed $2 C$.
3. Knots $\geqq 50 \pi 10^{8} \approx 1.57 \times 10^{10}$.
4. $\sum_{i=1}^{n} f\left(t_{i}\right) S_{i}$ is a linear combination of 1st-degree spline functions having knots t_{0}, \ldots, t_{n}. Hence, it is also such a function. Its value at t_{j} is $\sum_{i=1}^{n} f\left(t_{i}\right) S_{i}\left(t_{j}\right)=f\left(t_{j}\right) . S_{i}(x)=0$ if $x<t_{i-1}$ or $x>t_{i+1}$. On $\left(t_{i-1}, t_{i}\right), S_{i}(x)$ is given by $\left(x-t_{i-1}\right) /\left(t_{i}-t_{i-1}\right)$. On $\left(t_{i}, t_{i+1}\right), S_{i}(x)$ is given by $\left(x-t_{i+1}\right) /\left(t_{i}-t_{i+1}\right)$. S_{0} and S_{n} are slightly different.
5. If S is piecewise quadratic, then clearly S^{\prime} is piecewise linear. If S is a quadratic spline then $S \in C^{1}$. Hence, $S^{\prime} \in C$. Hence, S^{\prime} is piecewise linear and continuous.
6. $\left\{\begin{array}{l}Q_{0}(x)=-(x+1)^{2}+2, \quad Q_{1}(x)=-2 x+1, \quad Q_{2}(x)=8\left(x-\frac{1}{2}\right)^{2}-2\left(x-\frac{1}{2}\right) \\ Q_{3}(x)=-5(x-1)^{2}+6(x-1)+1, \quad Q_{4}(x)=12(x-2)^{2}-4(x-2)+2\end{array}\right.$
7. The answer is given by Equation (8).

20a. Yes
20b. No
20c. No
21. Yes

Problems 9.2

1. No
2. No
3. $a=-4, \quad b=-6, \quad c=-3, \quad d=-1, \quad e=-3$
4. $a=-5, \quad b=-26, \quad c=-27, \quad d=\frac{27}{2}$
5. No

7a. $S(x)$ is not continuous at $x=-1 . S^{\prime \prime}(x)$ is not continuous at $x=-1,1$.
8a. $(m+1) n$
8b. $2 n$
8c. $(m-1)(n-1)$
8d. $m-1$
10. $S=\left\{\begin{array}{l}x^{2} \\ 1+2(x-1)+(x-1)^{2}+(x-1)^{3} \\ 5+7(x-2)+4(x-2)^{2}\end{array}\right.$
12. $a=3, \quad b=3, \quad c=1$
13. No
15. $a=$
19. f is not a cubic spline
22. $p_{3}(x)=x-0.0175 x^{2}+0.1927 x^{3} ; \quad$ No
26. S is linear.
32. $S_{0}(x)=\left(-\frac{5}{7}\right)(x-1)^{3}+\left(\frac{12}{7}\right)(x-1)$
$S_{1}(x)=\left(\frac{6}{7}\right)(x-2)^{3}-\left(\frac{5}{7}\right)(3-x)^{3}-\left(\frac{6}{7}\right)(x-2)+\left(\frac{12}{7}\right)(3-x)$
$S_{2}(x)=\left(-\frac{5}{7}\right)(x-3)^{3}+\left(\frac{6}{7}\right)(4-x)^{3}+\left(\frac{12}{7}\right)(x-3)-\left(\frac{6}{7}\right)(4-x)$
$S_{3}(x)=\left(-\frac{5}{7}\right)(5-x)^{3}+\left(\frac{12}{7}\right)(5-x)$
33. The conditions on S make it an even function. If $S(x)=S_{0}(x)$ in $[-1,0]$ and $S(x)=S_{1}(x)$ in $[0,1]$, then $S_{1}(0)=1$, $S_{1}^{\prime}(0)=0, S_{1}^{\prime \prime}(1)=0$, and $S_{1}(1)=0$. An easy calculation yields $S_{1}(x)=1-\frac{3}{2} x^{2}+\frac{1}{2} x^{3}$.
38. $5 n, n+4$ 39. Yes

Problems 9.3

2. Chebyshev polynomials recurrence relation. See Section 12.2.
3. $B_{i}^{2}(x)= \begin{cases}\frac{\left(x-t_{i}\right)^{2}}{\left(t_{i+2}-t_{i}\right)\left(t_{i+1}-t_{i}\right)}, & \text { on }\left[t_{i}, t_{i+1}\right] \\ \frac{\left(x-t_{i}\right)\left(t_{i+2}-x\right)}{\left(t_{i+2}-t_{i}\right)\left(t_{i+2}-t_{i+1}\right)}+\frac{\left(t_{i+3}-x\right)\left(x-t_{i+1}\right)}{\left(t_{i+3}-t_{i+1}\right)\left(t_{i+2}-t_{i+1}\right)}, & \text { on }\left[t_{i+1}, t_{i+2}\right] \\ \frac{\left(t_{i+3}-x\right)^{2}}{\left(t_{i+3}-t_{i+1}\right)\left(t_{i+3}-t_{i+2}\right)}, & \text { on }\left[t_{i+2}, t_{i+3}\right] \\ 0, \quad \text { elsewhere }\end{cases}$
4. $\sum_{i=-\infty}^{\infty} f\left(t_{i}\right) B_{i}^{0}(x) \quad$ 14. $n-k \leqq i \leqq m-1$
5. Use induction on k and $B_{i+i}^{k+i}(x)=0$ on $\left[t_{i}, t_{i+1}\right]$.
6. No
7. No
8. $\sum_{i=-\infty}^{\infty} t_{i+1} B_{i}^{1}(x)$
9. In Equation (9), take all $c_{i}=1$. Then $d_{i}=0$. Hence, $\frac{d}{d x} \sum_{i=1}^{n} B_{i}^{k}(x)=0$ and $\sum_{i=1}^{n} B_{i}^{k}(x)$ is constant.
10. Use Equation (14) with all A 's zero except $A_{j}=1$. Next, take all A 's zero except $A_{j+1}=1$.
11. No
12. Let $C_{i}^{2}=t_{i+1} t_{i+2}$, then $C_{i}^{1}=x t_{i+1}$, and $C_{i}^{0}=x^{2}$.
13. $B_{i}^{k}\left(t_{j}\right)=0$ iff $t_{j} \geqq t_{i+k+1}$ or $t_{j} \leqq t_{i}$
14. $x=\left(t_{i+3} t_{i+2}-t_{i} t_{i+1}\right) /\left(t_{i+3}+t_{i+2}-t_{i+1}-t_{i}\right)$

Computer Problems 9.3

7. 47040

Problems 10.1

$\begin{array}{ll}\text { 1a. } x=\frac{1}{4} t^{4}+\frac{7}{3} t^{3}-\frac{2}{3} t^{3 / 2}+c & \text { 1b. } x=c e^{t}\end{array}$
1e. $x=c_{1} e^{t}+c_{2} e^{-t} \quad$ or $\quad x=c_{1} \cosh t+c_{2} \sinh t$
2a. $x=\frac{1}{3} t^{3}+\frac{3}{4} t^{4 / 3}+7$
3c. $x=\sum_{n=0}^{\infty}(-1)^{n} \frac{t^{2 n+1}}{(2 n+1)(2 n+1)!}+c$
3d. $x=e^{-t^{2} / 2}\left[\int t^{2} e^{t^{2} / 2} d t+c\right]$
4. $x=a_{0}+a_{0} \sum_{n=1}^{\infty}(-1)^{n}\left(\frac{(2 n-1)!}{2^{n-1}(2 n)!}\right) t^{2 n}+\sum_{n=1}^{\infty}(-1)^{n-1}\left(\frac{n!2^{n}}{(2 n+1)!}\right) t^{2 n+1}$
6. Let $p(t)=a_{0}+a_{1} t+a_{2} t^{2}+\cdots$ and determine a_{i}.
9. $t=10$, Error $=2.2 \times 10^{4} \varepsilon ; \quad t=20$, Error $=4.8 \times 10^{8} \varepsilon$
10. $x^{(4)}=18 x x^{\prime} x^{\prime \prime}+6\left(x^{\prime}\right)^{3}+3 x^{2} x^{\prime \prime \prime}$

11a. $x^{\prime}=x+e^{x} ; x^{\prime \prime}=\left(1+e^{x}\right) x^{\prime} ; x^{\prime \prime \prime}=\left(1+e^{x}\right) x^{\prime \prime}+e^{x}\left(x^{\prime}\right)^{2} ; x^{(4)}=\left(1+e^{x}\right) x^{\prime \prime \prime}+3 e^{x} x^{\prime} x^{\prime \prime}+e^{x}\left(x^{\prime}\right)^{3}$.
12. $x(0.1)=1.21633$
14. $n \leftarrow 20$
$s \leftarrow x^{(n)}$
for $i=1$ to $n-1$ do

$$
s \leftarrow x^{(n-i)}+[h / \operatorname{real}(n+1-i)] s
$$

end for
$s \leftarrow x+h[s]$

Computer Problems 10.1

1. $x(2.77)=385.79118$
2b. $x(1.75)=0.632999983$
2c. $x(5)=-0.2087351554$
2. $x(10)=22026.47$
4a. Error at $t=1$ is 1.8×10^{-10}.
3. $x(0)=0.0324534427$
4. $x(1)=1.6487212691$
5. $x(0)=1.6798409205 \times 10^{-3}$
6. $x(0)=-3.7594073450$

Problems 10.2

2c. $f(t, x)=+\sqrt{x /\left(1-t^{2}\right)} \quad$ 3. $x(-0.2)=1.92$
5a. real function $f(t, x)$
real t, x

$$
f \leftarrow t^{2} /(1-t+2 x)
$$

end function f
8. Solve $\frac{d f}{d x}=e^{-x^{2}}, \quad f(0)=0$.
10. $h^{3}\left(\frac{1}{6}-\frac{\alpha}{4}\right) D^{2} f+\frac{h^{3}}{6} f_{x} D f \quad$ where $\quad D=\frac{\partial}{\partial t}+f \frac{\partial}{\partial x} \quad$ and $\quad D^{2}=\frac{\partial^{2}}{\partial t^{2}}+2 f \frac{\partial^{2}}{\partial x \partial t}+f^{2} \frac{\partial^{2}}{\partial x^{2}}$
11. $h=\frac{1}{1024}$
12. Let's make local truncation error $\leqq 10^{-13}$. Thus, $100 h^{5} \leqq 10^{-13}$ or $h \leqq 10^{-3}$. So take $h=10^{-3}$ and hope that the three extra digits will be enough to preserve 10 -digit precision.

14b. $x^{(4)}=D^{3} f+f_{x} D^{2} f+3 D f_{x} D f+f_{x}^{2} D f \quad$ where $\quad D^{3}=\frac{\partial^{3}}{\partial t^{3}}+3 f \frac{\partial^{3}}{\partial x \partial t^{2}}+3 f^{2} \frac{\partial^{3}}{\partial t \partial x^{2}}+f^{3} \frac{\partial^{3}}{\partial x^{2}}$
15. $f(x+t h, y+t k)=f(x, y)+t\left[f_{1}(x, y) h+f_{2}(x, y) k\right]+(1 / 2) t^{2}\left[f_{11}(x, y) h^{2}+2 f_{12}(x, y) h k+f_{22}(x, y) k^{2}\right]+\cdots$. Now let $t=1$ to get the usual form of Taylor's series in two variables.
17. Taylor series of $f(x, y)=g(x)+h(y)$ about (a, b) is equal to the Taylor series of $g(x)$ about a plus that of $h(y)$ about b.
18. $f(1+h, k) \approx-3 h+\frac{3}{2} h^{2}+k^{2}$
19. $e^{1-x y} \approx 3-x-y$
20. $A=1+k+\frac{1}{2} k^{2}, B=h(1+k)$
21. $A=1, \quad B=h-k, \quad C=(h-k)^{2}$
22. $f(x+h, y+k) \approx\left(1+2 x h+k+\left(1+2 x^{2}\right) h^{2}+2 h k x+\frac{1}{2} k^{2}\right) f ; \quad f(0.001,0.998) \approx 2.7128534$

Computer Problems 10.2

2. $x(1)=1.5708 \quad$ 3b. $n=7 ; \quad x(2)=0.8235678972$ (RK), 0.8235678970 (TS)

3c. $n=7 ; \quad x(2)=-0.4999999998$ (RK), $\quad-0.5000000012$ (TS)
4. $x(1)=0.60653=x(3)$
5. $x(3)=1.5$
6. $x(0)=1.0=x(1.6)$
8. $x(1)=3.95249$
9. $x(10)=1.344 \times 10^{43}$

Problems 10.3

1. Let $h=1 / n$. Then $x(1)=e^{-1}$ (true solution) and $x_{n}=\{[1-1 /(2 n)] /[1+1 /(2 n)]\}^{n}$ approximate solution.
2. $x(t+h)=x(t-h)+\frac{h}{3}[f(t-h, x(t-h))+4 f(t, x(t))+f(t+h, x(t+h))]$
3. $a=\frac{24}{13}, \quad b=-\frac{11}{13}, \quad c=\frac{2}{13}, \quad d=\frac{10}{13}, \quad e=-\frac{2}{39} h^{2} \quad$ 5. $a=1, b=c=\frac{h}{2} ; \quad$ Error term is $\mathcal{O}\left(h^{3}\right)$.
$\begin{array}{llll}\text { 8. } \frac{\partial}{\partial s} x(9, s)=e^{252} \approx 10^{109} & \text { 9a. All } t . & \text { 9c. Positive } t . & \text { 9e. No } t .\end{array} \quad$ 11. Divergent for all t.

Computer Problems 10.3

5. $x\left(\frac{1}{2}\right)=2.25$
6. $x\left(-\frac{1}{2}\right)=-4.5$
7. $y(e)=-6.3890560989$ where $y(x)=[1-\ln v(x)] v(x)$
8. 0.2193839244
9. 0.9953087432
10. $\mathrm{Si}(1)=0.9460830703$

Problems 11.1

1. $x(t+h)=x\left(1+\frac{1}{2} h^{2}+\frac{1}{24} h^{4}\right)+y\left(h+\frac{1}{6} h^{3}+\frac{1}{120} h^{5}\right), y(t+h)=y\left(1+\frac{1}{2} h^{2}+\frac{1}{24} h^{4}\right)+x\left(h+\frac{1}{6} h^{3}+\frac{1}{120} h^{5}\right)$
2. Since system is not coupled, solve two separate problems.
3. System is not coupled so each differential equation can be solved individually by the program.
4. $\boldsymbol{X}^{\prime}=\left[\begin{array}{l}1 \\ x_{1}^{2}+\log x_{2}+x_{0}^{2} \\ e^{x_{2}}-\cos x_{1}+\sin \left(x_{0} x_{1}\right)-\left(x_{1} x_{2}\right)^{7}\end{array}\right], \quad \boldsymbol{X}(0)=[0,1,3]^{T}$

Computer Problems 11.1

$\begin{array}{lll}\text { 1. } x(1)=2.4686939399, & y(1)=1.2873552872 & \text { 2. } x(0.38)=1.90723 \times 10^{12}, \quad y(0.38)=-8.28807 \times 10^{4}\end{array}$
4. $x(-1)=3.36788, \quad y(-1)=2.36788$
5. $x_{1}\left(\frac{\pi}{2}\right)=x_{4}\left(\frac{\pi}{2}\right)=0, \quad x_{2}\left(\frac{\pi}{2}\right)=1, \quad x_{3}\left(\frac{\pi}{2}\right)=-1$
7. $x(6)=4.39411, \quad y(6)=3.10378$

Problems 11.2

1. $\boldsymbol{X}^{\prime}=\left[\begin{array}{l}x_{2} \\ x_{3} \\ 2 x_{2}+\log x_{3}+\cos x_{1}\end{array}\right] \quad \boldsymbol{X}(0)=[1,-3,5]^{T}$
2. Solve each equation separately since they are not coupled.
3. $X^{\prime}=\left[\begin{array}{l}x_{2} \\ -x_{1}\left(x_{1}^{2}+x_{3}^{2}\right)^{-3 / 2} \\ x_{4} \\ -x_{3}\left(x_{1}^{2}+x_{3}^{2}\right)^{-3 / 2}\end{array}\right] \quad X(0)=\left[\begin{array}{l}0.5 \\ 0.75 \\ 0.25 \\ 1.0\end{array}\right]$
4. $\boldsymbol{X}^{\prime}=\left[\begin{array}{l}1 \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{4}^{2}+\cos \left(x_{2} x_{3}\right)-\sin \left(x_{0} x_{1}\right)+\log \left(x_{1} / x_{0}\right)\end{array}\right] \quad \boldsymbol{X}(0)=[0,1,3,4,5]^{T}$
5. $X^{\prime}=\left[\begin{array}{l}x_{4} \\ x_{5} \\ x_{6} \\ 2 x_{1} x_{3} x_{4}+3 x_{1}^{2} x_{2} t^{2} \\ e^{x_{2}} x_{5}+4 x_{1} t^{2} x_{3} \\ 2 t x_{6}+2 t e^{x_{1} x_{3}}\end{array}\right] \quad X(1)=\left[\begin{array}{l}3 \\ 3 \\ 2 \\ -79 / 12 \\ 2 \\ 3\end{array}\right]$

7a. Let $x_{1}=x, x_{2}=x^{\prime}, x_{3}=x^{\prime \prime}$. Then $X^{\prime}=\left[\begin{array}{l}x_{2} \\ x_{3} \\ -x_{3} \sin x_{1}-t x_{2}-x_{3}\end{array}\right]$
8. $\boldsymbol{X}^{\prime}=\left[\begin{array}{l}x_{2} \\ x_{2}-x_{1}\end{array}\right] \quad \boldsymbol{X}(0)=[0,1]^{T}$
9. Let $x_{0}=t, x_{1}=x, x_{2}=y, x_{3}=x^{\prime}, x_{4}=y^{\prime}$. Then $X^{\prime}=\left[\begin{array}{l}1 \\ x_{3} \\ x_{4} \\ x_{1}+x_{2}-2 x_{3}+3 x_{4}+\log x_{0} \\ 2 x_{1}-3 x_{2}+5 x_{3}+x_{0} x_{2}-\sin x_{0}\end{array}\right]$

$$
X(0)=[0,1,3,2,4]^{T}
$$

Problems 11.3

1. $x_{j}(t)=e^{\lambda_{j} t} x_{j}(0)$

Problems 12.1

1. $y(x)=1$
2. $f(x)=\frac{1}{m+1} \sum_{k=0}^{m} y_{k}=\left(y_{0}+\cdots+y_{m}\right) /(m+1)$, the average of the y values which does not involve any x_{i}.
3. $a=(1+2 e) /\left(1+2 e^{2}\right), \quad b=1$
4. $a=2.1, \quad b=0.9$
5. $c=\left[\sum_{k=0}^{m} y_{k} \log x_{k}\right] /\left[\sum_{k=0}^{m}\left(\log x_{k}\right)^{2}\right]$
6. φ involves the sum of $m+1$ polynomials of degree two in c which is either concave upward or a constant. Thus, no maxima exists-only a minima.
7. $c=10^{* *}\left[(m+1)^{-1} \sum_{k=0}^{m}\left(y_{k}-\log x_{k}\right)\right]$. 13. $y=(6 x-5) / 10$
8. $a \approx 2.5929, \quad b \approx-0.32583, \quad c \approx 0.022738$
9. $a=1, \quad b=\frac{1}{3}$
10. $y(x)=\frac{2}{7} x^{2}+\frac{29}{35}$
11. $y=x+1$
12. $c=\left[\sum_{k=0}^{m} e^{x_{k}} f\left(x_{k}\right)\right] /\left[\sum_{k=0}^{m} e^{2 x_{k}}\right]$

Problems 12.2

2. $\left\{\begin{array}{l}w_{n+2}=w_{n+1}=0 \\ w_{k}=c_{k}+3 x w_{k+1}+2 w_{k+2} \\ f(x)=w_{0}-(1+2 x) w_{1}\end{array} \quad(k=n, n-1, \ldots, 0)\right.$
3. Since $\cos (n-2) \theta=\cos [(n-1) \theta-\theta]=\cos (n-1) \theta \cos \theta+\sin (n-1) \theta \sin \theta$, we have $2 \cos \theta \cos (n-1) \theta-$ $\cos (n-2) \theta=\cos (n-1) \theta \cos \theta-\sin (n-1) \theta \sin \theta=\cos (n \theta)$. Note if $g_{n}(\theta)=\cos n \theta$, then $g_{n}(\theta)=2 \cos \theta g_{n-1}(\theta)-$ $g_{n-2}(\theta)$.
4. By the previous problem, the recursive relation is the same as (2) so that $T_{n}(x)=f_{n}(x)=\cos (n \arccos x)$.
5. $T_{n}\left(T_{m}(x)\right)=\cos (n \arccos (\cos (m \arccos x)))=\cos (n m \arccos x)=T_{n m}(x)$.
6. $\left|T_{n}(x)\right|=|\cos (n \arccos x)| \leqq 1$ for all $x \in[-1,1]$ since $|\cos y| \leqq 1$ and for $\arccos x$ to exist x must be $|x| \leqq 1$.
7. $\left\{\begin{array}{l}g_{0}(x)=1 \\ g_{1}(x)=(x+1) / 2 \\ g_{j}(x)=(x+1) g_{j-1}(x)-g_{j-2}(x) \quad(j \geqq 2)\end{array}\right.$
8. $n+2$ multiplications, $2 n+1$ additions/subtractions if $2 x$ is computed as $x+x$
9. n multiplications, $2 n$ additions/subtractions
10. $T_{6}(x)=32 x^{6}-48 x^{4}+18 x^{2}-1$
11. $\alpha=\frac{y_{1} x_{2}^{13}-y_{2} x_{1}^{13}}{x_{1}^{12} x_{2}^{12}\left(x_{2}-x_{1}\right)} \cdot \alpha$ is very sensitive to perturbations in y_{1}.

Computer Problems 12.2

7. $a_{i j}= \begin{cases}0 & (i \neq j) \\ (m+1) & (i=j=1) \\ (m+1) / 2 & (i=j>1)\end{cases}$

Problems 12.3

2. Coefficient matrix for the normal equations has elements $a_{i j}=\frac{1}{i+j-1}$ by (5).
3. $c=0$
4. $y=b^{x}$
5. $c=\ln 2$
6. $x=-1, \quad y=\frac{20}{13}$
9a. $c=\frac{24}{\pi^{3}}$
9b. $c=3$
7. No.
8. $y \approx \frac{1}{a+b x}$. Change to $\frac{1}{y} \approx a+b x$.
9. $\left[\begin{array}{ccc}\pi & 0 & 2 \\ 0 & \pi / 2 & 0 \\ 2 & 0 & \pi / 2\end{array}\right]\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=\left[\begin{array}{r}(1 / 2)\left(e^{2 \pi}-1\right) \\ -(2 / 5)\left(e^{2 \pi}+1\right) \\ (1 / 5)\left(e^{2 \pi}+1\right)\end{array}\right]$
10. $c=3 \quad$ 20. $c=\left[\sum_{i=1}^{n} y_{i} \sin x_{i}\right] /\left[\sum_{i=1}^{n}\left(\sin x_{i}\right)^{2}\right]$

Computer Problems 12.3

1. $a=2, \quad b=3$

Problems 13.1

1. $\ell_{0}=123456 ; x_{1}=.966212243 ; x_{2}=.129173003 ; x_{3}=.010656910$

Computer Problems 13.1

8. 32.5%
9. Sequence not periodic.
10. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 97 | 93 | 97 | 107 | 90 | 115 | 88 | 101 | 113 | 99 |
11. 5.6% 16. 200

Problems 13.2

1. $m>4$ million

Computer Problems 13.2

2. 1.71828
3. 8
4. 49.9
5. 0.518
6. 1.11
7. 2.000346869
8. 0.635
17b. 8.3

Computer Problems 13.3

1. $\frac{2}{3}$
2. 0.898
3. $\frac{7}{16}$
4. 1.05
5. 5.24
6. 0.996
7. 0.6394
8. 11.6 kilometers
9. 0.14758
10. 0.009
11. 24.2 revolutions
12. 0.6617

Problems 14.1

2. $c_{1}=(1-2 e) /\left(1-e^{2}\right), \quad c_{2}=\left(2 e-e^{2}\right) /\left(1-e^{2}\right) \quad$ 3a. $x(t)=\left(e^{\pi+t}-e^{\pi-t}\right) /\left(e^{2 \pi}-1\right)$

3b. $x(t)=\left(t^{4}-25 t+12\right) / 12 \quad$ 4a. $x(t)=\beta \sin t+\alpha \cos t$ for all (α, β)
4b. $x(t)=c_{1} \sin t+\alpha \cos t$ for all $\alpha+\beta=0$ with c_{1} arbitrary
6. $\varphi(t)=z$
7. $\varphi(z)=z$
8. $\varphi(z)=\sqrt{9+6 z}$
9. $\varphi(z)=\left(e^{5}+e+z e^{4}-z\right) /\left(2 e^{2}\right)$
10. Two ways: Use $x^{\prime \prime}(a)=z$ or $x^{\prime}(b)=z, x^{\prime \prime}(b)=w$.
11. $x(t)=-e^{t}+2 \ln (t+1)+3 t$

14a. This is a linear problem. So two initial-value problems can be solved as in the text to obtain the solution. The two sets of initial values would be $\left\{\begin{array}{l}x(0)=0 \\ x^{\prime}(0)=1\end{array}\right.$ and $\left\{\begin{array}{l}x(0)=1 \\ x^{\prime}(0)=0\end{array}\right.$.
15. Solution of $x^{\prime \prime}=-x, x(0)=1, x^{\prime}(0)=z$ is $x(t)=\cos t+z \sin t$. So $\phi(z)=x(\pi)=-1$. Since ϕ is constant, we cannot get $\varphi(z)=3$ by any choice of z !

Problems 14.2

1. $-\left(1-\frac{h}{2}\right) x_{i-1}+2\left(1+h^{2}\right) x_{1}-\left(1-\frac{h}{2}\right) x_{i+1}=-h^{2} t \quad$ 2. $x_{1} \approx 0.29427, \quad x_{2} \approx 0.57016, \quad x_{3} \approx 0.81040$
2. $x^{\prime}(0)=\frac{5}{3}$
3. $-x_{i-1}+\left[2+\left(1+t_{i}\right) h^{2}\right] x_{i}-x_{i+1}=0$
4. $x(t)=[7 / u(2)] u(t)$
5. $x_{1}^{\prime \prime}=-x_{1}, x_{1}(0)=3, x_{1}^{\prime}(0)=z_{1}$ implies $x=A \cos t+B \sin t, 3=x(0)=A, x^{\prime}=-A \sin t+B \cos t$. Let $z_{1}=x^{\prime}(0)=B$. So $x_{1}=3 \cos t+z_{1} \sin t, x_{2}=3 \cos t+z_{2} \sin t$. By Equation (10), $x=\lambda x_{1}+(1-\lambda) x_{2}$ and $\lambda=\left[\beta-x_{2}(b)\right] /\left[x_{1}(b)-x_{2}(b)\right]=[7-(-3)] /[(-3)-(-3)]=10 / 0$.

Computer Problems 14.2

$\begin{array}{ll}\text { 2a. } x=1 /(1+t) & \text { 2b. } x=-\log (1+t)\end{array}$

Problems 15.1

1a. Elliptic.
1c. Parabolic.
1f. Hyperbolic.
2. $\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0$
4. Equation (3) shows that $u(x, t+k)$ is a convex combination of values of $u(x, t)$ in the interval $[0,1]$. So it remains in the interval.
5. $a=\left[1+2 k h^{-2}(\cos \pi h-1)\right]^{1 / k}$
6. The right-hand side is changed by $b_{1}+c_{0}$ in place of b_{1} and $b_{n-1}+c_{n}$ replacing b_{n-1} for both (5) and (7).
7. In (6), b_{1} is replaced by $b_{1}+g(t), b_{n-1}$ by $b_{n-1}+g(t)$. At the level zero, $b_{i}=f(i h)$ for $1 \leqq i \leqq n-1$.
8. $u(x, t+k)=\frac{k}{h^{2}}(1-h) u(x+h, t)+\frac{k}{h^{2}}\left(\frac{h^{2}}{k}+h-2\right) u(x, t)+\frac{k}{h^{2}} u(x-h, t)$
9. $\boldsymbol{A}=\left[\begin{array}{rcccc}0 & 1 & & & \\ -1 & 0 & 1 & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 0 & 1 \\ & & & -2 & 2\end{array}\right]$

Problems 15.2

1. -0.21
2. $u_{x x}=f^{\prime \prime}(x+a t)+g^{\prime \prime}(x-a t), u_{t t}=a^{2} f^{\prime \prime}(x+a t)+a^{2} g^{\prime \prime}(x-a t)=a^{2} u_{x x}$
3. $u(x, t)=\frac{1}{2}[F(x+t)-F(-x+t)]+\frac{1}{2}[\bar{G}(x+t)-\bar{G}(-x+t)]$ where \bar{G} is the antiderivative of G

Computer Problems 15.2

1. real function $\operatorname{fbar}(x)$
real $x, x b a r$
xbar $\leftarrow x+2$ real(integer $(-(1+x) / 2))$
if $x b a r<0$ then
fbar $\leftarrow-f(-x b a r)$
else
$f b a r \leftarrow f(x b a r)$
end if
end function $f b a r$

Problems 15.3

5. $\left(20+\frac{2.5 h}{x_{i}+y_{j}}\right) u_{i+1, j}+\left(20-\frac{2.5 h}{x_{i}+y_{j}}\right) u_{i-1, j}+\left(-30+\frac{0.5 h}{y_{j}}\right) u_{i, j+1}+$

$$
\left(-30+\frac{0.5 h}{y_{j}}\right) u_{i, j-1}+20 u_{i j}=69 h^{2}
$$

6. $u\left(0, \frac{1}{2}\right) \approx-8.932 \times 10^{-3} ; \quad u\left(\frac{1}{2}, \frac{1}{2}\right) \approx 4.643 \times 10^{-1}$
7. $\boldsymbol{A}=\left[\begin{array}{rrrr}-4 & 1 & 1 & 0 \\ 1 & -4 & 0 & 1 \\ 1 & 0 & -4 & 1 \\ 0 & 1 & 1 & -4\end{array}\right]$

Computer Problems 15.3

5. $18.41^{\circ} 13.75^{\circ}$
$41.47^{\circ} \quad 36.60^{\circ} \quad 24.41^{\circ}$
$69.41^{\circ} \quad 66.77^{\circ} \quad 61.05^{\circ} \quad 53.01^{\circ} \quad 51.00^{\circ}$

Problems 16.1

1. $\boldsymbol{F}(2,1,-2)=-15 ; \quad \boldsymbol{F}(0,0,-2)=-8 ; \quad \boldsymbol{F}(2,0,-2)=-12 \quad$ 2. $\boldsymbol{F}\left(\frac{9}{8}, \frac{9}{8}\right)=-20.25$
2. Case $n=2$: $\left\{\begin{array}{lll}\widehat{x}=(3 a+b) / 4+\delta & \text { if } & a \leqq x^{*} \leqq b^{\prime} \\ \widehat{x}=(a+3 b) / 4-\delta & \text { if } & a^{\prime} \leqq x^{*} \leqq b\end{array} \quad\right.$ 5a. Exact solution $\boldsymbol{F}(3)=-7$.
3. $A=\alpha / \sqrt{5}, \quad A=-\beta / \sqrt{5}$
4. By (6), $y+r b=a+r^{2}(b-a)+r b=a r+b$ since $r^{2}+r=1$. Moreover, $r(y+r b)=a+r(b-a)=x$. Thus, $y r+r^{2} b=x$ or $y+r^{2}(b-y)=x$.
5. $n \geqq 1+(k+\log \ell-\log 2) /|\log r| \quad$ 11. $n \geqq 48$
6. Minimum point of F is a root of F^{\prime}. Newton's method to find root of $F^{\prime}: x_{n+1}=x_{n}-\frac{F^{\prime}\left(x_{n}\right)}{F^{\prime \prime}\left(x_{n}\right)}$. Formula does not involve F itself.
7. To find minimum of F, look for root of F^{\prime}. Secant method to find root of F^{\prime} is $x_{n+1}=x_{n}-F^{\prime}\left(x_{n}\right)\left[\frac{x_{n}-x_{n-1}}{F^{\prime}\left(x_{n}\right)-F^{\prime}\left(x_{n-1}\right)}\right]$. Formula does not involve F.
15b. Square both sides to obtain $r^{2}=1+\sqrt{1+\sqrt{1+\cdots}}=1+r$.
15d. $1+r^{-1}+r^{-2}+\cdots=\left(1-r^{-1}\right)^{-1}$ by series expansion. Hence, $r=\left(1-r^{-1}\right)^{-1}-1=\frac{1}{r-1}$ or $r^{2}=r+1$.

Problems 16.2

1a. Yes
1b. No
2. $\left(\frac{1}{4}, \frac{9}{4}\right)$
3. $\boldsymbol{F}(x, y)=1+x-x y+\frac{1}{2} x^{2}-\frac{1}{2} y^{2}+\cdots$
6. The slope of the tangent is $\frac{d y}{d x}=-\frac{F_{x}}{F_{y}} \equiv m_{1}$. The gradient has direction numbers F_{x} and F_{y}, and its slope is $\frac{F_{y}}{F_{x}} \equiv m_{2}$. The condition of perpendicularity $m_{1} m_{2}=-1$ is met.
7b. $\boldsymbol{F}(x)=\frac{3}{2}-\frac{1}{2} x_{2}+3 x_{1} x_{2}+x_{2} x_{3}+2 x_{1}^{2}-\frac{1}{2} x_{3}^{2}+\cdots$
9a. $G(1,0)=\left[\begin{array}{r}-2 \\ 2\end{array}\right]$
9b. $G(1,2,1)=\left[\begin{array}{l}5 \\ 2 \\ 5\end{array}\right]$
10. $\boldsymbol{G}=\left[\begin{array}{l}2 y^{2} z^{2} \sin x \cos x \\ 2 y z^{2}\left(1+\sin ^{2} x\right)+2(y+1)(z+3)^{2} \\ 2 y^{2} z\left(1+\sin ^{2} x\right)+2(y+1)^{2}(z+3)\end{array}\right]$
12. $\left(-\frac{19}{30},-\frac{1}{5}\right)$

Problems 17.1

2. maximize: $-5 x_{1}-6 x_{2}+2 x_{3}$
constraints: $\left\{\begin{aligned} &-2 x_{1}+3 x_{2} \leqq-5 \\ & x_{1}+x_{2} \leqq 15 \\ & 2 x_{1}-x_{2}+x_{3} \leqq 25 \\ &-x_{1}-x_{2}+x_{3} \leqq-1 \\ & x_{1} \geqq 0, x_{2} \geqq 0, x_{3} \geqq 0\end{aligned}\right.$
4a. Minimum value 1.5 at $(1.5,0)$.

5b. maximize: $-3 x+2 y-5 z$
constraints: $\left\{\begin{array}{r}-x-y-z \leqq-4 \\ x-y-z \leqq 2 \\ -x+y+z \leqq-2 \\ x \geqq 0, y \geqq 0, z \geqq 0\end{array}\right.$
6a. maximize: $2 x_{1}+2 x_{2}-6 x_{3}-x_{4}$

$$
\text { constraints: }\left\{\begin{array}{cl}
3 x_{1} & =25 \\
x_{1}+x_{2}+x_{3}+x_{4} & =20 \\
-4 x_{1} & -6 x_{3} \\
-2 x_{1} & -3 x_{3}-2 x_{4}+x_{6}= \\
x_{1}, & -5 \\
x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \geqq 0
\end{array}\right.
$$

6b. minimize: $25 y_{1}+20 y_{2}-5 y_{3}$ constraints: $\left\{\begin{array}{rl}3 y_{1}+y_{2}-4 y_{3}-2 y_{4} & \leqq 2 \\ y_{2} & \leqq 2 \\ y_{2}-6 y_{3}-3 y_{4} & \leqq-6 \\ y_{1}+y_{2} & -2 y_{4}\end{array} \leqq-11 口 \begin{array}{l} \\ y_{1}, y_{2}, y_{3}, y_{4} \geqq 0\end{array}\right.$
7. Maximum of 36 at $(2,6)$
8. Minimum of 36 at $(0,3,1)$
11. Minimum 2 for $(x, x-2)$ where $x \geqq 3$

13a. Maximum of 18 at $(9,0)$
13c. Unbounded solution
13f. No solution
13h. Maximum of $\frac{54}{5}$ at $\left(\frac{18}{5}, 0\right)$
14. Maximum of 100 at $(24,32,-124)$
17. Its feasible set is empty.

Computer Problems 17.1

1.

	Felt	Straw
Texas Hatters	0	200
Lone Star Hatters	150	0
Lariat Ranch Wear	150	0

3. $\$ 13.50$ 5. Cost $50 \notin$ for 1.6 ounces of food $f_{1}, 1$ ounce of food f_{3}, and none of food f_{2}.

Problems 17.2

1. maximize: $\sum_{j=0}^{n} c_{j} y_{j}$

Here $c_{0}=-\sum_{j=1}^{n} c_{j}$ and $a_{i 0}=-\sum_{j=1}^{n} a_{i j}$.
constraints: $\left\{\begin{array}{l}\sum_{j=0}^{n} a_{i j} y_{j} \leqq b_{i} \\ y_{i} \geqq 0 \quad(0 \leqq i \leqq n)\end{array}\right.$
2. At most 2^{n}. 5. First primal form: maximize: $-\boldsymbol{b}^{T} \boldsymbol{y}$

$$
\text { constraints: }\left\{\begin{array}{l}
-\boldsymbol{A}^{T} \boldsymbol{y} \leqq-\boldsymbol{c} \\
\boldsymbol{y} \geqq 0
\end{array}\right.
$$

6. Given $A x=b$. Let $y_{j}=x_{j}+y_{n+1}$. Now $\sum_{j=1}^{n} a_{i j} x_{j}-b_{i}=\sum_{j=1}^{n} a_{i j} y_{j}-y_{n+1} \sum_{j=1}^{n} a_{i j}-b_{i}$. minimize: $\quad y_{n+1}$
constraints: $\left\{\begin{array}{l}\sum_{\substack{n=1 \\ y \geqq 0}}^{n} a_{i j} y_{j}+\left(-\sum_{j=1}^{n} a_{i j}\right) y_{n+1}=b_{i} \quad(1 \leqq i \leqq n+1) \\ \end{array}\right.$

Computer Problems 17.2

1b. $\boldsymbol{x}=\left[0,0, \frac{5}{3}, \frac{2}{3}, 0\right]^{T}$
1c. $\boldsymbol{x}=\left[0, \frac{8}{3}, \frac{5}{3}\right]^{T}$

Problems 17.3

1a. maximize: $-\sum_{i=1}^{4}\left(u_{i}+v_{i}\right)$

$$
\text { constraints: }\left\{\begin{array}{c}
5 y_{1}+2 y_{2}-7 y_{4}-u_{1}+v_{1}=6 \\
y_{1}+y_{2}+y_{3}-3 y_{4}-u_{2}+v_{2}=2 \\
7 y_{2}-5 y_{3}-2 y_{4}-u_{3}+v_{3}=11 \\
6 y_{1}+9 y_{3}-15 y_{4}-u_{4}+v_{4}=9 \\
u \geqq 0 \quad v \geqq 0 \quad y \geqq 0
\end{array}\right.
$$

1b. minimize: ε

$$
\text { constraints: }\left\{\begin{aligned}
5 y_{1}+2 y_{2}-7 y_{4}-\varepsilon & \leqq 6 \\
y_{1}+y_{2}+y_{3}-3 y_{4}-\varepsilon & \leqq 2 \\
7 y_{2}-5 y_{3}-2 y_{4}-\varepsilon & \leqq 11 \\
6 y_{1}+9 y_{3}-15 y_{4}-\varepsilon & \leqq 9 \\
-5 y_{1}-2 y_{2}+7 y_{4}-\varepsilon & \leqq-6 \\
-y_{1}-y_{2}-y_{3}+3 y_{4}-\varepsilon & \leqq-2 \\
-7 y_{2}+5 y_{3}+2 y_{4}-\varepsilon & \leqq-11 \\
-6 y_{1} & -9 y_{3}+15 y_{4}-\varepsilon
\end{aligned}\right.
$$

3. Take m points $x_{i}(i=1,2, \ldots, m)$. Let $p(x)=\sum_{j=0}^{n} a_{j} x^{j}$. minimize: ε
constraints: $\begin{cases}\sum_{j=0}^{n} a_{j} x_{i}^{j} & \leqq f\left(x_{i}\right) \quad(1 \leqq i \leqq m) \\ \sum_{j=0}^{n} a_{j} x_{i}^{j}+\varepsilon \leqq f\left(x_{i}\right) \quad(1 \leqq i \leqq m) \\ \varepsilon \geqq 0\end{cases}$
4. minimize: $u_{1}+v_{1}+u_{2}+v_{2}+u_{3}+v_{3}$
constraints: $\left\{\begin{array}{c}y_{1}-y_{2}-u_{1}+v_{1}=4 \\ 2 y_{1}-3 y_{2}+y_{3}-u_{2}+v_{2}=7 \\ y_{1}+y_{2}-2 y_{3}-u_{3}+v_{3}=2 \\ y_{1}, y_{2}, y_{3} \geqq 0, u_{1}, u_{2}, u_{3} \geqq 0, v_{1}, v_{2}, v_{3} \geqq 0\end{array}\right.$

Computer Problems 17.3

1a. $x_{1}=0.353, \quad x_{2}=2.118, \quad x_{3}=0.765$
1b. $x_{1}=0.671, \quad x_{2}=1.768, \quad x_{3}=0.453$
3. $p(x)=1.0001+0.9978 x+0.51307 x^{2}+0.13592 x^{3}+0.071344 x^{4}$

Problems B

1a. $e \approx(2.718)_{10}=(010.101101111100111 \ldots)_{2}$
2d. $(27.45075341 \text {...) })_{8}$
2e. $(113.1666213 \ldots)_{8}$
2f. $(71.24426416 \ldots)_{8}$
3a. $(441.681640625)_{10}$
3b. (613.40625) ${ }_{10}$
4c. $(101111)_{2}$
4e. $(110011)_{2}$
4g. $(33.72664)_{8}$
6. $(0.31463146 \ldots)_{8}$
9. $(479)_{10}=(111011111)_{2}$
12. A real number R has a finite representation in binary system. $\Leftrightarrow R=\left(a_{m} a_{m-1} \ldots a_{1} a_{0} \cdot b_{1} b_{2} \ldots b_{n}\right)_{2} . \Leftrightarrow R=$ $\left(a_{m} \ldots a_{1} a_{0} b_{1} b_{2} \ldots b_{n}\right)_{2} \times 2^{-n}=m \times 2^{-n}$ where $m=\left(a_{m} a_{m-1} \ldots a_{1} a_{0} b_{1} b_{2} \ldots b_{n}\right)_{2}$.

Bibliography

Abell, M. L., and J. P. Braselton. 1993. The Mathematical Handbook. New York: Academic Press.
Abramowitz, M., and I. A. Stegun (eds.). 1964. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards. New York: Dover, 1965 (reprint).
Acton, F. S. 1959. Analysis of Straight-Line Data. New York: Wiley. New York: Dover, 1966 (reprint).
Acton, F. S. 1990. Numerical Methods That (Usually) Work. Washington, D.C.: Mathematical Association of America.
Acton, F. S. 1996. Real Computing Made Real: Preventing Errors in Scientific and Engineering Calculations. Princeton, New Jersey: Princeton University Press.
Ahlberg, J. H., E. N. Nilson, and J. L. Walsh. 1967. The Theory of Splines and Their Applications. New York: Academic Press.
Aiken, R. C., ed. 1985. Stiff Computation. New York: Oxford University Press.
Ames, W. F. 1992. Numerical Methods for Partial Differential Equations, 3rd Ed. New York: Academic Press.
Ammar, G. S., D. Calvetti, and L. Reichel, 1999. "Computation of Gauss-Kronrod quadrature rules with nonpositive weights," Electronic Transactions on Numerical Analysis 9, 26-38. http://etna.mcs.kent. edu
Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. 1999. LAPACK User's Guide, 3rd Ed.. Philadelphia: SIAM.
Armstrong, R. D., and J. Godfrey. 1979. "Two linear programming algorithms for the linear discrete ℓ_{1} norm problem." Mathematics of Computation 33, 289-300.
Ascher, U. M., R. M. M. Mattheij, and R. D. Russell. 1995. Numerical Solution of Boundary Value Problems for Ordinary Differential Equations. Philadelphia: SIAM.
Ascher, U. M., and L. R. Petzold. 1998. Computer Methods for Ordinary Differential Equations and Differential Algebraic Equations. Philadelphia: SIAM.

Atkinson, K. 1993. Elementary Numerical Analysis. New York: Wiley.
Atkinson, K. A. 1988. An Introduction to Numerical Analysis, 2nd Ed. New York: Wiley.
Axelsson, O. 1994. Iterative Solution Methods. New York: Cambridge University Press.
Axelsson, O., and V.A. Barker. 2001. Finite Element Solution of Boundary Value Problems: Theory and Computations. Philadelphia: SIAM.
Azencott, R., ed. 1992. Simulated Annealing: Parallelization Techniques. New York: Wiley.

Bai, Z., J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst. 2000. Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. Philadelphia: SIAM.
Baldick, R. 2006. Applied Optimization. New York, Cambridge University Press.
Barnsley, M. F. 2006. SuperFractals. New York, Cambridge University Press.
Barrett, R., M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. van der Vorst. 1994. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods Philadelphia: SIAM.
Barrodale, I., and C. Phillips. 1975. 'Solution of an overdetermined system of linear equations in the Chebyshev norm." Association for Computing Machinery Transactions on Mathematical Software 1, 264-270.
Barrodale, I., and F. D. K. Roberts. 1974. "Solution of an overdetermined system of equations in the ℓ_{1} norm." Communications of the Association for Computing Machinery 17, 319-320.
Barrodale, I., F. D. K. Roberts, and B. L. Ehle. 1971. Elementary Computer Applications. New York: Wiley.
Bartels, R.H. 1971. "A stabilization of the simplex method." Numerische Mathematik 16, 414-434.
Bartels, R., J. Beatty, and B. Barskey. 1987. An Introduction to Splines for Use in Computer Graphics and Geometric Modelling. San Francisco: Morgan Kaufmann.

Bassien, S. 1998. "The dynamics of a family of onedimensional maps." American Mathematical Monthly 105, 118-130.
Bayer, D., and P. Diaconis. 1992. "Trailing the dovetail shuffle to its lair." Annals of Applied Probability, 2, 294-313.
Beale, E. M. L. 1988. Introduction to Optimization. New York: Wiley.
Björck, Å. 1996. Numerical Methods for Least Squares Problems. Philadelphia: SIAM.
Bloomfield, P., and W. Steiger. 1983. Least Absolute Deviations, Theory, Applications, and Algorithms. Boston: Birkhäuser.
Bornemann, F., D. Laurie, S. Wagon, and J. Waldvogel. 2004. The SIAM 100-Digit Challenge: A Study in HighAccuracy Numerical Computing. Philadelphia: SIAM.
Borwein, J. M., and P. B. Borwein. 1984. "The arithmeticgeometric mean and fast computation of elementary functions." Society for Industrial and Applied Mathematics Review 26, 351-366.
Borwein, J. M., and P. B. Borwein. 1987. Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley.
Boyce, W. E., and R. C. DiPrima. 2003. Elementary Differential Equations and Boundary Value Problems, 7th Ed. New York: Wiley.
Branham, R. 1990. Scientific Data Analysis: An Introduction to Overdetermined Systems. New York: SpringerVerlag.
Brenner, S., and R. Scott. 2002. The Mathematical Theory of Finite Element Methods. New York: Springer-Verlag.
Brent, R. P. 1976. "Fast multiple precision evaluation of elementary functions." Journal of the Association for Computing Machinery 23, 242-251.
Briggs, W. 2004. Ants, Bikes, and Clocks: Problems Solving for Undergraduates. Philadelphia: SIAM.
Buchanan, J. L., and P. R. Turner. 1992. Numerical Methods and Analysis. New York: McGraw-Hill.
Burden, R. L., and J. D. Faires. 2001. Numerical Analysis, 7th Ed. Pacific Grove, California: Brooks/Cole.
Bus, J. C. P., and T. J. Dekker. 1975. "Two efficient algorithms with guaranteed convergence for finding a zero of a function." Association for Computing Machinery Transactions on Mathematical Software 1, 330-345.
Butcher, J. C. 1987. The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and General Linear Methods. New York: Wiley.

Calvetti, D., G. H. Golub, W. B. Gragg, and L. Reichel. 2000. "Computation of Gauss-Kronrod quadrature rules." Mathematics of Computation 69, 1035-1052.

Carrier, G., and C. Pearson. 1991. Ordinary Differential Equations. Philadelphia: SIAM.
Cärtner, B. 2006. Understanding and Using Linear Programming. New York: Springer.
Cash, J. "Mesh selection for nonlinear two-point boundaryvalue problems." Journal of Computational Methods in Science and Engineering, 2003.
Chaitlin, G. J. 1975. "Randomness and mathematical proof." Scientific American May, 47-52.
Chapman, S. J. 2000. MATLAB Programming for Engineering, Pacific Grove, California: Brooks/Cole.
Cheney, E. W. 1982. Introduction to Approximation Theory, 2nd Ed. Washington, D.C.: AMS.
Cheney, E. W. 2001. Analysis for Applied Mathematics, New York: Springer.
Chicone, C. 2006. Ordinary Differential Equations with Applications. 2nd Ed. New York: Springer.
Clenshaw, C. W., and A. R. Curtis. 1960. "A method for numerical integration on an automatic computer." Numerische Mathematik 2, 197-205.
Colerman, T. F. and C. Van Loan. 1988. Handbook for Matrix Computations. Philadelphia: SIAM.
Collatz, L. 1966. The Numerical Treatment of Differential Equations, 3rd Ed. Berlin: Springer-Verlag.
Conte, S. D., and C. de Boor. 1980. Elementary Numerical Analysis, 3rd Ed. New York: McGraw-Hill.
Cooper, L., and D. Steinberg. 1974. Methods and Applications of Linear Programming. Philadelphia: Saunders.
Crilly, A. J., R. A. Earnshaw, H. Jones, eds. 1991. Fractals and Chaos. New York: Springer-Verlag.
Cvijovic, D., and J. Klinowski. 1995. "Taboo search: An approach to the multiple minima problem." Science 267, 664-666.

Dahlquist, G., and A. Björck. 1974. Numerical Methods. Englewood Cliffs, New Jersey: Prentice-Hall.
Dantzi, G. B., A. Orden, and P. Wolfe. 1963. "Generalized simplex method for minimizing a linear from under linear inequality constraints." Pacific Journal of Mathematics 5, 183-195.
Davis, P. J., and P. Rabinowitz. 1984. Methods of Numerical Integration, 2nd Ed. New York: Academic Press.
Davis, T. 2006. Direct Methods for Sparse Linear Systems. Philadelphia: SIAM.
de Boor, C. 1971. "CADRE: An algorithm for numerical quadrature." In Mathematical Software, edited by J. R. Rice, 417-449. New York: Academic Press.
de Boor, C. 1984. A Practical Guide to Splines. 2nd Ed. New York: Springer-Verlag.
Dekker, T. J. 1969. "Finding a zero by means of successive linear interpolation." In Constructive Aspects of the

Fundamental Theorem of Algebra, edited by B. Dejon and P. Henrici. New York: Wiley-Interscience.
Dekker, T. J., and W. Hoffmann. 1989. "Rehabilitation of the Gauss-Jordan algorithm." Numerische Mathematik 54, 591-599.
Dekker, T. J., W. Hoffmann, and K. Potma. 1997. "Stability of the Gauss-Huard algorithm with partial pivoting." Computing 58, 225-244.
Dekker, K., and J. G. Verwer. 1984. "Stability of Runge-Kutta methods for stiff nonlinear differential equations." CWI Monographs 2. Amsterdam: Elsevier Science.
Demmel, J. W., 1997. Applied Numerical Linear Algebra. Philadelphia: SIAM.
Dennis, J. E., and R. Schnabel. 1983. Quasi-Newton Methods for Nonlinear Problems. Englewood Cliffs, New Jersey: Prentice-Hall.
Dennis, J. E., and R. B. Schnabel. 1996. Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Philadelphia: SIAM.
Dennis, J. E., and D. J. Woods. 1987. "Optimization on microcomputers: The Nelder-Mead simplex algorithm." In New Computing Environments, edited by A. Wouk. Philadelphia: SIAM.
de Temple, D. W. 1993. "A quicker convergence to Euler's Constant." American Mathematical Monthly 100, 468-470.
Devitt, J. S. 1993. Calculus with Maple V. Pacific Grove, California: Brooks/Cole.
Dixon, V. A. 1974. "Numerical quadrature: a survey of the available algorithms." In Software for Numerical Mathematics, edited by D. J. Evans. New York: Academic Press.
Dongarra, J. J., I. S. Duff, D. C. Sorenson, and H. van der Vorst. 1990. Solving Linear Systems on Vector and Shared Memory Computers. Philadelphia: SIAM.
Dorn, W. S., and D. D. McCracken. 1972. Numerical Methods with FORTRAN IV Case Studies. New York: Wiley.

Edwards, C., and D. Penny. 2004. Differential Equations and Boundary Value Problems, 5th Ed. Upper Saddle River: New Jersey: Prentice-Hall.
Ellis, W., Jr., E. W. Johnson, E. Lodi, and D. Schwalbe. 1997. Maple V Flight Manual: Tutorials for Calculus, Linear Algebra, and Differential Equations. Pacific Grove, California: Brooks/Cole.
Ellis, W., Jr., and E. Lodi. 1991. A Tutorial Introduction to Mathematica. Pacific Grove, California: Brooks/Cole.
Elman, H., D. J. Silvester, and A. Wathen. 2004. Finite Element and Fast Iterative Solvers. New York: Oxford University Press.

England, R. 1969. "Error estimates for Runge-Kutta type solutions of ordinary differential equations." Computer Journal 12, 166-170.
Enright, W. H. 2006. "Verifying approximate solutions to differential equations." Journal of Computational and Applied Mathematics 185, 203-311.
Epureanu, B. I., and H. S. Greenside. 1998. "Fractal basins of attraction associated with a damped Newton's method." SIAM Review 40, 102-109.
Evans, G., J. Blackledge, and P. Yardlay. 2000. Numerical Methods for Partial Differential Equations. New York: Springer-Verlag.
Evans, G. W., G. F. Wallace, and G. L. Sutherland. 1967. Simulation Using Digital Computers. Englewood Cliffs, New Jersey: Prentice-Hall.

Farin, G. 1990. Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide, 2nd Ed. New York: Academic Press.
Fauvel, J., R. Flood, M. Shortland, and R. Wilson (eds.). 1988. Let Newton Be! London: Oxford University Press.
Feder, J. 1988. Fractals. New York: Plenum Press.
Fehlberg, E. 1969. "Klassische Runge-Kutta formeln fünfter und siebenter ordnung mit schrittweitenkontrolle." Computing 4, 93-106.
Flehinger, B. J. 1966. "On the probability that a random integer has initial digit A." American Mathematical Monthly 73, 1056-1061.
Fletcher, R. 1976. Practical Methods of Optimization. New York: Wiley.
Floudas, C. A., and P. M. Pardalos (eds.). 1992. Recent Advances in Global Optimization. Princeton, New Jersey: Princeton University Press.
Flowers, B. H. 1995. An Introduction to Numerical Methods in $C++$. New York: Oxford University Press.
Ford, J. A. 1995. "Improved Algorithms of Ilinois-Type for the Numerical Solution of Nonlinear Equations." Technical Report, Department of Computer Science, University of Essex, Colchester, Essex, UK.
Forsythe, G. E. 1957. "Generation and use of orthogonal polynomials for data-fitting with a digital computer." Society for Industrial and Applied Mathematics Journal 5, 74-88.
Forsythe, G. E. 1970. "Pitfalls in computation, or why a math book isn't enough," American Mathematical Monthly 77, 931-956.
Forsythe, G. E., M. A. Malcolm, and C. B. Moler. 1977. Computer Methods for Mathematical Computations. Englewood Cliffs, New Jersey: PrenticeHall.

Forsythe, G. E., and C. B. Moler. 1967. Computer Solution of Linear Algebraic Systems. Englewood Cliffs, New Jersey: Prentice-Hall.
Forsythe, G. E., and W. R. Wasow. 1960. Finite Difference Methods for Partial Differential Equations. New York: Wiley.
Fox, L. 1957. The Numerical Solution of Two-Point Boundary Problems in Ordinary Differential Equations. Oxford: Clarendon Press.
Fox, L. 1964. An Introduction to Numerical Linear Algebra, Monograph on Numerical Analysis. Oxford: Clarendon Press. Reprinted 1974. New York: Oxford University Press.
Fox, L., D. Juskey, and J. H. Wilkinson, 1948. "Notes on the solution of algebraic linear simultaneous equations," Quarterly Journal of Mechanics and Applied Mathematics. 1, 149-173.
Frank, W. 1958. "Computing eigenvalues of complex matrices by determinant evaluation and by methods of Danilewski and Wielandt." Journal of SIAM 6, 37-49.
Fraser, W., and M. W. Wilson. 1966. "Remarks on the Clenshaw-Curtis quadrature scheme." SIAM Review 8, 322-327.
Friedman, A., and N. Littman. 1994. Industrial Mathematics: A Course in Solving Real-World Problems. Philadelphia: SIAM.
Fröberg, C.-E. 1969. Introduction to Numerical Analysis. Reading, Massachusetts: Addison-Wesley.

Gallivan, K. A., M. Heath, E. Ng, B. Peyton, R. Plemmons, J. Ortega, C. Romine, A. Sameh, and R. Voigt. 1990. Parallel Algorithms for Matrix Computations. Philadelphia: SIAM.
Gander, W., and W. Gautschi. 2000. "Adaptive quadra-ture-revisited." BIT 40, 84-101.
Garvan, F. 2002. The Maple Book. Boca Raton, Florida: Chapman \& Hall/CRC.
Gautschi, W. 1990. "How (un)stable are Vandermonde systems?" in Asymptotic and Computational Analysis, 193-210, Lecture Notes in Pure and Applied Mathematics, 124. New York: Dekker.
Gautschi, W. 1997. Numerical Analysis: An Introduction. Boston, Massachusetts: Birkhäuser.
Gear, C. W. 1971. Numerical Initial Value Problems in Ordinary Differential Equations. Englewood Cliffs, New Jersey: Prentice-Hall.
Gentle, J. E. 2003. Random Number Generation and Monte Carlo Methods, 2nd Ed. New York: Springer-Verlag.
Gentleman, W. M. 1972. "Implementing Clenshaw-Curtis quadrature." Communications of the ACM 15, 337-346, 353.

Gerald, C. F., and P. O. Wheatley 1999. Applied Numerical Analysis, 6th Ed. Reading, Massachusetts: AddisonWesley.
Ghizetti, A., and A. Ossiccini. 1970. Quadrature Formulae. New York: Academic Press.
Gill, P. E., W. Murray, and M. H. Wright. 1981. Practical Optimization. New York: Academic Press.
Gleick, J. 1992. Genius: The Life and Science of Richard Feynman. New York: Pantheon.
Gockenbach, M. S., 2002. Partial Differential Equations: Analytical and Numerical Methods. Philadelphia: SIAM.
Goldberg, D. 1991. "What every computer scientist should know about floating-point arithmetic." ACM Computing Surveys 23, 5-48.
Goldstine, H. H. 1977. A History of Numerical Analysis from the 16th to the 19th Century. New York: SpringerVerlag.
Golub, G. H., and J. M. Ortega. 1992. Scientific Computing and Differential Equations. New York: Harcourt Brace Jovanovich.
Golub, G. H., and J. M. Ortega. 1993. An Introduction with Parallel Scientific Computing. New York: Academic Press.
Golub, G. H., and C. F. Van Loan. 1996. Matrix Computations, 3rd Ed. Baltimore: Johns Hopkins University Press.
Good, I. J. 1972. "What is the most amazing approximate integer in the universe?" Pi Mu Epsilon Journal 5, 314-315.
Greenbaum, A. 1997. Iterative Methods for Solving Linear Systems. Philadelphia: SIAM.
Greenbaum, A. 2002. "Card Shuffling and the Polynomial Numerical Hull of Degree k," Mathematics Department, University of Washington, Seattle, Washington.
Gregory, R. T., and D. Karney, 1969. A Collection of Matrices for Testing Computational Algorithms. New York: Wiley.
Griewark, A. 2000. Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. Philadelphia: SIAM.
Groetsch, C. W. 1998. "Lanczos’ generalized derivative." American Mathematical Monthly 105, 320-326.

Haberman, R. 2004. Applied Partial Differential Equations with Fourier Series and Boundary Value Problems. Upper Saddle River: New Jersey: Prentice-Hall.
Hageman, L. A., and D. M. Young. 1981. Applied Iterative Methods. New York: Academic Press; Dover 2004 (reprint).
Hämmerlin, G., and K.-H. Hoffmann. 1991. Numerical Mathematics. New York: Springer-Verlag.

Hammersley, J. M., and D. C. Handscomb. 1964. Monte Carlo Methods. London: Methuen.
Hansen, T., G. L. Mullen, and H. Niederreiter. 1993. "Good parameters for a class of node sets in quasi-Monte Carlo integration." Mathematics of Computation 61, 225-234.
Haruki, H., and S. Haruki. 1983. "Euler's Integrals." American Mathematical Monthly 7, 465.
Hastings, H. M. and G. Sugihara. 1993. Fractals: A User's Guide for the Natural Sciences. New York: Oxford University Press.
Havie, T. 1969. "On a modification of the Clenshaw-Curtis quadrature formula." BIT 9, 338-350.
Heath, J. M. 2002. Scientific Computing: An Introductory Survey, 2nd Ed. New York: McGraw-Hill.
Henrici, P. 1962. Discrete Variable Methods in Ordinary Differential Equations. New York: Wiley.
Heroux, M., P. Raghavan, and H. Simon. 2006. Parallel Processing for Scientific Computing. Philadelphia: SIAM.
Herz-Fischler, 1998. R. A Mathematical History of the Golden Number. New York: Dover
Hestenes, M. R., and E. Stiefel. 1952. "Methods of conjugate gradient for solving linear systems." Journal Research National Bureau of Standards 49, 409-436.
Higham, D., and N. J. Higham. 2006. MATLAB Guide, 2nd Ed. Philadelphia: SIAM.
Higham, N. J. 2002. Accuracy and Stability of Numerical Algorithms, 2nd Ed. Philadelphia: SIAM.
Hildebrand, F. B. 1974. Introduction to Numerical Analysis. New York: McGraw-Hill.
Hodges, A. 1983. Alan Turing: The Enigma. New York: Simon \& Schuster.
Hoffmann, W. 1989. "A fast variant of the Gauss-Jordan algorithm with partial pivoting. Basic transformations in linear algebra for vector computing." Doctoral dissertation, University of Amsterdam, The Netherlands.
Hofmann-Wellenhof, B., H. Lichtenegger, and J. Collins. 2001. Global Positioning System: Theory and Practice, 5th Ed. New York: Springer-Verlag.
Horst, R., P. M. Pardalos, and N. V. Thoai. 2000. Introduction to Global Optimization, 2nd Ed. Boston: Kluwer.
Householder, A. S. 1970. The Numerical Treatment of a Single Nonlinear Equation. New York: McGraw-Hill.
Huard, P. 1979. "La méthode du simplexe sans inverse explicite." Bull. E.D.F. Série C 2.
Huddleston, J. V. 2000. Extensibility and Compressibility in One-Dimensional Structures. 2nd Ed. Buffalo, NY: ECS Publ.
Hull, T. E., and A. R. Dobell. 1962. "Random number generators." Society for Industrial and Applied Mathematics Review 4, 230-254.

Hull, T. E., W. H. Enright, B. M. Fellen, and A. E. Sedgwick. 1972. "Comparing numerical methods for ordinary differential equations." Society for Industrial and Applied Mathematics Journal on Numerical Analysis 9, 603-637.
Hundsdorfer, W. H. 1985. "The numerical solution of nonlinear stiff initial value problems: an analysis of one step methods." CWI Tract, 12. Amsterdam: Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica.

Isaacson, E., and H. B. Keller. 1966. Analysis of Numerical Methods. New York: Wiley.

Jeffrey, A. 2000. Handbook of Mathematical Formulas and Integrals. Boston: Academic Press.
Jennings, A. 1977. Matrix Computation for Engineers and Scientists. New York: Wiley.
Johnson, L. W., R. D. Riess, and J. T. Arnold. 1997. Introduction to Linear Algebra. New York: AddisonWesley.

Kahaner, D. K. 1971. "Comparison of numerical quadrature formulas." In Mathematical Software, edited by J. R. Rice. New York: Academic Press.

Kahaner, D., C. Moler, and S. Nash. 1989. Numerical Methods and Software. Englewood Cliffs, New Jersey: Prentice-Hall.
Keller, H. B. 1968. Numerical Methods for Two-Point Boundary-Value Problems. Toronto: Blaisdell.
Keller, H. B. 1976. Numerical Solution of Two-Point Boundary Value Problems. Philadelphia: SIAM.
Kelley, C. T. 1995. Iterative Methods for Linear and Nonlinear Equations. Philadelphia: SIAM.
Kelley, C. T. 2003. Solving Nonlinear Equations with Newton's Method. Philadelphia: SIAM.
Kincaid, D., and W. Cheney. 2002. Numerical Analysis: Mathematics of Scientific Computing, 3rd Ed. Belmont, California: Thomson Brooks/Cole.
Kincaid, D. R., and D. M. Young. 1979. "Survey of iterative methods." In Encyclopedia of Computer Science and Technology, edited by J. Belzer, A. G. Holzman, and A. Kent. New York: Dekker.

Kincaid, D. R., and D. M. Young. 2000. "Partial differential equations." In Encyclopedia of Computer Science, 4th Ed., edited by A. Ralston, E. D. Reilly, D. Hemmendinger. New York: Grove's Dictionaries.

Kinderman, A. J., and J. F. Monahan. 1977. "Computer generation of random variables using the ratio of uniform deviates." Association of Computing Machinery Transactions on Mathematical Software 3, 257-260.

Kirkpatrick, S., C. D. Gelatt, Jr., and M. P. Vecchi. 1983. "Optimization by simulated annealing." Science 220, 671-680.
Knight, A. 2000. Basics of MATLAB and Beyond. Boca Raton, Florida: CRC Press.
Knuth, D. E. 1997. The Art of Computer Programming, 3rd Ed. Vol. 2, Seminumerical Algorithms. New York: Addison-Wesley.
Krogh, F. T. 2003. "On developing mathematical software." Journal of Computational and Applied Mathematics 185, 196-202.
Kronrod, A. S. 1964. "Nodes and Weights of Quadrature Rules." Doklady Akad. Nauk SSSR, 154, 283-286. [Russian] (1965. New York: Consultants Bureau.)
Krylov, V. I. 1962. Approximate Calculation of Integrals, translated by A. Stroud. New York: Macmillan.

Lambert, J. D. 1973. Computational Methods in Ordinary Differential Equations. New York: Wiley.
Lambert, J. D. 1991. Numerical Methods for Ordinary Differential Equations. New York: Wiley.
Lapidus, L., and J. H. Seinfeld. 1971. Numerical Solution of Ordinary Differential Equations. New York: Academic Press.
Laurie, D. P. 1997. "Calculation of Gauss-Kronrod quadrature formulae." Mathematics of Computation, 1133-1145.
Lawson, C. L., and R. J. Hanson. 1995. Solving LeastSquares Problems. Philadelphia: SIAM.
Leva, J. L. 1992. "A fast normal random number generator." Association of Computing Machinery Transactions on Mathematical Software 18, 449-455.
Lindfield, G., and J. Penny. 2000. Numerical Methods Using MATLAB, 2nd Ed. Upper Saddle River: New Jersey: Prentice-Hall.
Lootsam, F. A., ed. 1972. Numerical Methods for Nonlinear Optimization. New York: Academic Press.
Lozier, D. W., and F. W. J. Olver. 1994. "Numerical evaluation of special functions." In Mathematics of Computation 1943-1993: A Half-Century of Computational Mathematics 48, 79-125. Providence, Rhode Island: AMS.
Lynch, S. 2004. Dynamical Systems with Applications. Boston: Birkhäuser.

MacLeod, M. A. 1973. "Improved computation of cubic natural splines with equi-spaced knots." Mathematics of Computation 27, 107-109.
Maron, M. J. 1991. Numerical Analysis: A Practical Approach. Boston: PWS Publishers.

Marsaglia, G. 1968. "Random numbers fall mainly in the planes." Proceedings of the National Academy of Sciences 61, 25-28.
Marsaglia, G., and W. W. Tsang. 2000. "The Ziggurat Method for generating random variables." Journal of Statistical Software 5, 1-7.
Mattheij, R. M. M., S. W. Rienstra, and J. H. M. ten Thije Boonkkamp. 2005. Partial Differential Equations: Modeling, Analysis, Computation. Philadelphia: SIAM.
McCartin, B. J. 1998. "Seven deadly sins of numerical computations," American Mathematical Monthly 105, No. 10, 929-941.
McKenna, P. J., and C. Tuama. 2001. "Large torsional oscillations in suspension bridges visited again: Vertical forcing creates torsional response." American Mathematical Monthly 108, 738-745.
Mehrotra, S. 1992. "On the implementation of a primal-dual interior point method." SIAM Journal on Optimization 2, 575-601.
Metropolis, N. et al. 1953. "Equation of state calculations by fast computing machines." Journal of Physical Chemistry 21, 1087-1092.
Meurant, G. 2006. The Lanczos and Conjugate Gradient Algorithms: From Theory to Finite Precision Computations. Philadelphia: SIAM.
Meyer, C. D., 2000. Matrix Analysis and Applied Linear Algebra. Philadelphia: SIAM.
Miranker, W. L. 1981. "Numerical methods for stiff equations and singular perturbation problems." In Mathematics and its Applications, Vol. 5. Dordrecht-Boston, Massachusetts: D. Reidel.
Moler, C. B., 2004. Numerical Computing with MATLAB. Philadelphia: SIAM.
Moré, J. J., and S. J. Wright. 1993. Optimization Software Guide. Philadelphia: SIAM.
Moulton, F. R. 1930. Differential Equations. New York: Macmillan.

Nelder, J. A., and R. Mead. 1965. "A simplex method for function minimization." Computer Journal 7, 308-313.
Nerinckx, D., and A. Haegemans. 1976. "A comparison of nonlinear equation solvers." Journal of Computational and Applied Mathematics 2, 145-148.
Nering, E. D., and A. W. Tucker. 1992. Linear Programs and Related Problems. New York: Academic Press.
Niederreiter, H. 1978. "Quasi-Monte Carlo methods." Bulletin of the American Mathematical Society 84, 957-1041.
Niederreiter, H. 1992. Random Number Generation and Quasi-Monte Carlo Methods. Philadelphia: SIAM.

Nievergelt, J., J. G. Farrar, and E. M. Reingold. 1974. Computer Approaches to Mathematical Problems. Englewood Cliffs, New Jersey: Prentice-Hall.
Noble, B., and J. W. Daniel. 1988. Applied Linear Algebra, 3rd Ed. Englewood Cliffs, New Jersey: Prentice-Hall.
Nocedal, J., and S. Wright. 2006. Numerical Optimization. 2nd Ed. New York: Springer.
Novak, E., K. Ritter, and H. Woźniakowski. 1995. "Average-case optimality of a hybrid secantbisection method." Mathematics of Computation 64, 1517-1540.
Novak, M., ed. 1998. Fractals and Beyond: Complexities in the Sciences. River Edge, NJ: World Scientific.

O'Hara, H., and F. J. Smith. 1968. "Error estimation in Clenshaw-Curtis quadrature formula." Computer Journal 11, 213-219.
Oliveira, S., and D. E. Stewart. 2006. Writing Scientific Software: A Guide to Good Style. New York: Cambridge University Press.
Orchard-Hays, W. 1968. Advanced Linear Programming Computing Techniques. New York: McGraw-Hill.
Ortega, J., and R. G. Voigt. 1985. Solution of Partial Differential Equations on Vector and Parallel Computers. Philadelphia: SIAM.
Ortega, J. M. 1990a. Numerical Analysis: A Second Course. Philadelphia: SIAM.
Ortega, J. M. 1990b. Introduction to Parallel and Vector Solution of Linear Systems. New York: Plenum.
Ortega, J. M., and W. C. Rheinboldt. 1970. Iterative Solution of Nonlinear Equations in Several Variables. New York: Academic Press. (2000. Reprint. Philadelphia: SIAM.)
Ostrowski, A. M. 1966. Solution of Equations and Systems of Equations, 2nd Ed. New York: Academic Press.
Overton, M. L. 2001. Numerical Computing with IEEE Floating Point Arithmetic. Philadelphia: SIAM.
Otten, R. H. J. M., and L. P. P. van Ginneken. 1989. The Annealing Algorithm. Dordrecht, Germany: Kluwer.

Pacheco, P. 1997. Parallel Programming with MPI. San Francisco: Morgan Kaufmann.
Patterson, T. N. L. 1968. "The optimum addition of points to quadrature formulae." Mathematics of Computations 22, 847-856, and in 1969 Mathematics of Computations 23, 892.
Parlett, B. N. 1997. The Symmetric Eigenvalue Problem. Philadelphia: SIAM.
Parlett, B. 2000. "The QR Algorithm," Computing in Science and Engineering 2, 38-42.

Pessens, R., E. de Doncker, C. W. Uberhuber, and D. K. Kahaner, 1983. QUADPACK: A Subroutine Package for Automatic Integration. New York: Springer-Verlag.
Peterson, I. 1997. The Jungles of Randomness: A Mathematical Safari. New York: Wiley.
Phillips, G. M., and P. J. Taylor. 1973. Theory and Applications of Numerical Analysis. New York: Academic Press.
Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. 2002. Numerical Recipes in C++, 2nd Ed. New York: Cambridge University Press.

Quinn, M. J. 1994. Parallel Computing: Theory and Practice. New York: McGraw-Hill.

Rabinowitz, P. 1968. "Applications of linear programming to numerical analysis." Society for Industrial and Applied Mathematics Review 10, 121-159.
Rabinowitz, P. 1970. Numerical Methods for Nonlinear Algebraic Equations. London: Gordon \& Breach.
Raimi, R. A. 1969. "On the distribution of first significant figures." American Mathematical Monthly 76, 342-347.
Ralston, A. 1965. A First Course in Numerical Analysis. New York: McGraw-Hill.
Ralston, A., and C. L. Meek (eds.) 1976. Encyclopedia of Computer Science. New York: Petrocelli/Charter.
Ralston, A., and P. Rabinowitz 2001. A First Course in Numerical Analysis, 2nd Ed. New York: Dover.
Recktenwald, G. 2000. Numerical Methods with MATLAB: Implementation and Applications. New York: PrenticeHall.
Reid, J. 1971. "On the method of conjugate gradient for the solution of large sparse systems of linear equations." In Large Sparse Sets of Linear Equations, J. Reid (ed.), London: Academic Press.
Rheinboldt, 1998. Methods for Solving Systems of Nonlinear Equations, 2nd Ed. Philadelphia: SIAM.
Rice, J. R. 1971. "SQUARS: An algorithm for least squares approximation." In Mathematical Software, edited by J. R. Rice. New York: Academic Press.

Rice, J. R. 1983. Numerical Methods, Software, and Analysis. New York: McGraw-Hill.
Rice, J. R., and R. F. Boisvert. 1984. Solving Elliptic Problems Using ELLPACK. New York: Springer-Verlag.
Rice, J. R., and J. S. White. 1964. "Norms for smoothing and estimation." Society for Industrial and Applied Mathematics Review 6, 243-256.
Rivlin, T. J. 1990. The Chebyshev Polynomials, 2nd Ed. New York: Wiley.
Roger, H.-F. 1998. A Mathematical History of the Golden Number. New York: Dover.

Roos, C., T. Terlaky, and J.-Ph. Vial. 1997. Theory and Algorithms for Linear Optimization: An Interior Point Approach. New York: Wiley.

Saad, Y., 2003. Iterative Methods for Sparse Linear Systems. Philadelphia: SIAM.
Salamin, E. 1976. "Computation of π using arithmeticgeometric mean." Mathematics of Computation 30, 565-570.
Sauer, T. 2006. Numerical Analysis. New York: Pearson, Addison-Wesley.
Scheid, F. 1968. Theory and Problems of Numerical Analysis. New York: McGraw-Hill.
Scheid, F. 1990. 2000 Solved Problems in Numerical Analysis. Schaum's Solved Problem Series. New York: McGraw-Hill.
Schilling, R. J., and S. L. Harris. 2000. Applied Numerical Methods for Engineering Using MATLAB and C. Pacific Grove, California: Brooks/Cole.
Schmidt 1908. Title unknown. Rendiconti del Circolo Matematico di Palermo 25, 53-77.
Schoenberg, I. J. 1946. "Contributions to the problem of approximation of equidistant data by analytic functions." Quarterly of Applied Mathematics 4, 45-99, 112-141.
Schoenberg, I. J. 1967. "On spline functions." In Inequalities, edited by O. Shisha, 255-291. New York: Academic Press.
Schrage, L. 1979. "A more portable Fortran random number generator." Association for Computing Machinery Transactions on Mathematical Software 5, 132-138.
Schrijver, A. 1986. Theory of Linear and Integer Programming. Somerset, New Jersey: Wiley.
Schultz, M. H. 1973. Spline Analysis. Englewood Cliffs, New Jersey: Prentice-Hall.
Schumaker, L. L. 1981. Spine Function: Basic Theory. New York: Wiley.
Shampine, J. D. 1994. Numerical Solutions of Ordinary Differential Equations. London: Chapman and Hall.
Shampine, L. F., R. C. Allen, and S. Pruess. 1997. Fundamentals of Numerical Computing. New York: Wiley.
Shampine, L. F., and M. K. Gordon. 1975. Computer Solution of Ordinary Differential Equations. San Francisco: W. H. Freeman.

Shewchuk, J. R. 1994. "An introduction to the conjugate gradient method without the agonizing pain," online Wikipedia.
Skeel, R. D., and J. B. Keiper. 1992. Elementary Numerical Computing with Mathematica. New York: McGraw-Hill.
Smith, G. D. 1965. Solution of Partial Differential Equations. New York: Oxford University Press.

Sobol, I. M. 1994. A Primer for the Monte Carlo Method. Boca Raton, Florida: CRC Press.
Southwell, R. V. 1946. Relaxation Methods in Theoretical Physics. Oxford: Clarendon Press.
Späth, H. 1992. Mathematical Algorithms for Linear Regression. New York: Academic Press.
Stakgold, I., 2000. Boundary Value Problems of Mathematical Physics. Philadelphia: SIAM.
Steele, J. M., 1997. Random Number Generation and Quasi-Monte Carlo Methods. Philadelphia: SIAM.
Stetter, H. J. 1973. Analysis of Discretization Methods for Ordinary Differential Equations. Berlin: SpringerVerlag.
Stewart, G. W. 1973. Introduction to Matrix Computations. New York: Academic Press.
Stewart, G. W. 1996. Afternotes on Numerical Analysis. Philadelphia: SIAM.
Stewart, G. W. 1998a. Afternotes on Numerical Analysis: Afternotes Goes to Graduate School. Philadelphia: SIAM.
Stewart, G. W. 1998b. Matrix Algorithms: Basic Decompositions, Vol. 1. Philadelphia: SIAM.
Stewart, G. W. 2001. Matrix Algorithms: Eigensystems, Vol. 2. Philadelphia: SIAM.
Stoer, J., and R. Bulirsch. 1993. Introduction to Numerical Analysis, 2nd Ed. New York: Springer-Verlag.
Strang, G. 2006. Linear Algebra and Its Applications. Belmont, California: Thomson Brooks/Cole.
Strang, G., and K. Borre. 1997. Linear Algebra, Geodesy, and GPS. Cambridge, MA: Wellesley Cambridge Press.
Street, R. L. 1973. The Analysis and Solution of Partial Differential Equations. Pacific Grove, California: Brooks/Cole.
Stroud, A. H. 1974. Numerical Quadrature and Solution of Ordinary Differential Equations. New York: SpringerVerlag.
Stroud, A. H., and D. Secrest. 1966. Gaussian Quadrature Formulas. Englewood Cliffs, New Jersey: Prentice-Hall.
Subbotin, Y. N. 1967. "On piecewise-polynomial approximation." Matematicheskie Zametcki 1, 63-70. (Translation: 1967. Math. Notes 1, 41-46.)
Szabo, F. 2002. Linear Algebra: An Introduction Using MAPLE. San Diego, California: Harcourt/Academic Press.

Torczon, V. 1997. "On the convergence of pattern search methods." Society for Industrial and Applied Mathematics Journal on Optimization 7, 1-25.
Törn, A., and A. Zilinskas. 1989. Global Optimization. Lecture Notes in Computer Science 350. Berlin: Springer-Verlag.

Traub, J. F. 1964. Iterative Methods for the Solution of Equations. Englewood Cliffs, New Jersey: Prentice-Hall.
Trefethen, L. N., and D. Bau. 1997. Numerical Linear Algebra. Philadelphia: SIAM.
Turner, P. R. 1982. "The distribution of leading significant digits." Journal of the Institute of Mathematics and Its Applications 2, 407-412.
van Huffel, S. and J. Vandewalle. 1991. The Total Least Squares Problem: Computational Aspects and Analsyis. Philadelphia: SIAM.
Van Loan, C. F. 1997. Introduction to Computational Science and Mathematics. Sudbury, Massachusetts: Jones and Bartlett.
Van Loan, C. F. 2000. Introduction to Scientific Computing, 2nd Ed. Upper Saddle River: New Jersey: Prentice-Hall.
Van der Vorst, H. A. 2003. Iterative Krylov Methods for Large Linear Systems. New York: Cambridge University Press.
Varga, R. S. 1962. Matrix Iterative Analysis. Englewood Cliffs: New Jersey: Prentice-Hall. (2000. Matrix Iterative Analysis: Second Revised and Expanded Edition. New York: Springer-Verlag.)

Wachspress, E. L. 1966. Iterative Solutions to Elliptic Systems. Englewood Cliffs: New Jersey: Prentice-Hall.
Watkins, D. S. 1991. Fundamentals of Matrix Computation. New York: Wiley.
Westfall, R. 1995. Never at Rest: A Biography of Isaac Newton, 2nd Ed. London: Cambridge University Press.
Whittaker, E., and G. Robinson. 1944. The Calculus of Observation, 4th Ed. London: Blackie. New York: Dover, 1967 (reprint).

Wilkinson, J. H. 1965. The Algebraic Eigenvalue Problem. Oxford: Clarendon Press. Reprinted 1988. New York: Oxford University Press.
Wilkinson, J. H. 1963. Rounding Errors in Algebraic Processes. Englewood Cliffs, New Jersey: Prentice-Hall. New York: Dover 1994 (reprint).
Wood, A. 1999. Introduction to Numerical Analysis. New York: Addison-Wesley.
Wright, S. J. 1997. Primal-Dual Interior-Point Methods. Philadelphia: SIAM.

Yamaguchi, F. 1988. Curves and Surfaces in Computer Aided Geometric Design. New York: Springer-Verlag.
Ye, Yinyu. 1997. Interior Point Algorithms. New York: Wiley.
Young, D. M. 1950. Iterative methods for solving partial difference equations of elliptic type. Ph.D. thesis. Cambridge, MA: Harvard University. See www.scem .stanford.edu/pub/scem/david_young_thesis.ps.gz.
Young, D. M., 1971. Iterative Solution of Large Linear Systems. New York: Academic Press: Dover 2003 (reprint).
Young, D. M., and R. T. Gregory. 1972. A Survey of Numerical Mathematics, Vols. 1-2. Reading, Massachusetts: Addison-Wesley. New York: Dover 1988 (reprint).
Ypma, T. J. 1995, "Historical development of the NewtonRaphson method." Society for Industrial and Applied Mathematics Review 37, 531-551.

Zhang, Y. 1995. "Solving large-scale linear programs by interior-point methods under the MATLAB environment." Technical Report TR96-01, Department of Mathematics and Statistics, University of Maryland, Baltimore County, Baltimore, MD.

Index

Absolute errors, 5
Abstract vector spaces in linear algebra, 716-723
bases for, 718
change in similarity of, 719-720
eigenvalues and eigenvectors in, 719
Gram-Schmidt process for, 722-723
linear independence in, 717-718
linear transformations for, 718-719
norms for, 721-722
orthogonal matrices and spectral theorem in, 720-721
subspaces in, 717
Accelerated steepest decent procedure, $655(\mathrm{CPb}$ 16.2.2)
Accuracy
first-degree polynomial, 375
first-degree spline, 375
in ordinary differential equation (ODE) solutions, 435
precision and, 5-6
A^{-1} computation, 307
A-conjugate vectors, 332
Adams-Bashforth-Moulton methods
adaptive scheme for, 488
example of, 488-489
for first-order ordinary differential equations, 455-456
predictor-corrector scheme in, 483-484
problems on, 241 (Pb 6.2 .15), 461 (CPb 10.3.2-4)
pseudocode for, 484-488
stiff equations and, 489-491
Adaptive Runge-Kutta methods, 450-454
Adaptive Simpson's rule, 221-225
Adaptive two-point Gaussian integration, 242 (CPb 6.2.7)
Advection equation, 601-602
Aiken acceleration formula, 363
A-inner product, of vectors, 332
Airy differential equation, 483 (CPb 11.2.2)
Algebra. See Linear algebra
Algorithms
Berman, 638 (16.1.5)
complete Horner's, 7, 23-24
conjugate gradient, 334
converting bases of numbers, 696

Fibonacci search, 628-631
Gauss-Huard, 279-280 (CPb 7.2.24)
Gaussian, 248, 250-251
golden section search, 631-633
Gram-Schmidt process, 519
linear least squares, 497
Moler-Morrison, 122 (CPb 3.3.14)
multivariate case of minimization of functions, 644-646
natural cubic spline functions, 388-392
Neider-Mead, 647-648
Neville's, 142-144
Newton, 129
normalized tridiagonal, 289 (CPb 7.2 .12)
orthogonal systems, 508-510
polynomial interpolation, 136-138
power method, 361-362
quadratic interpolation, 633-635
random numbers, 533-535, 535
Romberg, 165, 168, 204-215
description of, 204-205
Euler-Maclaurin formula and, 206-209
pseudocode for, 205-206
Richardson extrapolation of, 209-211
secant method for roots of equations, 112-113
shooting method for ordinary differential equations, 565-567
simplex, 672-673
variable metric, 647
Alternating series theorem, 28-30, 32 (Pb 1.2.13)
Antiderivative, 181. See also Integration, numerical
Approximation. See Least squares method; Spline functions
Area and volume estimation, 544-552
computing, 547-548
"ice cream cone" example of, 548
numerical integration for, 544-545
pseudocode for, 545-547
Arithmetic
Babylonian, 701
IEEE standard floating-point, 703-705
Mayan, 700-701
partial double-precision, 492
(CPb 11.3.2)
Arithmetic mean, $15(\mathrm{CPb}$ 1.1.7)
Arrays, 686, 688-689
Attraction, fractile basins of, 99-100, 108 (CPb 3.2.27)
Autonomous ordinary differential equations, 471-472, 479-480

Back substitution, in Gaussian algorithm, 248, 250-251
Backward error analysis, 52
Banded storage mode, 291 (CPb 7.2.19)
Banded systems of linear equations, 280-292
block pentadiagonal, 285-286
pentadiagonal, 283-285
strictly diagonal dominance in, 282-283
tridiagonal, 280-282
Banker's rounding, 6
Bases for numbers, 692-702
$\beta, 693$
conversion between, 693-696
16, 698
10, 692-693
from 10 to 8 to 2, 696-698
Basic Simpson's rule, 216-220, 228 (Pb 6.1.8)
Basic trapezoid rule, 190
Basins of attraction, 99-100, 108 (CPb 3.2.27)
Basis functions, 500-501, 505-508
Berman algorithm, 638 (CPb 16.1.5)
Bernoulli numbers, 208
Bernstein polynomials, 416
Bessel functions, $42(\mathrm{CPb} 1.2 .23), 186$, 215 (CPb 5.3.11)
Best-step steepest descent procedure, 643
Bézier curves, 416-418
Big O notation, 27
Biharmonic equation, 583
Binary search, for intervals, 384 (CPb 9.1.2)
Binary system, 693, 696-697. See also Bases for numbers
Binomial series, 31 (Pb 1.2.1)
Birthday problem, 553-555

Bisection method for locating roots of equations, 76-85
convergence analysis in, 81-83
example of, 79-81
false position method in, 83-84
pseudocode in, 78-79
secant method and Newton's method versus, 117
Bivariate functions, 144-145
Block pentadiagonal systems of linear equations, 285-286
Boundary cases, 685
Boundary-value problems. See Ordinary differential equations, boundary-value problems in
Bratu's problem, 581 (CPb 14.2.7)
B spline functions, 404-425
for Bézier curves, 416-418
interpolation and approximation by, 410-412
pseudocode and example of, 412-413
Schoenberg's process for, 414-415
theory of, 404-410
Bucking of a circular ring project, 581
(CPb 14.2.8)
Buffon's needle problem, 555-556
Calculus, Fundamental Theorem of, 181, 195
Cantilever beam, 341 (CPb 8.1.10)
Cardinal polynomials, 126-127
Case studies in programming, 687-691
Cauchy-Riemann equation, 105 (Pb 3.2.40)
Cauchy-Schwartz inequality, 503 (Pb 12.1.9), 643
Cayley-Hamilton Theorem, 358 (CPb 8.2 .5)
Central difference formula, 15 (CPb 1.1.3), 166, 171
Centroids, 648
Chapeau functions of B splines, 406
Characteristic equations, 719
Characteristic polynomials, 343
Chebyshev nodes, 155-156, 158, 163 (CPb 4.2.10), 174
Chebyshev polynomials
orthogonal systems and, 505-518
algorithm for, 508-510
orthonormal basis functions in, 505-508
polynomial regression in, 510-515
properties of, 140-141
Checkerboard ordering, $620(\mathrm{~Pb}$ 15.3.3)
Cholesky factorization, 305-306, 315 (Pb 8.1.24)
Chopping numbers, 6,51
Clamped cubic splines, 387
Clean loops, 686
Code, modularizing, 685, 687-688
Coefficients $\mathrm{a}_{\mathrm{j}}, 131-136$
Collocation method, 618

Column vectors, 671-672, 706
Companion matrix, 358 (CPb 8.2.3)
Complete Horner's algorithm, 23-24
Complete partial pivoting, 261-264
Components, in vectors, 706
Composite Gaussian three-point rule, 243 (CPb 6.2.11)
Composite midpoint rule for equal subintervals, 188 (Pb 5.1 .12)
Composite (left) rectangle rule, 202 (Pb 5.2.28)
Composite rectangle rule with uniform spacing, 202-203 (Pb 5.2.29)
Composite Simpson's rule, 220-221, 228 (Pb 6.1.6), 243 (CPb 6.2.11)
Composite trapezoid rule, 191, 194, 243 (CPb 6.2.11)
Composite trapezoid rule with unequal spacing, 203 (Pb 5.2 .32)
Computation, noise in, 174
Computer-aided geometric design, 425 (CPb 9.3.19)
Condition number, in linear equations, 321-322
Conjugate gradient method, 332-335
Constrained minimization problems, 625-626
Continuity of functions, 373-375
Contour diagrams, 644
Control points, in drawing curves, 371, 416
Convergence analysis
in bisection method, 81-83
in Newton's method, 93-96
in secant method, 114-116
Convergence theorems, 328-331
Convex hull, of vectors, 417
Corollaries on divided differences, 160
Correctly rounded value, 705
Correct rounding, 50
Cramer's Rule, 715
Crank-Nicolson method, 588-591
Crout factorization, 317 (CPb 8.1.2)
Cubic B spline, 423 (Pb 9.3 .38)
Cubic interpolating spline, 371. See also Spline functions
Curves. See Ordinary differential equations; Spline functions

Dawson integral, $439(\mathrm{CPb}$ 10.1.12)
Decimal places, accuracy to, 5
Decimal point, 693
Decomposition, in matrix factorizations, 296
Deflation of polynomials, 8,11
Delay ordinary differential equations, 450 (CPb 10.2.17)
Derivatives, 164-179
of B splines, 408
divided differences and, 159
of functions, 9-10
Lanczos' generalized, 178 (Pb 4.3 .21)
noise in computation and, 174
polynomial interpolation estimating of, 170-174
Richardson extrapolation for, 166-170
Taylor series estimating of, 164-166
Determinants, 278 (CPb 7.2.14)
Diagonal dominance, 282-283, 330
Diagonal matrices, 346-347, 709
Diet problem, 670 (CPb 17.1.5)
Differential equations, 353-355. See also Ordinary differential equations; Partial differential equations
Differentiation, 718
Diffusion equation, 584
Dimension, 718
Direct error analysis, 52
Direction vectors, 333
Direct method, for eigenvalues, 343
Dirichlet function, 154, 184, 584, 593, 618
Discretization method, 570-572
Divergent curves, 458
Divided differences
for calculating coefficients a_{j}, 131-136
corollary on, 160
derivatives and, 159
Doolittle factorization, 300, 317 (CPb 8.1.2)
Dot product of vectors, 708
Double-precision floating-point representation, 48-49
Dual problem, in linear programming, 661-663, 673

Economical version of singular value decomposition, 356 (Pb 87.2 .5)
Eigenvalues and eigenvectors, 258 (CPb 7.1. 6), 342-360. See also Power method for linear equations
calculating, 343-344
Gershgorin's Theorem and, 347-348
in linear algebra, 719
in linear differential equations, 353-355
in mathematical software, 344
matrix spectral theory of, 349-351
properties of, 345-347
singular value decomposition of, 348-349, 351-353
Elements, in vectors, 706, 708
Elliptic integrals, 39 (CPb 1.2.14), 180, 186
Elliptic problems, in differential equations, 584, $594(\mathrm{~Pb} 15.1 .1)$, 605-624
finite-difference method for, 606-609
finite-element methods for, 613-619
Gauss-Seidel iterative method for, 610
Helmholtz equation model, 605-606
pseudocode for, 610-613

Entry, in vectors, 706, 708
Epsilon, machine, 47-48
Equal oscillation property, 141
Equations, roots of. See Roots of equations, locating
Error. See also Polynomial interpolation absolute and relative, 5
in ordinary differential equations (ODE), 435
roundoff, 50, 52, 54, 63, 253, 687
single-step, 453
trapezoid rule analysis of, 192-196
truncation, 165-166, 174
unit roundoff, 703
vectors of, 254-255, 279 (CPb 7.2 .19)
Error function, 34 (Pb 1.2.52), 185-186
Error term, 25, 27, 174
Euclidean $/ l_{2}$-vector norm, 721
Euler-Bernoulli beam, 340 (CPb 8.1.10)
Euler-Maclaurin formula, 206-209, 214 (Pb 5.3.26)
Euler's constant, 59-60 (CPb 2.1.7)
Euler's method, 432-433, 437 (Pb 10.1.15)
European Space Agency, 54
Expanded reflected points, 648
Expansion, finite, 44
Explicit method for partial differential equations, 587, 591, 595 (Pb 15.1.12)
Exponents, 44, 544 (CPb 13.1.20), 687
Factorial notation, 21
Factoring, 296. See also Matrix factorizations
Fairing curves, 371
False position method, 83-84
Feasible set, of vectors, 658
Fehlberg method of order 4,451
Fibonacci numbers, 40 (CPb 1.2.16), 115, 628-631
Finite-difference method, 570-571, 574, 606-609
Finite-dimensional number, 718
Finite-element methods, 613-619
Finite expansion, 44
First bad case, of quadratic interpolation algorithm, 635
First-degree polynomial accuracy theorem, 375
First-degree spline accuracy theorem, 375
First-derivative formulas, 164-166, 170-174
First primal form, in linear programming, 657-658, 660-661, 673
Five-point formula for Laplace's equation, 606-607
Fixed point iteration, 117-118
Flatness test, 648
Floating-point numbers, 43-55, 102 (Pb 3.2.24)
computer errors in, 50-51, 54, 687
double-precision, 48-49
equality of, 689-690
floating-point machine number [$\mathrm{fl}(\mathrm{x})$] and, 51-55
IEEE standard arithmetic for, 703-705
normalized, 44-46
single-precision, 46-47
standard, 46
Forward elimination, in Gaussian algorithm, 248, 250
Fourier series, 73 (CPb 2.2 .15)
Fractile basins of attraction, 99-100, 108 (CPb 3.2.27)
Fractional numbers, converting bases of, 695-696
Fractional parts, 696
French curves, 371
French railroad system problem, 559 (CPb 13.3.3)
Fresnel integral, 186, 204 (CPb 5.2.5)
Frobenius norm, 338 (Pb 8.1.10)
Fully implicit method for partial differential equations, 595 (Pb 15.1.13)
Functions, minimization of, 625-658
multivariate case of, 639-656 advanced algorithms for, 644-646
contour diagrams for, 644
minimum, maximum and saddle points in, 646
Neider-Mead algorithm for, 647-648
positive definite matrix and, 647
quasi-Newton methods for, 647
simulated annealing method for, 648-649
steepest descent procedure for, 643
Taylor Series for F in, 640-642
one-variable case of, 625-639
Fibonacci search algorithm and, 628-631
golden section search algorithm and, 631-633
quadratic interpolation algorithm and, 633-635
special case of, 626-627
unconstrained and constrained problems in, 625-626
unimodal functions F as, 627-628
Fundamental Theorem of Calculus, 181, 195

Galerkin equation, 617
Gauss-Huard algorithm, 279-280 (CPb 7.2.24)
Gaussian continued functions, 73 (CPb 2.2.18)
Gaussian elimination
naive, 245-258
algorithm for, 248-250
example of, 247-248
failure of, 259-260
in matrix factorizations, 295-296, 311 (Pb 8.1.1)
pseudocode for, 250-254
residual and error vectors in, 254-255
with scaled partial pivoting, 259-280
complete partial pivoting versus, 261-264
example of, 265-266
long operation count for, 269-270
numerical stability of, 271
pseudocode for, 266-269
Gaussian method for elliptic integrals, 39 (CPb 1.2.14)
Gaussian quadrature formulas, 230-244
change of intervals in, 231
composite three-point, 243 (CPb 6.2 .11)
description of, 230-231
integrals with singularities in, 237-239
Legendre polynomials in, 234-237
nodes and weights in, 232-234
Gauss-Jordan algorithm, 279-280 (CPb 7.2.24)
Gauss-Legendre quadrature formulas, 232
Gauss-Seidel method, 323-325, 330-331, 610
Generalized Neumann equation, 584
Generalized Newton's method, 104 (Pb 3.2.36)
General quadratic functions, 652 (Pb 16.2.15)
Gershgorin's Theorem, 347-348
Global positioning systems, 111 (CPb 3.2.41)
Golden ratio, 115, 638 (CPb 16.1.5)
Golden section search algorithm, 631-633
Goodness of fit, 374
Gradient of quadratic forms, 333
Gradient vector matrix, 640-641
Gram-Schmidt process, 506, 519, 722-723
Greatest lower bound, in integration, 182
Great Internet Mersenne Prime Search (GIMPS), 541

Halley's method, 122 (CPb 3.3.13)
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Abramowitz and Stegun), 186
Harmonic functions, 607, 618
Harmonic series, 59-60 (CPb 2.1.7)
Hat functions of B splines, 406
Heat equation model, 583-586
Helmholtz equation model, 584, 605-606
Hermitian matrices, 345
Hessian matrix, 640-641
Heun's method, 437 (Pb 10.1.15)

Hexadecimal system, 693, 698. See also Bases for numbers
Hidden bits, 47
Hilbert matrix, 276 (CPb 7.2 .4), 527
(Pb 12.3.2)
Histograms, 560 (CPb 13.3.13)
Horner's algorithm, 7, 23-24
Hyperbolic problems, in differential equations, 584, 594 (Pb 15.1 .1), 596-605
advection equation as, 601
analytical solution for, 597-598
Lax method for, 602
Lax-Wendroff method for, 602-603
numerical solution for, 598-599
pseudocode for, 600-601
upwind method for, 602
wave equation model as, 596-597
Idemtity matrix, 709
IEEE floating-point standard arithmetic, 703-705
Ill-conditioning, 321-322, 448 (CPb 10.2.5)
Improved Euler's method, 437 (Pb 10.1.15)
IMSL mathematical library, 10
Incompatible systems, 519
Inconsistent systems, 519
Index vector, 262, 266
Inductive definition, in Newton's method, 91
Initial-value problem, 426-428, 431, 463 (CPb 10.3.17)
Inner product, 332, 512, 708
Integer parts, 696
Integrals
Dawson, 439 (CPb 10.1.12)
elliptic, 39 (CPb 1.2.14), 180, 186
sine, 189 (CPb 5.1.2), 204 (CPb 5.2.5), 463 (CPb 10.3.15)
Integration, numerical, 180-244
for area and volume estimation, 544-545
definite and indefinite, 180-181
Gaussian quadrature formulas in, 230-244
change of intervals in, 231
description of, 230-231
integrals with singularities in, 237-239
Legendre polynomials in, 234-237
nodes and weights in, 232-234
lower and upper sums in, 181-183
of ordinary differential equations (ODE), 428-429
pseudocode and examples of, 184-187
Riemann-integrable functions in, 183-184
Romberg algorithm in, 204-215
description of, 204-205

Euler-Maclaurin formula and, 206-209
pseudocode for, 205-206
Richardson extrapolation of, 209-211
Simpson's rule in, 216-229
adaptive, 221-225
basic, 216-220
composite, 220-221
Newton-Cotes rules and, 225-226
trapezoid rule in, 190-204
error analysis in, 192-197
multidimensional integration in, 198-199
uniform spacing in, 191-192
Intermediate-value theorem, 78, 194
Interpolation. See B spline functions; Polynomial interpolation; Quadratic interpolation algorithm
Invariance theorem, 135
Inverse polynomial interpolation, 141-142, 567
Inverse power method, 364-365
Irregular five-point formula for Laplace's equation, 607
Iterations. See also Linear equations, systems of
fixed point, 117-118
limiting, 689
Newton-Raphson, 89
Richardson, 322-323
Jacobean matrix, 97-98, 100
Jacobi method, 323-325, 330-331
Jacobi overrelaxation (JOR) method, 332

Kepler's equation, 106 (CPb 3.2.6)
Knots, in spline theory, 372, 378
Kronecker delta equation, 145
k th residual, 519
Lagrange form of polynomial interpolation, 25, 126-128, 144
Lanczos' generalized derivative, 178 (Pb 4.3.21)
LAPACK mathematical software, 344, 351
Laplace's equations, 286, 583-584, 605-606, 618
Laws of Motion, Newton's, 428, 465
Lax method, 602
Lax-Wendroff method, 602-603
$L D L^{T}$ factorizations, 302-304, 315 (Pb 8.1.24)
Least lower bound, in integration, 182
Least squares method, 495-505, 518-531, 652 (Pb 16.1.20)
basis function in, 500-501
linear example of, 521-522
nonlinear example of, 520-522
nonpolynomial example of, 499-500
singular value decomposition (SVD) and, 522-527
weight function in, 519-520
Least upper bound, of number set, 374
Lebesgue constants, 73 (CPb 2.2.15)
Legendre polynomials, 234-237
Legendre's elliptic integral relation, 39 (CPb 1.2.14)
Lemma, upper bound, 157
Length of vectors, 320
L'Hôpital's rule, $34(\mathrm{~Pb} 1.2 .49)$
Libraries, program, 10, 686-687
Linear algebra, 706-723
abstract vector spaces in, 716-723
bases for, 718-720
change in similarity of, 719-720
eigenvalues and eigenvectors in, 719
Gram-Schmidt process for, 722-723
linear independence in, 717-718
linear transformations for, 718-719
norms for, 721-722
orthogonal matrices and spectral theorem in, 720-721
subspaces in, 717
Cramer's Rule and, 715
matrices in, 708-710
matrix product in, 711-713
matrix-vector product in, 711
symmetric matrices in, 714-715
transpose matrices in, 713-714
vectors in, 706-708
Linear B spline, 422 (Pb 9.3 .36)
Linear combinations, 707
Linear convergence, 82
Linear equations, systems of, 245-370
banded, 280-292
block pentadiagonal, 285-286
pentadiagonal, 283-285
strictly diagonal dominance in, 282-283
tridiagonal, 280-282
eigenvalues and eigenvectors in, 342-360
calculating, 343-344
Gershgorin's Theorem and, 347-348
in linear differential equations, 353-355
in mathematical software, 344
matrix spectral theory of, 349-351
properties of, 345-347
singular value decomposition of, 348-349, 351-353
Gaussian elimination with scaled partial pivoting of, 259-280
complete partial pivoting versus, 261-264
example of, 265-266
long operation count for, 269-270
numerical stability of, 271
pseudocode for, 266-269
inconsistent, 675-683
iterative solutions of, 319-341

Linear equations, systems of (continued)
basic methods of, 322-327
condition number and ill-conditioning in, 321-322
conjugate gradient method of, 332-335
convergence theorems for, 328-331
matrix formulation for, 331-332
overrelaxation in, 332
pseudocode for, 327-328
vector and matrix norms in, 319-320
matrix factorizations in, 293-319
Cholesky factorization as, 305-306
derivation of, 296-300
example of, 294-296
A^{-1} in, 307
$L D L^{T}$ factorization as, 302-304
$L U$ factorization as, 300-302
multiple right-hand sides in, 306-307
pseudocode for, 300
software package example of, 307-309
naive Gaussian elimination of, 245-258
algorithm for, 248-250
example of, 247-248
failure of, 259-260
pseudocode for, 250-254
residual and error vectors in, 254-255, 279 (CPb 7.2.19)
power method for, 360-370
Aiken acceleration formula for, 363
algorithms for, 361-362
inverse, 364-365
in mathematical software, 363
shifted inverse, 365-366
Linear functions, 361, 641
Linear interpolation, 162 (Pb 4.2 .8)
Linearize and solve approach to solving nonlinear equations, 96, 117
Linearly independent sets, 501
Linear polynomial interpolation, 125-126
Linear programming, 657-683
approximate solution of inconsistent linear systems from, 675-683
l_{∞} problem for, 678-680
l_{1} problem for, 676-678
dual problem in, 661-663
first primal form in, 657-658, 660-661
optimization example of, 658-660
second primal form in, 663-664
simplex method for, 670-675
l_{∞}-matrix norm, 320
l_{∞} problem, 678-680
l_{∞}-vector norm, 320, 721
l_{∞}-matrix norm, 722
l_{1}-matrix norm, 722
Loaded die problem, 552-553
Localization theorems, 347
Local minimum points of functions, 626

Local truncation error, 435
Logarithmic integral, 186, 189
(CPb 5.1.3)
l_{1} approximation, 496
l_{1}-matrix norm, 320
l_{1} problem, 676-678
l_{1}-vector norm, 320, 721
Loops, clean, 686
Lower and upper sums, in integration, 181-183
Lower triangular matrix, 710
Lucas-Lehmer test, 540
$L U$ factorization
derivation of, 296-300
description of, 294
problems in, $314-315(\mathrm{~Pb} 8.1 .18), 319$ (CPb 8.1.14)
solving linear systems with, 300-302
Machine epsilon, 47-48, 703
Machine numbers, 44, 51. See also Floating-point numbers
Maclaurin series, 31 (Pb 1.2.1), 41 (CPb 1.2.21)
Macsyma mathematical software, 10
Magnitude of vectors, 320
Main diagonal matrix, 710
Mantissa, normalized, 44, 47
Maple mathematical software, 10
boundary-value problem, 577
differential equations, 427
eigenvalues, 343-344
error function in, 186
linear programming, 678-679
$L U$ factorization in, 308
minimal solution, 526
minimization problems, 626
nonlinear equations, 99, 111
(CPb 3.2 .42), 123 (CPb 3.3.19)
partial differential equations, 592
polynomial interpolation in, 153 (CPb 4.1 .11), 164 (CPb 4.2 .12)
random numbers, 533, 535
roots of equations in, 81,88 (CPb 3.1.12), 93
singular value decomposition, 351
splines, 409-410, 418
symbolic verification in, 20 (CPb 1.1.26)
Marching problem/method, 586
March of B splines, 424 (CPb 9.3.6)
Mathematica mathematical software, 10
boundary-value problem, 577
differential equations, 427
eigenvalues, 343-344
error function in, 186
linear programming, 678-679
$L U$ factorization in, 308
minimal solution, 526
minimization problems, 626
nonlinear equations, 99, 111
(CPb 3.2 .42), 123 (CPb 3.3.19)
partial differential equations, 592
polynomial interpolation in, 153
(CPb 4.1 .11), 164 (CPb 4.2 .12)
random numbers, 533, 535
roots of equations in, 81,88
(CPb 3.1.12), 93
splines, 418
symbolic verification in, 20 (CPb 1.1.26)
Matlab mathematical software, 10
boundary-value problem, 577
eigenvalues, 343-344
error function in, 186
linear programming, 678-679
$L U$ factorization in, 308
minimal solution, 526
minimization problems, 626
nonlinear equations in, 99, 111 (CPb 3.2 .42), $123(\mathrm{CPb} 3.3 .19)$
not-a-knot condition, of splines, 394
PDE Toolbox, 584, 592-593, 612
polynomial interpolation in, 153 (CPb 4.1 .11), 164 (CPb 4.2 .12)
random numbers, 533, 535
roots of equations in, 81,88 (CPb 3.1.12), 93
singular value decomposition, 351
splines, 409
vector fields, 430
Matrices. See also Linear algebra; Singular value decomposition (SVD)
companion, 358 (CPb 8.2.3)
diagonal, 346-347
Gershgorin's Theorem and, 348
gradient vector, 640-641
Hermitian, 345-346
Hessian, 640-641
Hilbert, 276 (CPb 7.2.4), 527 (Pb 12.3.2)
Jacobean, 97-98
of near-deficiency in rank, 526
permutation, 307
positive definite, 305, 332-333, 345, 647
pseudo-inverse of, 525-526
row-equilibrated, $275(\mathrm{~Pb} 7.2 .23)$
similar, 345
singular values of, 349
symmetric, $332,345,640$
symmetric positive definite (SPD), 305, 330
transpose of, 345
triangular, 346
unitarily similar, 345-346
Vandermonde, 139-141, 152 (Pb 4.1.47), 254
Matrix factorizations, 293-319
Cholesky, 305-306
derivation of, 296-300
example of, 294-296
A^{-1} in, 307
LDL ${ }^{T}$, 302-304
LU, 300-302
multiple right-hand sides in, 306-307
pseudocode for, 300
software package example of, 307-309
Matrix formulations, 331-332
Matrix norms, 319-320, 721-722
Matrix spectral theory, 349-351
Maximal linearly independent basis, 718
Maximum points of functions, 646
Mayan arithmetic, 700-701
Mean, arithmetic, $15(\mathrm{CPb}$ 1.1.7)
Mean-Value Theorem, 26, 193, 397
Memory fetches, 688
Mersenne prime number, 534
Midpoint method, 188 (Pb 5.1.10), 188 (Pb 5.1.12), 201 (Pb 5.2 .18), 462 (CPb 10.3.8)
Minimal solution, to linear equations, 524-526
Minimization of functions. See Functions, minimization of
Minimum points of functions, 626, 646
Mixed Dirichlet/Neumann equation, 584
Mixed mode coding, 687-688
Modified false position method, 84
Modified Newton's method, 104 (Pb 3.2 .35)
Modularizing code, 685
Modulus of continuity in spline functions, 374-375
Molecular conformation, 655 (CPb 16.2.2), 655 (CPb 16.2.10)
Moler-Morrison algorithm, 122 (CPb 3.3.14)
Monte Carlo methods. See also Simulation
area and volume estimation by, 544-552
computing, 547-548
"ice cream cone" example of, 548
numerical integration for, 544-545
pseudocode for, 545-547
random numbers and, 532-544
algorithms and generators for, 533-535
examples of, 535-537
pseudocode for, 537-541
Muller's method, 123 (CPb 3.3.17)
Multidimensional integration, 198-199
Multiple zero, 96, 104 (Pb 3.2 .35)
Multiplication, nested, 7-9, 12 (Pb 1.1.6), 131
Multipliers, in Gaussian algorithm, 249
Multistep methods, 483
Multivariate case of minimization of functions
advanced algorithms for, 644-646
contour diagrams for, 644
minimum, maximum and saddle points in, 646

Neider-Mead algorithm for, 647-648
positive definite matrix and, 647
quasi-Newton methods for, 647
simulated annealing method for, 648-649
steepest descent procedure for, 643
Taylor Series for F in, 640-642
NAG mathematical library, 10
NaN (Not a Number), 704
Natural cubic spline functions
algorithm for, 388-392
introduction to, 385-387
pseudocode for, 392-394
smoothness property from, 396-398
space curves from, 394-396
Natural logarithm (ln), 1
Natural ordering, 262-264, 609
Navler-Stokes equation, 583-584
Near-deficiency in rank, matrix with, 526
Neider-Mead algorithm, 647-648
Nested form of polynomial interpolation, 130-131
Nested multiplication, 7-9, 12 (Pb 1.1.6), 131
Neumann equation, 584
Neutron shielding simulation, 557-558
Neville's algorithm, 142-144
Newton-Cotes rules, 225-226, 229 (CPb 6.1.7)
Newton-Raphson iteration, 89
Newton's form of polynomial interpolation, 128-130, 133, $150-151$ (Pb 4.1.38), 164 (CPb 4.2.14)
Newton's Laws of Motion, 428, 465
Newton's method for locating roots of equations, 89-100
bisection method and secant method versus, 117
convergence analysis in, 93-96
fractile basins of attraction in, 99-100
generalized, $104(\mathrm{~Pb}$ 3.2.37)
interpretation of, 90-91
modified, 104 (Pb 3.2.35)
nonlinear equation systems in, 96-99
pseudocode in, 92-93
Newton's method for nonlinear systems, 98
Nine-point formula for Laplace's equation, 607, $621(\mathrm{~Pb}$ 15.3.10)
Nodes
Chebyshev, 155-156, 158, 163 (CPb 4.2.10), 174
Gaussian, 230, 232-234
in polynomial interpolation, 125
in spline theory, 378
Noise in computation, 174
Nonlinear equation systems, 83, 96-99, 104 (Pb 3.2.39)
Nonlinear least squares problems, 520-522

Nonperiodic spline filter, 291
(CPb 7.2.22)
Normal equations, 497, 499, 501, 617
Normalized floating-point representation, 44-46
Normalized mantissa, 44, 47
Normalized scientific notation, 43
Normalized tridiagonal algorithm, 289 (CPb 7.2.12)
Norm induced, 721
Norms, 319-320, 721-722
n-simplex sets, 648
Number representation. See Floating-point numbers

Objective functions, 658
Octal system, 693, 696-697. See also Bases for numbers
Octave mathematical software, 10
Odd periodic functions, 598
Olver's method, 122 (CPb 3.3 .12)
One-variable case of minimization of functions, 625-639
Fibonacci search algorithm and, 628-631
golden section search algorithm and, 631-633
quadratic interpolation algorithm and, 633-635
special case of, 626-627
unconstrained and constrained problems in, 625-626
unimodal functions F as, 627-628
Optimization example, of linear programming, 658-660
Ordering, natural, 262-264, 609
Ordering, red-black (checkerboard), 620 (Pb 15.3.3)
Ordinary differential equations (ODE), 426-464
Adams-Bashforth-Moulton formulas for, 455-456
error types in, 435
Euler's method pseudocode for, 432-433
initial-value problem in, 426-428
integration and, 428-429
Runge-Kutta methods for, 439-450
adaptive, 450-454
example of, 454-455
of order 4, 442-443
of order 2, 441-442
pseudocode for, 443-444
Taylor series in two variables and, 440-441
stability analysis for, 456-459
Taylor series methods for, 431-435
vector fields in, 429-431
Ordinary differential equations, boundary-value problems in, 563-581
discretization method for, 570-572

Ordinary differential equations
(continued)
shooting method for
algorithm for, 565-567
in linear case, 574-575
overview of, 563-565
pseudocode for, 575-577
refinements to, 567
Ordinary differential equations, systems of, 465-494
Adams-Bashforth-Moulton methods for, 483-494
adaptive scheme for, 488
example of, 488-489
predictor-corrector scheme in, 483-484
pseudocode for, 484-488
stiff equations and, 489-491
first order methods for, 465-477
for autonomous ODE, 471-471
Runge-Kutta, 469-471
Taylor series, 466-469
uncoupled and coupled systems in, 465-466
vector notation for, 467-469
higher order, 477-483
Orthogonal matrices, 720-721
Orthogonal systems. See also Chebyshev polynomials
algorithm for, 508-510
orthonormal basis functions in, 505-508
polynomial regression in, 510-515
Overflow, of range, 45
Overrelaxation, 324, 326-327, 331-332
Padé interpolation, 153 (CPb 4.1.17)
Padé rational approximation, 41 (CPb 1.2 .22), 73 (CPb 2.2 .17)
Parabolic problems, in differential equations, 582-596, 594 (Pb15.1.1)
applied, 582-585
Crank-Nicolson alternative method for, 590-591
Crank-Nicolson method for, 588-589
heat equation model as, 585-586
pseudocode for Crank-Nicolson method for, 589-590
pseudocode for explicit model of, 587
stability and, 591-593
Parametric representation, of curves, 394
Partial differential equations, 582-624
elliptic problems in, 605-624
finite-difference method for, 606-609
finite-element methods for, 613-619
Gauss-Seidel iterative method for, 610
Helmholtz equation model, 605-606
pseudocode for, 610-613
hyperbolic problems in, 596-605
advection equation as, 601
analytical solution for, 597-598
Lax method for, 602
Lax-Wendroff method for, 602-603
numerical solution for, 598-599
pseudocode for, 600-601
upwind method for, 602
wave equation model, 596-597
parabolic problems in, 582-596
applied, 582-585
Crank-Nicolson alternative method for, 590-591
Crank-Nicolson method for, 588-589
heat equation model as, 585-586
pseudocode for Crank-Nicolson method for, 589-590
pseudocode for explicit model of, 587
stability and, 591-593
Partial double-precision arithmetic, 492 (CPb 11.3.2)
Partition of unity on interval, 417
Pascal's triangle, $37(\mathrm{CPb} 1.2 .10 \mathrm{c})$
Penrose properties, 526-527
Pentadiagonal systems of linear equations, 280, 283-285
Periodic cubic splines, 387, 401 (Pb 9.2.23)
Periodicity, 67, 598
Periodic sequences of random numbers, 535
Periodic spline filter, 292 (CPb 7.2 .23)
Permutation matrices, 307
Piecewise bilinear polynomial, 384 (CPb 9.1.3)
Piecewise linear functions, 372
Pierce decomposition, 356 (Pb 8.2.6)
Π, computing value of, $12(\mathrm{~Pb}$ 1.1.1, Pb 1.1.4)
Pivoting, 246
pivot element for, 249, 271
pivot equation for, 247, 249
scaled partial, 259-280 complete partial pivoting and, 261
example of, 265-266
Gaussian elimination with, 262-264
long operational count and, 269-270
numerical stability and, 271
pseudocode for, 266-269
Poisson equation, 584, 605, 613, 615
Polygonal functions, 372
Polyhedral set, 671
Polynomial(s), 8, 11, 343
Polynomial interpolation, 124-164
algorithms and pseudocode for, 136-138
of bivariate functions, 144-145
derivative estimating by, 170-174
divided differences for calculating coefficients a_{j} in, 131-136
errors in, 153-164
Dirichlet function as, 154
Runge function as, 154-156
theorems on, 156-160
inverse, 141-142
Lagrange form of, 126-128
linear, 125-126, 162 (Pb 4.2 .8)
nested form of, 130-131
Neville's algorithm for, 142-144
Newton form of, 128-130
Vandermonde matrix for, 139-141
Polynomial regression, 510-515
Positive definite matrices, 305, 332-333, 345, 647
Power method for linear equations. See also Eigenvalues and eigenvectors
Aiken acceleration formula for, 363
algorithms for, 361-362
inverse, 364-365
in mathematical software, 363
shifted inverse, 365-366
Precision, 3-6, 63-64, 688. See also IEEE floating-point standard arithmetic
Preconditioning, 335
Predator-prey models, 465
Predictor-corrector scheme, 461 (CPb 10.3.4), 483-484
Prime numbers, 534, 540
Probability integral, 204 (CPb 5.2.5)
Product, matrix, 711-713
Program libraries, 686-687
Programming derivatives, $9-10$
Programming suggestions, 684-691
Projection, 356 (Pb 8.2.6)
Projection operator, 722
Prony's method, 530 (CPb 12.3.2)
Protein folding, 655 (CPb 16.2.10)
Pseudocode
Adams-Bashforth-Moulton methods, 484-488
area and volume estimation, 545-547
bisection method, 78-79
as bridge, 684
B spline functions, 412-413
conjugate gradient algorithm, 334
Crank-Nicolson method, 589-590
elliptic problems, 610-613
Euler's method, 432-433
explicit model of partial differential equations, 587
Gaussian elimination with scaled partial pivoting, 266-269
Gauss-Seidel method, 327, 610
hyperbolic problems, 600-601
Jacobi method, 327
linear equations, 327-328
loaded die problems, 552-553
matrix factorizations, 300
naive Gaussian elimination, 250-254
natural cubic spline functions, 392-394

Newton's method, 92-93
numerical integration, 184-187
polynomial interpolation, 136-138
power method, 361-362
random numbers, 535, 537-541
Romberg algorithm, 205-206
Runge-Kutta-Fehlberg methods, 452
Runge-Kutta methods, 443-444, 453-454
Schoenberg's process, 415
secant method, 112
shooting method for ordinary differential equations (ODE), 575-577
successive overrelaxation (SOR) method, 327
Taylor series of order 4, 468-469
Pseudo-inverse, of matrices, 525-526
Pseudo-random numbers, 533
Quadratic B spline, 423 (Pb 9.3.37)
Quadratic convergence, 93, 100
Quadratic form, 333
Quadratic functions, 642, 652 (Pb 16.2.15)
Quadratic interpolation algorithm, 633-635
Quadratic splines, 376-378
Quadrature rules, 187
Quasi-Newton methods for minimization of functions, 647
Quasi-random number sequences, 540
Radix point, 693
Random numbers, 532-544
algorithms and generators for, 533-535
examples of, 535-537
pseudocode for, 537-541
Random walk problem, 561 (CPb 13.3.17-18)
Range, of computer, 45
Range reduction, 67-68
Rationalizing numerators, 64
Rayleigh quotient, 368 (Pb 8.3.7)
Reciprocals of numbers, 102 (Pb 3.2 .23)
Recursive definition, in Newton's method, 91
Recursive property of divided differences theorem, 134
Recursive trapezoid formula for equal subintervals, 196-197
Red-black ordering, 620 (Pb 15.3.3)
Reflected points, 648
Regression, polynomial, 510-515
Regula falsi method, 83-84
Relative errors, 5
Relaxation factor, 326. See also Overrelaxation
Remainder, 25
Residual, 254-255, 279 (CPb 7.2.19), 519, 619

Richardson extrapolation
estimating derivatives and, 166-170, 177 (Pb 4.3.19)
Euler-Maclaurin formula and, 207
of Romberg algorithm, 209-211
Richardson iteration, 322-323
Riemann-integrable functions, 183-184
Riffle shuffles, 562 (CPb 13.3.27)
Rising sequences, 562 (CPb 13.3.27)
Robust software, 269
Rolle's Theorem, 156-157
Romberg algorithm
convergence in, 165
description of, 204-205
Euler-Maclaurin formula and, 206-209
notation for, 196
pseudocode for, 205-206
Richardson extrapolation and, 168, 209-211
Roots of equations, locating, 76-123
bisection method for, 76-85
convergence analysis in, 81-83
example of, 79-81
false position method in, 83-84
pseudocode for, 78-79
Newton's method for, 89-100
convergence analysis in, 93-96
fractile basins of attraction in, 99-100
interpretation of, 90-91
nonlinear equation systems in, 96-99
pseudocode in, 92-93
secant method for, 111-119
algorithm for, 112-113
bisection and Newton's methods versus, 117
convergence analysis in, 114-116
fixed point iteration and, 117-118
Rounding modes, 705
Rounding numbers, 6, 50
Roundoff error, 50, 52, 54, 63, 253, 435, 687, 703
Round-to-even method, 6
Round to nearest value, 705
Row-equilibrated matrix, 275 (Pb 7.2 .23)
Row vectors, 706
Runge function, 125, 154-156
Runge-Kutta-England method, 463-464 (CPb 10.3.19)
Runge-Kutta methods, 439-450
adaptive, 450-454
example of, 454-455
of order 5, 451
of order 4, 442-443
of order 3, 445-446 (Pb 10.2.7)
of order 2, 441-442
pseudocode for, 443-444
for systems of ordinary differential equations, 469-472

Taylor series in two variables and, 440-441

Saddle points of functions, 646
Scale vector, 262
Scaling, 271
Schoenberg's process, 414-415
Scientific notation, normalized, 43
Secant method for locating roots of equations, 111-119
algorithm for, 112-113
bisection and Newton's methods versus, 117
convergence analysis in, 114-116
fixed point iteration and, 117-118
Second bad case, of quadratic interpolation algorithm, 635
Second-derivative formulas, 173-174
Second primal form, in linear programming, 663-664
Seed, for random number sequence, 534
Serpentine curves, 395
Shifted inverse power method, 365-366
Shooting method for ordinary differential equations (ODE), 563-570
algorithm for, 565-567
in linear case, 574-575
overview of, 563-565
pseudocode for, 575-577
refinements to, 567
Shure's Theorem, 346
Significance
loss of, 61-68
avoiding in subtraction, 64-67
computer-caused, 62-63
range reduction and, 67-68
theorem for, 63-64
significant digits in, 3-5, 61
Significands, 47
Similar matrices, 345
Simplex method, 670-675
Simple zero, 93
Simpson's rule, 216-229
adaptive, 221-225
basic, 216-220, 228 (Pb 6.1.8)
composite, 220-221, 228 (Pb 6.1 .6), 243 (CPb 6.2.11)
Simulated annealing method, 648-649
Simulation, 552-562. See also Monte Carlo methods
birthday problem as, 553-555
Buffon's needle problem as, 555-556
loaded die problem as, $552-553$
neutron shielding, 557-558
two dice problem as, 556-557
Simultaneous nonlinear equations, 104 (Pb 3.2.39)
Sine integral, 189 (CPb 5.1.2), 204 (CPb 5.2.5), 463 (CPb 10.3.15)
Single-precision floating-point representation, 46-47
Single-step error, 453

Single-step methods, 483
Singular value decomposition (SVD)
economical version of, $356(\mathrm{~Pb} 8.3 .5)$
eigenvalues and eigenvectors and, 348-349
least squares method and, 519 , 522-527
matrix spectral theory and, 350
numerical examples of, 351-353
Singular values, 320
$\sin x$, periodicity of, 67
Smoothing data, 396-398. See also Chebyshev polynomials; Least squares method
Software, mathematical, 10-11
boundary-value problem, 577
development of, 691
differential equations, 427
eigenvalues and eigenvectors, 343-344
error function in, 186
linear programming, 678-679
$L U$ factorization, 308
matrix factorizations, 307-309
minimal solution, 526
minimization problems, 626
nonlinear equations, 99, 111
(CPb 3.2.42), 123 (CPb 3.3.19)
partial differential equations, 584, 592
polynomial interpolation, 153
(CPb 4.1 .11), 164 (CPb 4.2 .12)
power method for linear equations, 363
random numbers, 533,535
robust, 269
roots of equations, 81,88
(CPb 3.1 .12), 93
singular value decomposition, 351
splines, 394, 409-410, 418
symbolic verification, $20(\mathrm{CPb}$ 1.1.26)
vector fields, 430
Solution case, of quadratic interpolation algorithm, 634
Solutions for differential equations, 426
Sparse factorization, 315 (Pb 8.1 .24)
Spectral $/ l_{2}$-matrix norm, 320. See also Matrix spectral theory
Spectral $/ l_{2}$-vector norm, 722
Spectral radius, 320, 329
Spectral theorem, 720-721
Spline functions, 371-425
B, 404-425
for Bézier curves, 416-418
interpolation and approximation by, 410-412
pseudocode and example of, 412-413
Schoenberg's process for, 414-415
theory of, 404-410
first-degree, 371-374
interpolating quadratic, $Q(x), 376-378$ modulus of continuity in, 374-375 natural cubic, 385-404
algorithm for, 388-392
introduction to, 385-387
pseudocode for, 392-394
smoothness property from, 396-398
space curves from, 394-396
second-degree, 376
Subbotin quadratic, 378-380
Spurious zeros, 62
Stability
numerical, 271
in ordinary differential equations (ODE), 456-459
in partial differential equations, 591-593
Standard deviation, 15 (CPb 1.1.7)
Standard floating-point representation, 46
Stationary points of functions, 646
Statistician's rounding, 6
Steady state of systems, 489
Steepest descent procedure, 643, 655 (CPb 16.2.2)
Steffensen's method, 104 (Pb 3.2 .36)
Stiff equations, 489-491
Stirling's formula, 34 (Pb 1.2.47)
Subbotin quadratic spline functions, 378-380
Subdiagonal matrix, 280, 710
Subnormal numbers, 704
Subordinate norms, 721
Subtraction, significance and, 64-67
Successive overrelaxation (SOR) method, 324, 326, 331-332
Superdiagonal matrix, 280, 710
Superlinear convergence, 84, 115
Supremum (least upper bound), 374
Symbolic computations, 435
Symbolic verification, 20 (CPb 1.1.26)
Symmetric banded storage mode, 291 (CPb 7.2.20)
Symmetric matrices, 332, 345, 640, 714-715
Symmetric positive definite (SPD) matrices, 305, 330
Symmetric storage mode, 278 (CPb 7.2.13)
Synthetic division, 7
Tacoma Narrows Bridge project, 493 (CPb 11.3.9)
Taylor series, 20-31, $177(\mathrm{~Pb} 4.3 .19)$
alternating series and, 28-30
complete Horner's algorithm in, 23-24
derivative estimating by, 164-166
examples of, 20-22
of f at the point $c, 22-23$
for F in minimization of functions, 640-642
machine precision and, $70(\mathrm{~Pb} 2.2 .28)$
in Mean-Value Theorem, 26
for natural logarithm (ln), 1
for ordinary differential equations, 431-435, 466-469
Runge-Kutta methods and, 440-441
Taylor's Theorem in terms of h and, 27-28
Taylor's Theorem in terms of $(x-c)$ and, 24-26
Telescoped rational functions, 73 (CPb 2.2.18)
Tensor-product interpolation, 144
Tent function, 122 (CPb 3.3.15)
Test cases, 685
Theorems
alternating series, 28-30, 32 (Pb 1.2.13)
axioms for a vector space, 716
bisection method, 82
Cayley-Hamilton, 358 (CPb 8.2.5)
Cholesky factorizations, 305
cubic spline smoothness, 397
divided differences and derivatives, 159
duality, 662
eigenvlaues of similar matrices, 345
Euler-Maclaurin formula, 208
on existence of polynomial interpolation, 128
first-degree polynomial accuracy, 375
first-degree spline accuracy, 375
first primal form, 658
Fundamental Theorem of Calculus, 181, 195
Gaussian quadrature, 232
Gershgorin's, 347
initial value problem uniqueness, 431
intermediate-value, 78, 194
on interpolation errors, 156-160
on interpolation properties, 143
invariance, 135
Jacobi and Gauss-Seidel convergence, 330
linear differential equations, 354
linear independence, 718
localization, 347
long operations, 270
on loss of precision, 63-64
$L U$ factorization, 298
matrix spectral, 349
Mean-Value, 26, 397
Mean-Value Theorem for Integrals, 193
minimal solution, 525
Newton's method of locating roots of equations, 94
orthogonal basis, 350
Penrose properties of pseudo-inverse, 526
on polynomial interpolation error, 156-160
primal and dual problems, 662
recursive property of divided differences, 134
recursive trapezoid formula, 197
Richardson extrapolation, 168

Riemann integral, 183
Rolle's, 156-157
second primal form, 663
Shure's, 346
spectral, 720-721
spectral radius, 329
spectral theorem for symmetric matrices, 720
successive overrelaxation (SOR), 331
SVD least squares, 523
Taylor's, 166
Taylor's Theorem in terms of h, 27-28
Taylor's Theorem in terms of ($\mathrm{x}-\mathrm{c}$), 24-26
trapezoid rule precision, 192
vertices and column vectors, 671
Weierstrass approximation, 416
weighted Gaussian quadrature, 232
3-simplex sets, 648
Transpose of matrices, 345, 707, 713-714
Trapezoid rule, 190-204. See also Simpson's rule
composite, 191, 194, 243 (CPb 6.2.11)
composite with unequal spacing, 203 (Pb 5.2.32)
error analysis in, 192-196
multidimensional integration in, 198-199
recursive formula for equal subintervals in, 196-197
uniform spacing in, 191-192
Triangular inequality, 320, 721
Triangular matrix, 346, 710
Tridiagonal matrix, 709
Tridiagonal systems of linear equations, 280-282, 289 (CPb 7.2.12)
Troesch's problem, 581 (CPb 14.2.7)

Truncated series, 25, 28
Truncation error, 165-166, 174, 435
Two dice problem, 556-557
Two-dimensional integration over the unit square, 198
2-simplex sets, 648
Unconstrained minimization problems, 625-626
Underflow, of range, 45
Undetermined coefficients, method of, 233
Uniformly distributed numbers, 533
Unimodal functions F, 627-628
Unitarily similar matrices, 345-346
Unit roundoff error, 50, 703
Unit vectors, 708
Unstable functions, roots as, 88 (CPb 3.1.12)
Upper bound lemma, 157
Upper triangular matrix, 710
Upper triangular system, 248
Upwind method, 602
Usual case, of quadratic interpolation algorithm, 634

Vandermonde matrix, 139-141, 152 (Pb 4.1.47), 254
Variable metric algorithm, 647
Variables, declaring, 685-686
Variance, 15 (CPb 1.1.7, CPb 1.1.8)
Vector norms, 319-320, 721
Vector notation, 467-469
Vectors. See also Abstract vector spaces in linear algebra; Eigenvalues and eigenvectors
column, 671

A-conjugate, 332
convex hull of, 417
direction, 333
gradient, 640-641
index, 262, 266
inner product of, 332
in linear algebra, 706-708
matrix-vector product and, 711
in ordinary differential equations
(ODE), 429-431
residual, 254-255, 279 (CPb 7.2.19)
scale, 262
vector inequality of, 658
Verification, symbolic, $20(\mathrm{CPb}$ 1.1.26)
Vertices in $K, 671-672$
Volume estimation. See Area and volume estimation

Warning messages, 685
Wave equation model, 582, 584, 596-597
Weierstrass approximation theorem, 416
Weight function, 519-520
Weights, Gaussian, 230, 232-234
Wilkinson's polynomial, 88 (CPb 3.1 .12), 121 (CPb 3.3.9)

Zeros
of $f, 76-77,81$
of multiplicity, 96, $104(\mathrm{~Pb} 3.2 .35)$
simple, 93
spurious, 62

This page intentionally left blank

Formulas from Integral Calculus

$\int x^{a} d x=\frac{x^{a+1}}{(a+1)}+C \quad(a \neq 1) \quad \int \cos x d x=\sin x+C$
$\int e^{x} d x=e^{x}+C$
$\int \tan x d x=\ln |\sec x|+C$
$\int e^{a x} d x=\frac{1}{a} e^{a x}+C$
$\int \sec x d x=\ln |\sec x+\tan x|+C$
$\int x e^{a x} d x=\frac{1}{a^{2}} e^{a x}(a x-1)+C$
$\int x \sin x d x=\sin x-x \cos x+C$
$\int x^{-1} d x=\ln |x|+C$

$$
\int \sec ^{2} x d x=\tan x+C
$$

$\int \ln x d x=x \ln |x|-x+C$
$\int \sec x \tan x d x=\sec x+C$
$\int x \ln x d x=\frac{x^{2}}{2} \ln |x|-\frac{x^{2}}{4}+C$
$\int \sinh x d x=\cosh x+C$
$\int \frac{d x}{a+b x}=\frac{1}{b} \ln |a+b x|+C$
$\int \cosh x d x=\sinh x+C$
$\int \frac{d x}{(a+b x)^{2}}=\frac{-1}{b(a+b x)}+C$

$$
\int \tanh x d x=\ln |\cosh x|+C
$$

$\int \frac{d x}{x(a x+b)}=\frac{1}{b} \ln \left|\frac{x}{a x+b}\right|+C$
$\int \operatorname{coth} x d x=\ln |\sinh x|+C$
$\int \frac{d x}{a+b x^{2}}=\frac{1}{\sqrt{a b}} \arctan \left(\frac{1}{a} x \sqrt{a b}\right)+C$
$\int \sin ^{2} x d x=\frac{x}{2}-\frac{1}{4} \sin 2 x+C$
$\int \frac{d x}{a^{2}+x^{2}}=\frac{1}{a} \arctan \left(\frac{x}{a}\right)+C \quad(a \neq 1)$
$\int \cos ^{2} x d x=\frac{x}{2}+\frac{1}{4} \sin 2 x+C$
$\int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\arcsin \left(\frac{x}{a}\right)+C \quad(a \neq 1) \quad \int \arcsin x d x=x \arcsin x+\sqrt{1-x^{2}}+C$
$\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left|\sqrt{x^{2}+a^{2}}+x\right|+C \quad \int \arccos x d x=x \arccos x-\sqrt{1-x^{2}}+C$
$\int \sqrt{x^{2} \pm a^{2}} d x=\frac{x}{2} \sqrt{x^{2} \pm a^{2}} \pm \frac{a^{2}}{2} \ln \left|x+\sqrt{x^{2} \pm a^{2}}\right|+C \quad \int \arctan x d x=x \arctan x-\frac{1}{2} \ln \left(1+x^{2}\right)+C$
$\int \sin x d x=-\cos x+C$

$$
\int F^{\prime}(g(x)) g^{\prime}(x) d x=F(g(x))+C
$$

Fundamental Theorem of Calculus

$\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)$

Integration by Parts

$\int u d v=u v-\int v d u$

Mean Value for Integrals

$\int_{a}^{b} f(x) g(x) d x=f(\xi) \int_{a}^{b} g(x) d x \quad(g(x) \geqq 0)$

Series

$$
\begin{aligned}
& e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\frac{x^{6}}{6!}+\cdots=\sum_{k=0}^{\infty} \frac{x^{k}}{k!} \quad(|x|<\infty) \\
& a^{x}=1+x \ln a+\frac{(x \ln a)^{2}}{2!}+\frac{(x \ln a)^{3}}{3!}+\cdots=\sum_{k=0}^{\infty} \frac{(x \ln a)^{k}}{k!} \quad(|x|<\infty) \\
& \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\frac{x^{9}}{9!}-\frac{x^{11}}{11!}+\cdots=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!} \quad(|x|<\infty) \\
& \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\frac{x^{8}}{8!}-\frac{x^{10}}{10!}+\cdots=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k}}{(2 k)!} \quad(|x|<\infty) \\
& \tan x=x+\frac{x^{3}}{3}+\frac{2 x^{5}}{15}+\frac{17 x^{7}}{315}+\frac{62 x^{9}}{2835}+\cdots \quad\left(x^{2}<\frac{\pi^{2}}{4}\right) \\
& \arcsin x=x+\frac{x^{3}}{6}+\frac{1}{2} \frac{3}{4} \frac{x^{5}}{5}+\frac{1}{2} \frac{3}{4} \frac{x^{7}}{7}+\cdots \quad\left(x^{2}<1\right) \\
& \arctan x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)} \quad\left(x^{2}<1\right) \\
& \ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots=\sum_{k=1}^{\infty}(-1)^{k-1} \frac{x^{k}}{k} \quad(-1<x \leqq 1) \\
& \ln \left(\frac{1+x}{1-x}\right)=2\left[x+\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots\right]=2 \sum_{k=1}^{\infty} \frac{x^{2 k-1}}{2 k-1} \quad(|x|<1) \\
& (x+y)^{n}=x^{n}+n x^{n-1} y+\frac{n(n-1)}{2!} x^{n-2} y^{2}+\frac{n(n-1)(n-2)}{3!} x^{n-3} y^{3}+\cdots=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k} \\
& \frac{1}{1-x}=1+x+x^{2}+x^{3}+x^{4}+x^{5}+\cdots=\sum_{k=0}^{\infty} x^{k} \quad(|x|<1)
\end{aligned}
$$

Formal Taylor Series for \boldsymbol{f} about \boldsymbol{c}

$f(x) \sim f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\frac{f^{\prime \prime \prime}(c)}{3!}(x-c)^{3}+\cdots=\sum_{k=0}^{\infty} \frac{f^{(k)}(c)}{k!}(x-c)^{k}$
Taylor Series for $\boldsymbol{f}(\boldsymbol{x})$
$f(x)=\sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!}(x-c)^{k}+E_{n+1} \quad$ where $E_{n+1}=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-c)^{n+1}$
Taylor Series for $\boldsymbol{f}(\boldsymbol{x}+\boldsymbol{h})$
$f(x+h)=\sum_{k=0}^{n} \frac{f^{(k)}(x)}{k!} h^{k}+E_{n+1} \quad$ where $E_{n+1}=\frac{f^{(n+1)}(\xi)}{(n+1)!} h^{n+1}$

Alternating Series

If $a_{1} \geqq a_{2} \geqq \cdots \geqq a_{n} \geqq \cdots \geqq 0$ for all n and $\lim _{n \rightarrow \infty} a_{n}=0$ then
$\sum_{k=1}^{\infty}(-1)^{k-1} a_{k}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}(-1)^{k-1} a_{k}=\lim _{n \rightarrow \infty} S_{n}=S$. Moreover, $\left|S-S_{n}\right| \leqq a_{n+1}$ for all n.

Mean-Value Theorem

$f(b)=f(a)+(b-a) f^{\prime}(\xi) \quad$ for some ξ in (a, b)

[^0]: *The symbol \approx means "approximately equal to."

[^1]: ${ }^{\ddagger}$ A pseudocode is a compact and informal description of an algorithm that uses the conventions of a programming language but omits the detailed syntax. When convenient, it may be augmented with natural language.

[^2]: *Problems marked with ${ }^{a}$ have answers in the back of the book.

[^3]: *A formal statement of the Intermediate-Value Theorem is as follows: If the function f is continuous on the closed interval $[a, b]$, and if $f(a) \leqq y \leqq f(b)$ or $f(b) \leqq y \leqq f(a)$, then there exists a point c such that $a \leqq c \leqq b$ and $f(c)=y$.

[^4]: *Rolle's Theorem: Let f be a function that is continuous on $[a, b]$ and differentiable on (a, b). If $f(a)=f(b)=0$, then $f^{\prime}(c)=0$ for some point c in (a, b).

[^5]: ${ }^{*}$ Fundamental Theorem of Calculus: If f is continuous on the interval $[a, b]$ and F is an antiderivative of f, then

 $$
 \int_{a}^{b} f(x) d x=F(b)-F(a)
 $$

[^6]: *Mean-Value Theorem for Integrals: Let f be continuous on $[a, b]$ and assume that g is Riemann-integrable on $[a, b]$. If $g(x) \geqq 0$ on $[a, b]$, then there exists a point ξ such that $a \leqq \xi \leqq b$ and $\int_{a}^{b} f(x) g(x) d x=$ $f(\xi) \int_{a}^{b} g(x) d x$.

[^7]: *Intermediate-Value Theorem: If the function g is continuous on an interval $[a, b]$, then for each c between $g(a)$ and $g(b)$, there is a point ξ in $[a, b]$ for which $g(\xi)=c$.

[^8]: *To save space, we occasionally write a vector as $\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{T}$, where the T stands for the transpose. It tells us that this is an $n \times 1$ array or vector and not $1 \times n$, as would be indicated without the transpose symbol.

[^9]: *The formula for integration by parts is

[^10]: *Markov chains can be used to model the behavior of a system that depends only on its previous state. Markov chains involve a transition matrix $\boldsymbol{P}=\left(P_{i j}\right)$, where the entries are the probability of going from state j to state i.

[^11]: *In 1962, the rocket carrying the Mariner I space probe to Venus went off course after only five minutes of flight and was destroyed. An investigation revealed that a single line of faulty Fortran code caused the disaster. A period was typed in the code DO $5 \mathrm{I}=1,3$ instead of the comma, resulting in the loop being executed once instead of three times. It has been estimated that this single typographical error cost the United States National Aeronautics and Space Administration $\$ 18.5$ million dollars! For additional details, see material available online such as www-aix.gsi.de/~giese/swr/mariner1.html and www-aix.gsi.de/~giese/swr/ literatur1.html for a general reference.

[^12]: *Answers to problems marked in the text with the symbol ${ }^{a}$ are given here and in the Student's Solution Manual with more details.

